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Abstract— This work proposes a position and attitude non-
linear observer based on inertial measurements and GPS
pseudorange readings. The observation problem is formulated
on SE(3), and the solution yields exponential convergence of the
attitude and position estimates. The GPS pseudorange measure-
ments and inertial sensor readings are exploited directly in the
observer, and the integration of vector readings in the observer
is discussed. The proposed observer dynamics compensate for
the bias in the angular velocity sensor and the clock offset in
GPS pseudorange measurements. The stability of the position
and velocity estimates in the presence of bounded accelerometer
noise is also analyzed. The properties of the GPS/IMU based
observer are illustrated in simulation for a rigid body describing
a challenging trajectory.

I. INTRODUCTION

Navigation systems that integrate Inertial Measurement

Unit (IMU) with Global Positioning Satellite (GPS) data

have become a widely adopted solution for practical appli-

cations over the last decades [11]. The IMU comprises rate

gyro and accelerometer triads, rigidly mounted on the vehicle

structure (strapdown configuration). Using the data provided

by these sensors, high-accuracy algorithms compute attitude,

velocity and position. Non-ideal characteristics of the inertial

sensors, namely bias, misalignment, and noise, degrade the

results of the integration algorithm and produce medium-

term drift of the position and attitude estimates. The GPS

receiver, installed onboard the vehicle, is a position aiding

system that provides pseudorange measurements with respect

to satellites in view. Algorithms to compute the position

of the GPS receiver in Earth frame using the pseudorange

measurements are presented in [2], [4], [6], [8], [15].

The integration of the short-term high-accuracy IMU data

with the GPS unit readings allows for improved position and

attitude estimates. To that effect, Kalman and sigma-point

filtering techniques are commonly adopted [11], [10], [21],

which, by means of linearization, dynamically compensate

for the estimation errors of the IMU/GPS ensemble. Due

to the inherently nonlinear attitude kinematics, the stability

and robustness of the IMU/GPS filtering architectures are

validated using experimental data.
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More recently, nonlinear observers have been proposed

for the problems of attitude and position determination [3],

[12], [14], [18], [19], [22], [23], formulated rigorously in

non-Euclidean spaces where attitude is naturally represented,

such as the set of rotation matrices SO(3) and the set of

unit quaternions S(3). Insights on the problem of nonlinear

attitude estimation and theoretical stability and convergence

results are brought about in this approach. Guidelines for

observer design on manifolds such as SO(3) and S(3) and

the topological issues arising in global stabilization on non-

Euclidean spaces are evidenced in [5], [9].

In this work, a GPS/IMU based nonlinear observer is

proposed, characterized by a cascaded composition of the

attitude observer with the position observer. Exploiting in-

ertial measurements and pseudorange readings directly, the

observer is formulated on SE(3) and yields exponential

convergence of the position and attitude estimation errors

to the origin. Non-ideal characteristics of the inertial sensors

are addressed. Rate gyro bias is compensated dynamically

and the position and velocity errors are stabilized in the

presence of accelerometer noise. The proposed attitude ob-

server exploits IMU readings, aided by vector measurements

as presented in previous work by the authors [23], or by

using multiple GPS receivers installed onboard the vehicle,

allowing for an observer based solely on GPS and IMU

data. Convergence bounds for the estimation errors flow from

the stability proofs and from the recently derived results for

parameterized linear time-varying systems [16].

The paper is organized as follows. In Section II, the sensor

suite adopted in the estimation problem is described and

Section III proposes attitude and position observers based

on the GPS, IMU and vector readings. The stability and

convergence properties of the estimation errors are derived

and the observer equations are expressed as explicit functions

of the sensor measurements. The stability and convergence

of the observer estimates are illustrated in simulation in

Section IV. Concluding remarks are presented in Section V.

NOMENCLATURE

The notation adopted is fairly standard. The set of n ×
m matrices with real entries is denoted as M(n,m) and

M(n) := M(n, n). The set of special orthogonal matrices is

denoted as SO(n) := {R ∈ M(n) : R′R = I,det(R) = 1},

the special Euclidean group is given by the product space

SE(n) := SO(n) × R
n [17], and the n-dimensional sphere

is described by S(n) := {x ∈ R
n+1 : x′x = 1}. The time

dependence of the variables will be omitted in general, but

otherwise denoted for the sake of clarity.
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Fig. 1. Navigation System Configuration

II. SENSOR DESCRIPTION

In this section, the sensor suite used in the attitude and

position observer is introduced. The rigid body kinematics

are described by

˙̄R = R̄(ω̄)×, E ˙̄p = Ev̄, E ˙̄v = E ā,

where R̄ is the shorthand notation for the rotation matrix E
BR

from body frame {B} to Earth frame {E} coordinates, ω̄ is

the body angular velocity expressed in {B}, Ep̄, Ev̄ and E ā

are the position, velocity and acceleration of the rigid body

with respect to {E} expressed in {E}, respectively, and (s)×
is the skew symmetric matrix defined by the vector s ∈ R

3

such that (s)×b = s × b, b ∈ R
3.

The inertial sensors measure the angular velocity and

specific force of the body, which allows for the propagation

of the attitude and position in time. The body angular

velocity is measured by a rate gyro sensor triad, corrupted

by a bias term

ωr = ω̄ + b̄ω, (1)

where the nominal bias is considered constant, ˙̄bω = 0.

The triaxial accelerometer measures the specific force, which

is the difference between the inertial and the gravitational

accelerations of the rigid body [7], B ā and Bḡ respectively,

expressed in body frame coordinates,

ar = B ā − Bḡ. (2)

The GPS pseudoranges measurements are given by the

distance from the GPS satellites to the receiver and a distance

offset due to the clock bias [11], yielding

ρij = ‖Ep̄j −
Ep̄S i‖ + bc, (3)

where Ep̄j and Ep̄Si are the positions of the receiver

j and satellite i expressed in {E}, the total number of

GPS satellites and receivers are represented by s and r,

respectively, j = 1..r and i = 1..s, and bc is the range bias

due to the offset between the receiver and satellite’s clocks.

In the communication process, the satellite coordinates Ep̄Si

are transmitted to the receiver. Without loss of generality,

Fig. 2. Cascaded Position and Attitude Observer

receiver 1 is considered to be at the origin of the body frame,

i.e. Ep̄ = Ep̄1.

The objective of the present work is to exploit the infor-

mation provided by the sensors, by deriving a position and

attitude observer that combines the inertial measurements

with the pseudorange readings and, if available, with the

vector observations.

III. OBSERVER ARCHITECTURE

As depicted in Fig. 2, the proposed observer is described

by a cascaded composition, where the attitude observer

estimates are fed into the position observer to rotate the

specific force readings to Earth frame. In this section the

attitude and the position observers are detailed, and the

associated properties are derived. Namely, the exponential

convergence of the attitude and position estimation errors

to the origin is evidenced, and it is shown that the attitude

and position observer equations can be expressed as explicit

functions of the IMU and GPS pseudorange measurements.

A. Attitude Observer

The attitude observer considered in this section estimates

the rotation matrix by exploiting the angular velocity mea-

surements (1), and i) the pseudorange measurements (3)

provided by multiple GPS receivers installed onboard the

vehicle, or ii) vector observations as proposed in [23]. The

attitude observer estimates the orientation of the rigid body

by computing the kinematics

˙̂
R = R̂(ω̂)×,

where R̂ is the estimated attitude and ω̂ is the feedback term

constructed to compensate for the attitude estimation error.

The architecture of the GPS based attitude observer is

similar to that of the vector based attitude observer derived

in [23], and further insight on the observer derivation can be

found therein. The positions of two GPS receivers in body

coordinates, Bp̄i and Bp̄1, are subtracted to define the vector

Bx̄i := Bp̄i+1 −
Bp̄1, (4)

which is known in body frame coordinates. Apply-

ing this operation to all the receivers produces X :=
[

Bx̄1
Bx̄2 . . . Bx̄r−1

]

∈ M(3, r−1). Define the linear

combination of the body vectors as

Byj :=
r−1
∑

i=1

bij
Bxi ⇔ YX = XBX , (5)
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where BX := [bij ] ∈ M(r − 1) is invertible by construction

and YX :=
[

By1 . . . Byr−1

]

∈ M(3, r − 1). The

nominal and the estimated coordinates of the transformed

body vectors in Earth frame are given by EȲX := R̄YX

and EŶX := R̂YX , respectively.

Some rotational degrees of freedom are unobservable if

the vectors (4) are all collinear, and the following necessary

condition is assumed.

Assumption 1: There are at least two noncollinear vectors
Bx̄i.

The transformation BX is defined such that YXY′
X = I,

to shape uniformly the directionality introduced by the vector

readings. The desired BX exists if Assumption 1 is satisfied,

see [23, Appendix A] for a discussion on the subject.

The attitude observer is described by

˙̂
R = R̂(ω̂)×, ω̂ = R̂′EȲX

EŶ′
XR̂

(

ωr − b̂ω

)

− kωsω,

˙̂
bω = kbsω, sω = R̂′

n
∑

i=1

(EȲXei) × (EŶXei), (6)

where EŶX and EȲX are given by the observer estimates

and the pseudorange measurements, respectively, as shown

in the following proposition.

Proposition 1: Assume that the position fix (Ep̄, bc) sat-

isfying the pseudorange measurements (3) for all i = 1..s is

unique. The attitude observer dynamics (6) are a function of

the sensor measurements and observer estimates, where

EȲX = −
[

fp(ρ2) − fp(ρ1) . . . fp(ρr) − fp(ρ1)
]

BX ,

EŶX = R̂XBX , ρj :=
[

ρ1j . . . ρmj

]

is the vector

of pseudoranges measured by receiver j, ρ := ρ1, and the

function fp(ρj) is given by

fp(ρj) :=
1

2
(EU′WSj

EU)−1EU′WSjbSj , (7)

which encompasses matrices described by the pseudoranges

measurements and satellite’s positions as follows

EU :=
[

Ep̄′
S2 −

Ep̄′
S1 . . . Ep̄′

Ss −
Ep̄′

S1

]′
,

WS j := 4∆S j(4∆
′
S j∆S j − 1)−1∆′

S j − I(s−1)×(s−1),

∆Sj :=
[

ρ2j − ρ1j . . . ρsj − ρ1j

]′
,

bS j =







ρ2
2j − ρ2

1j −
(

‖Ep̄S 2‖
2 − ‖Ep̄S 1‖

2
)

...

ρ2
s j − ρ2

1 j −
(

‖Ep̄S s‖
2 − ‖Ep̄S 1‖

2
)






. (8)

Proof: The formulation for EŶX is immediate from

(5), and EȲX is obtained by noting that EȲX =
[

Ep̄2 −
Ep̄1 . . . Ep̄r −

Ep̄1

]

BX and using the deriva-

tion of fp(ρj) presented in the Appendix.

The resulting stability and convergence properties of the

attitude observer are formulated by defining the attitude esti-

mation error R̃ := R̂′R̄. The Euler angle-axis parametriza-

tion of R̃ is described by the rotation vector λ ∈ S(2)
and by the rotation angle θ ∈

[

0 π
]

, and yields the

Direct Cosine Matrix (DCM) formulation R̃ = rot(θ,λ) :=
cos(θ)I+sin(θ)(λ)×+(1−cos(θ))λλ′, see [17] for details.

The properties of the observer are presented separately

for the case of unbiased and biased angular measurements,

since the former presents stronger convergence properties.

For details, the reader is referred to the proofs in [23].

Theorem 2 (Unbiased Velocity Measurements): Let b̃ω =
0. Under Assumption 1, the closed-loop error kinematics of

the attitude observer are given by

˙̃R = − kωR̃(R̃ − R̃′). (9)

The equilibrium point R̃ = I is exponentially stable, with

region of attraction RA = {R̃ ∈ SO(3) : tr(I − R̃) < 4}
= {R̃ ∈ SO(3) : R̃ = rot(θ, π), |θ| < π} and for any initial

condition R̃(t0) ∈ RA, the emanating trajectory satisfies

‖R̃(t) − I‖ ≤ cR‖R̃(t0) − I‖e−
1
2 γR(t−t0), (10)

where cR = 1 and γR = 2kω(1 + cos(θ(t0))).
Theorem 3 (Biased Velocity Measurements): Let b̄ω 6= 0.

Under Assumption 1, the closed loop dynamics are given by

˙̃R = −kωR̃(R̃ − R̃′) + R̃(b̃ω)×,
˙̃
bω = −kb(R̃ − R̃′)⊗,

(11)

where (·)⊗ is the unskew operator such that ((w)×)⊗ =

w,w ∈ R
3. Given the feedback gain kb >

b̃20 max

4(1+cos(θ0 max))

where θ0 max and b̃0 max represent the initial estimation errors

bounds

θ(t0) ≤ θ0 max < π, ‖b̃ω(t0)‖ ≤ b̃0 max, (12)

the origin (R̃, b̃ω) = (I, 0) is exponentially stable, uniformly

in the set defined by (12). That is, let xR :=
(

R̃ − I, b̃ω

)

,

there exists cb, γb > 0 independent of xR(t0) such that the

trajectories of the system satisfy

‖xR(t)‖ ≤ cbe
− 1

2 γbω (t−t0)‖xR(t0)‖. (13)

Bounds for the exponential convergence parameters cb and

γbω
are given by the properties of parameterized linear time-

varying systems presented in [16], for details and discussion

of the results for the present observer see [23, Corollary 9].

The attitude observer based on vector observations is

detailed in [23] and is characterized by the dynamics, and the

convergence and stability properties described in Theorem 2

and Theorem 3.

B. Position Observer

This section derives the position observer based on the

IMU and GPS readings, and on the attitude observer esti-

mates. The position and velocity estimates are described by

E ˙̂p = Ev̂ + sp,
E ˙̂v = E â + sv, (14)

where sp and sv are feedback terms, the estimate of the

acceleration in Earth coordinates is given by

E â = R̂ar + E ḡ, (15)

and the gravity representation in Earth coordinates E ḡ is

known. As shown in the block diagram of Fig. 2, the position

observer uses the attitude estimate to rotate the accelerometer

measurements ar to the Earth frame. Consequently, the

attitude estimation error R̃ will affect the convergence and

stability properties of the position observer.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB18.6

1257



Defining the position and velocity estimation errors Ep̃ :=
Ep̂ − Ep̄, Eṽ := Ev̂ − Ev̄ , the derivation of the feedback

terms sp and sv is motivated by the Lyapunov function

Vp :=
αp

2
‖Ep̃‖2 +

αv

2
‖Eṽ‖2. (16)

The Lyapunov function time derivative is described by V̇p =
αp

Ep̃′(Eṽ + sp) + αv
Eṽ′(ug + sv), where ug := R̄(R̃′ −

I)R̄′(E ā − E ḡ). The feedback terms are defined as

sp := −kp
Ep̃, sv := −kv

Ep̃, (17)

where kp, kv > 0, and choosing αv =
αp

kv
produces

V̇p = −αpkp‖
Ep̃‖2 +

αp

kv

Eṽ′ug. (18)

which is sign indefinite due to the second term. The term

ug is the compensation error generated by rotating the

accelerometer readings to Earth frame using the estimated

attitude. In particular, if ug = 0, then V̇p is negative definite

and the stability properties of the position observer can

be derived using Lyapunov stability theory. However, for

ug 6= 0, the convergence properties of the position observer

are influenced by the convergence properties of the attitude

observer.

The position and velocity error dynamics are described by

E ˙̃p = −kp
Ep̃ + Eṽ,

E ˙̃v = −kv
Ep̃ + R̄(R̃′ − I)R̄′(E ā − E ḡ),

(19)

which can be modeled as an autonomous system with an

input ug . In this work, the stability of the position observer

is obtained by using input-to-state stability theory [13], [20].

To that effect, it is assumed that the following condition for

the rigid body acceleration is verified.

Assumption 2: For any γg > 0, there exists cg such that

the acceleration of the rigid body satisfies

‖E ā(t) − E ḡ‖ ≤ cge
γg(t−t0), for all t > t0. (20)

The conditions of Assumption 2 guarantee that the conver-

gence of the attitude estimation error (I−R̃) dominates the

acceleration term (E ā − E ḡ) in ug as t → ∞. Interestingly

enough, unbounded accelerations such as those that grow

polynomially with time satisfy Assumption 2, which there-

fore poses a weak limitation for most practical applications.

We are now ready to present the stability and convergence

properties of the cascaded attitude and position observers. As

before, the properties are derived separately for unbiased and

biased angular rate measurements.

Theorem 4 (Unbiased Velocity Measurements):

Under Assumptions 1 and 2, the equilibrium point

(R̃, Ep̃, Eṽ) = (I,0,0) of the system (9,19) is exponentially

stable with region of attraction given by

RA = {(R̃, Ep̃, Eṽ) ∈ SE(3) × R
3 : tr(I − R̃) < 4}

= {(rot(θ,λ), Ep̃, Eṽ) ∈ SE(3) × R
3 : |θ| < π}.

Proof: The stability and convergence of the position

and attitude errors are shown by analyzing (9) and (19) as a

cascaded system. The position and velocity error dynamics

expressed in (19) are rewritten as

ẋp = Apxp + Bpug, (21)

where xp :=
[

Ep̃′ Eṽ′]′, Ap :=
[

−kpI I

−kvI 0

]

, Bp := [ 0
I
].

To derive the stability and convergence properties of the

cascaded system, it is first shown that the system represented

by (21) is Input to State Stable (ISS). It is a simple exercise

to verify that Ap is Hurwitz and, by the properties of linear

systems [13], the system (21) is ISS.

The exponential convergence of the state (R̃, Ep̃, Eṽ) is

obtained by the bounds on the solution of (21) and the expo-

nential convergence of ug . The derivation is presented here

for the sake of clarity and to provide explicit convergence

bounds. Using ‖ug‖ ≤ ‖R̄(R̃′ − I)‖‖R̄′(E ā − E ḡ)‖ =
‖R̃ − I‖‖E ā − E ḡ‖, the exponential convergence of the

attitude observer error (10), and Assumption 2, a exponential

bound for the input is obtained

‖ug(t)‖ ≤ cee
−γe(t−t0)‖R̃(t0) − I‖, (22)

where ce := cRcg and γe := γR − γg . Choosing γg small

enough, the exponential rate satisfies γe > 0. Therefore

‖ug‖ → 0 and, by the ISS property of (19), ‖Ep̃‖ → 0
and ‖Eṽ‖ → 0 as t → ∞.

To see that the origin of (9,19) is in fact exponentially
stable, note that the solution of the LTI system (21) satisfies

‖xp(t)‖ ≤ cae−γa(t−t0)‖xp(t0)‖ +

Z t

t0

cae−γa(t−τ)‖Bp‖‖ug(τ)‖dτ

where the stability of the origin implies that there exists
ca and γa > 0 such that ‖eApt‖ ≤ cae−γat [13]. Ap-
plying (22), solving the integral and using the inequali-

ties e−γe(t−t0)−e−γa(t−t0)

γa−γe
≤ e−γmin(t−t0)

|γa−γe| , and e−γa(t−t0) ≤

e−γmin(t−t0), where γmin := min(γe, γa), produces

‖xp(t)‖ ≤cae−γmin(t−t0)(‖xp(t0)‖ +
ce‖Bp‖

|γa − γe|
‖R̃(t0) − I‖).

Defining the full attitude and position estimation error state

xf :=
(

R̃ − I,xp

)

= (R̃ − I, Ep̃, Eṽ), using (10), ‖xf‖ ≤

‖xp‖ + ‖R̃ − I‖, ‖xp‖ ≤ ‖xf‖, ‖R̃ − I‖ ≤ ‖xf‖, and

γe < γR results in the exponential bound

‖xf (t)‖ ≤cmaxe
−γmin(t−t0)‖xf (t0)‖,

where cmax := 2max(ca,
cace‖Bp‖
|γa−γe| + kR).

Following the proof of Theorem 4, it is possible to show

that if (20) is verified for some cg, γg > 0, i.e. if the

acceleration grows exponentially with time, then there is a

sufficiently high gain kω such that the origin is exponentially

stable for all θ0 ≤ θmax < 0.

The stability and convergence result for position and atti-

tude estimation with biased angular velocity measurements

is presented next.

Theorem 5 (Biased Angular Velocity Measurements):

Consider the feedback gain kb >
b̃20 max

4(1+cos(θ0 max)) .

Under Assumptions 1 and 2, the equilibrium point

(R̃, b̃ω, Ep̃, Eṽ) = (I,0,0,0) of the system (11,19) is

exponentially stable, uniformly in the set defined by (12).

Proof: By Theorem 3, the attitude observer error xR
is bounded by (13). Using ‖R̃ − I‖ ≤ ‖xR‖, the input of

the ISS system (19) is bounded by

‖ug(t)‖ ≤ cbee
−γbe(t−t0)‖xR(t0)‖, (23)
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where cbe := cbcg and γbe := 1
2γb − γg . Repeating the

algebraic manipulations of the proof of Theorem 4 produces

‖xbf (t)‖ ≤cmaxe
−γmin(t−t0)‖xbf (t0)‖,

where xbf := (xR,xp) = (R̃ − I, b̃ω, Ep̃, Eṽ) is the

full attitude and position estimation error state, γmin :=
min(γbe, γa) and cmax := 2max(ca,

cacbe‖Bp‖
|γa−γbe| + kb).

As shown in the next proposition, the position and velocity

estimation errors are bounded in the presence of accelerom-

eter disturbances.

Proposition 6 (Accelerometer Noise): Let the accelerom-

eter measurements be corrupted by bounded noise

ar = B ā − Bḡ + na,

where na ∈ R
3, ‖na‖ ≤ nmax. Then, the estimation errors

Ep̃ and Eṽ are bounded.

Proof: The result stems directly from the ISS proper-

ties of the position observer. The position estimation error

dynamics are given by

E ˙̃p = −kp
Ep̃ + Eṽ, E ˙̃v = −kv

Ep̃ + ug + R̂na.

Using the triangle inequality ‖ug + R̂na‖ ≤ ‖ug‖ +
‖R̂na‖ and ‖R̂na‖ = ‖na‖, the position solution

is bounded by ‖xp(t)‖ ≤ cae−γa(t−t0)‖xp(t0)‖ +
∫ t

t0
cae−γa(t−τ)‖Bp‖(‖ug(τ)‖ + ‖na(τ)‖)dτ. Taking the

bound
∫ t

t0
e−γa(t−τ)‖na(τ)‖dτ ≤ nmax

γa
shows that

lim supt→∞(‖xp(t)‖) ≤
ca

γa
‖Bp‖nmax.

Interestingly enough, the derived position and velocity

observer equations (14) can be written as a function of the

observer estimates and of the sensor measurements, as shown

in the next proposition.

Proposition 7: Assume that the position fix (Ep̄, bc) sat-

isfying the pseudorange measurements (3) for all i = 1..s is

unique. The dynamics of the position and velocity estimates

are a function of the sensor measurements and observer

estimates
E ˙̂p := −kp

(

Ep̂ + fp(ρ)
)

+ Ev̂,
E ˙̂v := −kv

(

Ep̂ + fp(ρ)
)

+ R̂ar + E ḡ.
(24)

Proof: The formulation (24) is obtained by algebraic

manipulation of (14) and (17), and by writing the nominal

position term in Ep̃ = Ep̂ − Ep̄ as a solution of the

pseudorange measurements. The details of the derivation are

presented in the Appendix.

IV. SIMULATIONS

In this section, simulation results for the proposed position

and attitude observer are presented. The GPS based attitude

observer was simulated using GPS receivers placed at Bp1 =
[

0
0
0

]

m, Bp2 =
[

1.5
0
0

]

m, Bp3 =
[

0
2
0

]

m. The satellites con-

figuration is described by EpS1 =
[

0
0

−20×106

]

m, EpS2 =
[

44×106

0
−20×106

]

m, EpS3 =

[

0
44×106

−20×106

]

m, EpS4 =
[

0
0
0

]

m,

EpS5 =
[

103

0
0

]

m where pS4 and pS5 are the coordinates

of pseudo-satellites installed at ground level. The clock bias,

expressed in distance, is bc = 105 m.
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Fig. 3. Attitude and Bias Estimation.

The feedback gains are given by kω = 2, kb = 1, kp =
2, kv = 1

2 and the rigid body trajectory is computed using

oscillatory angular rates and accelerations of 1 Hz. The

initial estimation errors are Ep̃(t0) =
[−10
−10
20

]

m, Eṽ(t0) =
[

1
1
1

]

m/s, θ(t0) = 72π
180 rad. The rate gyro bias is identical

on each rate gyro channel b̄ω =
[

5
5
5

]

π
180 rad/s, and the

initial bias estimate is b̂ω(t0) = 0 rad/s. The bounds (12)

are defined by θ0 max = 135π
180 rad, b̃0 max = 5

√
3π

180 rad/s.

The attitude and position estimation errors converge to

the origin, as illustrated in Fig. 3 and Fig. 4. Reducing the

attitude feedback gains kω and kb, the convergence rate of

the attitude and position estimates is slower, as expected.

Considering that the accelerometer readings are corrupted

by a Gaussian white noise na with standard deviation σa =
0.1I m/s2 and bounded by ‖na‖ ≤ nmax = 0.3 m/s2,

the position and velocity estimation errors converge to a

neighborhood of the origin, as shown in Fig. 4. The norm of

the specific acceleration compensation term ug converges to

a nonzero value below nmax, as expected.

The simulation results for the attitude observer based on

vector observations are similar to those presented for the GPS

based observer, given that the error dynamics are identical.

V. CONCLUSIONS

A nonlinear observer for attitude and position estimation

on SE(3) exploiting GPS and IMU data was derived. The

resulting navigation system structure was described by a

cascade of the attitude and position observers, yielding

exponential convergence of the estimation errors to the origin

and stability in the presence of bounded accelerometer noise.

Simulation results depicted the convergence properties of the

estimation errors. Future work will focus on the discrete time

implementation of the algorithm for practical applications.
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Fig. 4. Position and Velocity Estimation.

APPENDIX

In this section, the solution to the GPS receiver position
given the pseudorange measurements is derived. The present
approach builds on the geometric method presented in [8]
for s > 4 satellites, and is presented for the sake of clarity.
Consider two pseudorange measurements (3) obtained by
receiver j with respect to satellites i and 1, that is ρij and
ρ1j , respectively. Squaring and subtracting the pseudoranges

yields AS j

[

Ep̄j

bc

]

= bS j where AS j := 2
[

−EU ∆S j

]

and bS j is defined in (8). A solution is given by the

pseudoinverse

[

Ep̄j

bc

]

= (A′
S jAS j)

−1A′
S jbS j which, by

algebraic manipulation and using the properties of the block
matrix inverse, produces

E
p̄j = −

(EU′WSj
EU)−1EU′WSjbSj

2
= −fp(ρj). (25)

The conditions for existence and uniqueness of a position

fix Ep̄j given the pseudorange measurements ρij depend

on the user-satellite geometry for s = 4 satellites [8], [15].

For s ≥ 5, the solution is unique if the satellite geometry

is nonplanar [1]. If a valid position fix Ep̄j exists then it

satisfies (25), however if rank(AS j) < 4 the solution for

any nonplanar satellite configuration is given by [8, p.1024]
[

Ep̄j

bc

]

= wS j + αa⊥,wS j = A∗′

S j(A
∗
S jA

∗′

S j)
−1A∗′

S jbS j ,

where A∗
S j ∈ M(3, 4) is obtained by selecting the lin-

early independent lines of AS j , a⊥ ∈ R
4 describes the

null space of AS j , i.e. AS ja⊥ = 0, and the coefficient

α is the solution of the quadratic equation α2w′
aZwa +

2αw′
aZa⊥+a′

⊥Za⊥ = 0, wa = wS j−
[

Ep′
S1 ρ1j

]′
, Z =

diag(1, 1, 1,−1), which uniquely satisfies the pseudorange

measurements ρij .
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