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Abstract— In this paper, we consider a linear quantum
network composed of two distantly separated cavities that are
connected via a one-way optical field. When one of the cavity
is damped and the other is undamped, the overall cavity state
obtains a large amount of entanglement in its quadratures.
This entanglement however immediately decays and vanishes
in a finite time. That is, entanglement sudden-death occurs.
We show that the proportional measurement feedback method
proposed by Wiseman can avoid this entanglement sudden-
death, and further, enhance the entanglement. It is also shown
that the entangled state under feedback control is robust against
signal loss in a realistic detector, indicating the reliability of the
proposed proportional feedback method in practical situations.

I. INTRODUCTION

Reliable generation and distribution of entanglement in a

quantum network is a central subject in quantum information

technology [1], especially in quantum communication [2]–

[5]. The biggest issue in such systems is the decay of

entanglement due to decoherence effects that are inevitably

introduced when node-channel or channel-environment inter-

action occurs. Entanglement distillation [6], [7] is a useful

technique that restores such degraded entanglement. How-

ever, it sometimes happens that entanglement completely

disappears in a finite time, which is called entanglement

sudden-death [8], [9]. In this case, distillation techniques

cannot recover the vanished entanglement.

On the other hand, feedback control can be used to

modify the dynamical structure of a system and improve

its performance, e.g., see [10]–[13]. Entanglement protection

or generation is one of the most attractive applications of

feedback [14]–[17]. In particular, two studies have demon-

strated that a feedback controller effectively assists in the

distribution of entanglement in a quantum network. One such

result is by Mancini and Wiseman [18], where a proportional

measurement feedback method [19], [20] is used to enhance

the correlation of two bosonic modes that couple through

a χ(2) nonlinearity. (This control method is called direct

measurement feedback in physics community.) The other

such result is by Yanagisawa [21], where an estimation-based

feedback controller is used to deterministically generate an

entangled photon number state of two distantly separated

cavities.

This paper follows a similar direction to [18] and [21].

That is, we also consider a problem of distributing entan-

glement in a quantum network using proportional feedback

control. The quantum network being considered is depicted

in Fig. 1: Two spatially separated cavities are connected via a

one-way optical field, and the measurement results of the out-

put of Cavity 2 are directly fed back to control both cavities.

A more specific description will be given in Sections II-B

and II-C, but here we note that the network model considered

brings together the following three features that have been

not simultaneously considered in previous work. First, the

network contains models of realistic components; a realistic

quantum channel in contact with an environment and a

realistic homodyne detector with finite bandwidth [22]. A re-

alistic model is of practical importance for real-time quantum

feedback control. Second, we consider linear continuous-

variable cavity models (i.e., we consider the quadratures

of the cavity mode), similar to the case of [4], [5], [18].

Hence, the system differs from a discrete-variable system

such as an atomic energy level [2], [3], or a photon number

system description [21]. This setup is motivated by the recent

rapid progress and deep understanding of continuous-variable

systems in the quantum information regime [23]. Third, the

cavities are spatially separated, and the interaction between

them is simply mediated by an optical field, while in [18] two

bosonic modes interact through a χ(2) optical nonlinearity

and thus the two modes are not spatially separated. The

spatially separated case is the case of interest in applications

such as quantum communication.

The contributions of this paper are as follows. First, we

show that the network considered in this paper, which looks

complicated, can be systematically captured and described

using the theory of quantum cascade systems [24]–[27]. We

then show that when the first cavity is undamped and the sec-

ond cavity is damped, the cavity state obtains a large amount

of entanglement, which, however, disappears in a finite time

despite the continuous interaction between the cavities; i.e.,

entanglement sudden-death occurs. As mentioned above, no

distillation technique can recover such a zero entanglement.

Nevertheless, we show that proportional feedback control

not only prevents entanglement sudden-death, but can also

enhance the entanglement. Moreover, it will be shown that
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Fig. 1. Schematic of the network. Thick gray lines represent quantum
optical fields, while thin black lines represent classical signals.

the entangled state under control is robust against signal

loss in a realistic detector, implying the reliability of the

proportional feedback method in practical situations.

Notation: For a matrix A = (aij), the symbols AT, A†,

and A∗ represent its transpose, conjugate transpose, and ele-

mentwise complex conjugate of A, respectively. Re(A) and

Im(A) denote the real and imaginary part of A, respectively.

The matrix element aij can be an operator âij ; in this case,

â∗
ij denotes its adjoint operator.

II. MODEL

A. General linear quantum systems

We consider a general linear continuous-variable system

with N -degrees of freedoms. Let x̂i = (q̂i, p̂i)
T be the

standard quadrature pair of the i-th subsystem. It then follows

from the canonical commutation relation [q̂i, p̂j] = q̂ip̂j −
p̂j q̂i = iδij that the vector x̂ := (x̂T

1 , . . . , x̂T

N )T satisfies

x̂x̂
T − (x̂x̂

T)T = iΣN = i

N
⊕

k=1

Σ, Σ :=

[

0 1
−1 0

]

.

Assume that the system contacts with M vacuum fields

without scattering. Such an interaction is described by a

unitary operator obeying the Hudson-Parthasarathy equation

[28]:

dÛt =
[

(

− iĤ − 1

2

M
∑

k=1

L̂∗
kL̂k

)

dt

+

M
∑

k=1

(

L̂kdB̂∗
k,t − L̂∗

kdB̂k,t

)

]

Ût, Û0 = Î . (1)

The operators B̂k,t and B̂∗
k,t represent the quantum annihi-

lation and creation processes on the k-th field, respectively.

They are quantum analogues of classical Wiener processes;

indeed, they satisfy [dB̂i,t, dB̂∗
j,t] = δijdt. Let us choose

Ĥ = Ĥ∗ and L̂k as follows:

Ĥ = x̂
TGx̂/2, L̂k = LT

k x̂, (2)

where G = GT ∈ R2N×2N and Lk ∈ C2N . The

system variables obey the Heisenberg equation x̂t :=

(. . . , Û∗
t q̂iÛt, Û

∗
t p̂iÛt, . . .)

T. We then obtain the following

linear equation:

dx̂t = Ax̂tdt + iΣN [LTdB̂∗
t − L†dB̂t], (3)

where LT := (L1, . . . , LM ) ∈ C2N×M , A := ΣN [G +
Im(L†L)], and B̂t := (B̂1,t, . . . , B̂M,t)

T. For details on

the physical meaning of these abstract linear models, see,

e.g., [39], [40]. It is easy to see that the first moment vec-

tor 〈x̂t〉 := (. . . , 〈Û∗
t q̂iÛt〉, 〈Û∗

t p̂iÛt〉, . . .)T, where 〈x̂〉 :=
Tr (ρ̂x̂), satisfies the linear equation d〈x̂t〉/dt = A〈x̂t〉.
Also, the covariance matrix Vt = (〈V̂ij〉), where

V̂ =
1

2

[

∆x̂t∆x̂
T

t + (∆x̂t∆x̂
T

t )T
]

, ∆x̂t := x̂t − 〈x̂t〉,

satisfies the following Lyapunov matrix differential equation:

dVt/dt = AVt + VtA
T + D. (4)

Here, D := ΣNRe(L†L)ΣT

N . Suppose that the state, which

is a quantum analogue to a classical probability density,

is Gaussian [29], [30], [35] at t = 0. Then, from the

linearity of the dynamics, the unconditional state is always

Gaussian with mean 〈x̂t〉 and covariance Vt. Note that the

unconditional state corresponds to a classical probability

density that describes a linear diffusion process.

B. The ideal network

Before describing the quantum network depicted in Fig. 1,

let us consider the ideal situation where the optical field

between the cavities is not in contact with any environment,

and the homodyne detector is perfect. In this case, the system

is the simple cascade of two cavities with a feedback loop.

The entangled state of this ideal network will be compared

to that of the realistic one for the purpose of clarifying

how much the realistic parameters affect the system. Also,

this ideal setup allows us to determine a reasonable control

Hamiltonian (the vector f given below), as will be seen in

Section III-B.

Each component of the network is described as follows.

The optical vacuum field B̂1,t comes into Cavity 1, and then,

its output becomes the input of Cavity 2. We assume that,

after some approximations, the i-th cavity-field interaction is

represented by Eq. (1) with single field (M = 1) and with

the following operators:

Ĥi = x̂
T

i Gix̂i/2, L̂1,i = ℓT

i x̂i, (i = 1, 2).

The subscript (1, i) in L̂ means the 1-st field and the i-th
cavity. Also, Gi = GT

i ∈ R
2×2 and ℓi ∈ C

2. The output of

Cavity 2 is transformed to a classical signal yt through an

ideal homodyne detector. Suppose now that each cavity has

an additional Hamiltonian of the form

Ĥ fb
i = utF̂i = utf

T

i x̂i, fi ∈ R
2, (i = 1, 2),

where ut ∈ R is the control input. Then, proportional mea-

surement feedback ut = gyt closes the loop by connecting

the detector to the cavities. Here g ∈ R is the control

gain. Note that we need a classical communication channel
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in order to control Cavity 1; that is, a local operation via

classical communication (LOCC) type control is performed.

For this network, we can easily determine the system

matrices G and Lk in Eq. (2) that specify the whole

dynamical equation. The derivation is based on the theory

of quantum cascade systems [24]–[27] and is given in [31].

Then, from the definition, the A and D matrices in the

Lyapunov equation (4) are readily obtained as follows:

Aid = Ao + 2gΣ2fRe(ℓ)T, (5)

Did = Do + Σ2

[

g2ffT − gIm(ℓ)fT − gf Im(ℓ)T
]

ΣT

2 ,(6)

where ℓ = (ℓT

1 , ℓT

2 )T, f = (fT

1 , fT

2 )T, and

Ao =

[

A1 0
2ΣIm(ℓ∗2ℓ

T

1 ) A2

]

, Do =

[

D1 ⋆
ΣRe(ℓ∗2ℓ

T

1 )ΣT D2

]

.

(7)

Here, Ai = Σ[Gi + Im(ℓ∗i ℓ
T

i )], Di = ΣRe(ℓ∗i ℓ
T

i )ΣT, and ⋆
denotes the symmetric elements. Note that Ao and Do are

the system matrices of the network without feedback. Hence,

the upper off-diagonal block matrix of Ao is zero, implying

the one-way interaction of the cavities.

C. The realistic network

We are now in the position to describe a realistic network,

which introduces the following two assumptions. First, the

output of Cavity 1 is mixed with another vacuum field B̂2,t

through a beam splitter (BS) with transmittance α. This is

a standard model of possible environmental effects on a

long quantum channel. Second, the homodyne detector is

not perfect and is described by the classical dynamics

dξt = a1ξtdt + a2dwt, dyt = a3ξtdt + dvt, ai ∈ R, (8)

where wt is an input stochastic process satisfying E[dw2
t ] =

dt and vt is an additional measurement noise satisfying

E[dv2
t ] = a4dt (a4 > 0). In particular, a typical low-pass

filter (LPF) is realized by choosing ai as

a1 = −1/τ, a2 = 1/τ, a3 = 1,

where τ > 0 is the time-constant. We now note that the

detector (8) can be represented as a quantum system with

two fields wt = B̂
′

1,t + B̂
′∗
1,t and vt = B̂3,t + B̂∗

3,t, where

B̂
′

1,t is the output of Cavity 2. Indeed, from [27], Eq. (1)

with M = 2 and with the operators

Ĥ3 =
a1

2
(q̂3p̂3 + p̂3q̂3), L̂1,3 = −ia2p̂3, L̂3,3 =

a3

2a4
q̂3

leads to a linear equation of the form (8), where Û∗
t q̂3Ût

plays the same role of ξt.

Consequently, the network is composed of two cavities,

a beam splitter, a detector, and a controller, with three

optical vacuum fields. (Note that the beam splitter with local

oscillator (LO) shown in Fig. 1 is a part of the detector.)

To systematically obtain the overall system matrices G and

Lk in Eq. (2) of this complicated network, we again use the

theory of quantum cascade systems [24]–[27]. The procedure

is given in [31]. We then obtain the matrices A and D in

Eq. (4) as follows:

Are =





A1 0 ga3Σf1

2αΣIm(ℓ∗2ℓ
T

1 ) A2 ga3Σf2

2αa2Re(ℓ1)
T 2a2Re(ℓ2)

T a1



 , (9)

Dre =





D1 ⋆ ⋆
αΣRe(ℓ∗2ℓ

T

1 )ΣT D2 ⋆
−αa2Im(ℓ1)

TΣT −a2Im(ℓ2)
TΣT a2

2





+ g2a4





Σf1f
T

1 ΣT ⋆ 0
Σf2f

T

1 ΣT Σf2f
T

2 ΣT 0
0 0 0



 . (10)

III. ENTANGLEMENT CONTROL

In this section, we study the entanglement of the cavity

state for the ideal network. Since the state is Gaussian, its

entanglement is completely characterized by the covariance

matrix [29], [30]. In our case, the covariance matrix to

be evaluated is obtained from Eq. (4) with the coefficient

matrices Aid and Did in Eqs. (5) and (6). Let the matrices

Vi be defined by the 2×2 block matrix decomposition of V
as follows:

V =

[

V1 V2

V T

2 V3

]

.

Then, the following logarithmic negativity [32] can be used

as a reasonable measure of Gaussian entanglement:

EN = max
{

0, − log(
√

2ν)
}

, (11)

where log x denotes the natural logarithm of x,

ν :=

√

∆̃ −
√

∆̃2 − 4det(V ), (12)

∆̃ := det(V1) + det(V3) − 2det(V2).

The logarithmic negativity EN divides the state space into

two regions: (i) the separable region, corresponding to EN =
0, and (ii) the entangled region, within which EN > 0. Thus

phenomena of entanglement creation and destruction can

be understood simply in terms of movement of the system

between these two regions.

A. Entanglement sudden-death

Here we study the uncontrolled network; i.e., g = 0.

We compute EN for two situations. First, consider the case

where both cavities have the same quadratic Hamiltonian and

are damped as a result of the field-cavity interaction, that is,

G1 = G2 = diag{m, 1}, ℓ1 = ℓ2 =
√

κ(1, i)T,

where m > 0 and κ > 0. This type of quadratic Hamiltonian

can be implemented in a cavity system following the scheme

of the degenerate parametric amplification [26]. In this case,

Aid is a stable matrix, and Eq. (4) has a unique steady state

solution (see e.g., [33]). Now assume that at t = 0, the cavity

is in the separable state satisfying V0 = 2I . When the optical

field is switched on, the cavity modes couple after a finite

time (i.e., the “entanglement sudden-birth” [34] occurs), and

a steady entangled state is generated as seen from the dotted
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line in Fig. 2 (a). However, in this case, the entanglement is

very small (EN ≈ 0.21).

This result can be understood by examining the trajectory

of the parameter (∆̃, det(V )). In Fig. 3, the colored region

with contour lines represents the set of parameters where a

general two-mode Gaussian state is entangled, i.e., EN > 0,

while the white region corresponds to separable states; i.e.,

EN = 0. The trajectory, denoted by Tdam, evolves toward

the steady entangled state that is located far from the area

with large EN (the right bottom area in Fig. 3). This is likely

because each cavity has a strong tendency to transit into the

vacuum state due to the damping. Indeed, when the cavity is

in the separable vacuum state |0〉|0〉, the corresponding co-

variance matrix satisfies (∆̃, det(V )) = (0.5, 0.0625), which

is very close to the equilibrium point of Tdam. Moreover,

Fig. 2 (b) shows that the purity (for a discussion of physical

meanings of the purity, see e.g. [35]) of the steady Gaussian

state ρ̂,

P := Tr (ρ̂2) =
1

4
√

det(V )
∈ (0, 1], (13)

approaches P ≈ 0.8 as t → ∞. This also suggests that the

steady state is close to the separable vacuum state.

The above observation motivates us to try a dispersive

field-cavity interaction, which results in a phase shift of

the output field [10], [36], [37]. For a practical method to

implement this kind of coupling in a cavity system, see [31].

In this case, the cavity is not damped, and thus, it does

not have a tendency to move toward the vacuum state. In

particular, we assume that only the first cavity has such an

interaction; i.e.,

ℓ1 = (
√

κ, 0)T, ℓ2 =
√

κ(1, i)T.

We then find that Aid is not a stable matrix, and the Lyapunov

equation (4) need not have a steady state solution as t → ∞.

Fig. 3 shows that the corresponding trajectory, denoted by

Tdis, evolves far from the separable initial state and reaches

the area with large EN . This figure also shows how both the

entanglement and purity decreases as time goes on and Tdis

escapes from the region of entangled states at t = 6.2.

Finally, we remark that, if we exchange the order of the

interactions, i.e., ℓ1 =
√

κ(1, i)T and ℓ2 = (
√

κ, 0)T,

the corresponding trajectory remains within the region of

separable states, i.e., EN = 0 for all t > 0. The situation

is much the same even when each cavity interacts with the

field in a dispersive way.

B. Feedback control

We first discuss how to determine the coefficient vector

f = (fT

1 , fT

2 )T that realizes high-quality entanglement con-

trol. Fortunately, in the ideal case, we can explicitly find

such an f . The idea was originally provided by Wiseman

and Doherty in [38], but here we apply the idea in a slightly

different manner.

Assume that g = 1. Then, Eq. (4) with coefficient matrices

Aid and Did in Eqs. (5) and (6) can be rewritten as

dVt/dt = R(Vt) + Σ2(f − ft)(f − ft)
TΣT

2 , (14)

0 5 10
0.0

0.4

0.8

0 5 10
0.0

0.5

1.0

6.2t

EN

P

t

(a)

(b)

Fig. 2. Time-dependence of the logarithmic negativity (a) and the purity
(b) of the overall cavity state without feedback control. The solid and
dotted lines correspond to the dispersive-damped and damped-damped cases,
respectively. The parameters are m = 0.2 and κ = 1.
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0
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t= 8+

det(V)

EN
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∆
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Fig. 3. Trajectories of the parameter (∆̃,det(V )) without feedback
control. Tdam and Tdis correspond to the damped-damped and dispersive-
damped cases, respectively. We set V0 = 2I at t = 0, from which ∆̃ = 8
and det(V0) = 16 follow.

where ft := 2Σ2VtRe(ℓ) + Im(ℓ) and

R(V ) := AoV + V AT

o + Do

−
[

2V Re(ℓ) − Σ2Im(ℓ)
][

2V Re(ℓ) − Σ2Im(ℓ)
]T

.

We now recall from Fig. 2 (b) that entanglement sudden-

death occurs simultaneously with a decrease of the purity

(13). This suggests that preventing a decrease of purity

may also prevent entanglement sudden-death. However, we

should point out that it is not apparent that this will always

be the case and the relationship between loss of purity

and entanglement sudden-death needs to be studied further.

Therefore, a simple control strategy that we try here is to find

a feedback controller that prevents an increase of det(Vt)
in order to keep the purity high. As the second term of

the right-hand side of Eq. (14) is always non-negative, it is

then reasonable to choose the time-variant coefficient vector

f = ft. Of course, this intuitive argument does not always

allow us to conclude that det(Vt) takes its minimum value.

However, it is known that the algebraic Riccati equation

R(V ) = 0 has a solution satisfying det(V ) = 1/16, which

implies that the maximum purity P = 1 is achieved; e.g.,

see [38]. Now assume that Eq. (14) has a unique steady
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solution V∞ for a constant f . Then, by taking the time-

invariant coefficient vector

f̄ := 2Σ2V∞Re(ℓ) + Im(ℓ), R(V∞) = 0, (15)

we obtain the same desirable result, det(V∞) = 1/16.

We now consider proportional feedback control with the

coefficient vector (15). Let us begin with the case where

the first cavity-field interaction occurs dispersively. For this

system, it is expected from Fig. 3 that the trajectory Tdis

can be modified and stabilized via feedback so that it has

an equilibrium point in the area where EN is large. That

this is indeed true is shown below. When the parame-

ters are given by m = 0.2 and κ = 1, we find that

f̄ = (0.1212, 2.2196,−0.3163,−3.2277)T from (15). Fig. 5

illustrates that the controlled trajectory, denoted by T c
dis,

indeed shows the convergence that we had hoped for. The

entanglement and the purity of the steady cavity state are

shown in Fig. 4. While f̄ is determined with fixed g = 1,

we consider variations in g to gain understanding about

its effect on the control system. When control is not used

(g = 0), the pair of dispersive and damped cavities does

not settle down to a steady state as seen in Section III-A,

and we find that EN → 0 as t → ∞. On the other hand,

even with the small-gain feedback controller, the system

becomes stable and has a unique steady state with nonzero

entanglement. Remarkably, when g = 1, the entanglement

of the steady state (EN ≈ 2.2) improves upon the maximum

value of EN of the uncontrolled state (EN ≈ 0.65) shown in

Fig. 2 (a). Hence we see that proportional feedback not only

prevents entanglement sudden-death, but can also enhance

the entanglement.

Feedback can also improve the entanglement of a sys-

tem where both cavities are damped, but it is still very

small as seen from the dotted line in Fig. 4 (a). (The

coefficient vector (15) in this case is calculated to be

f̄ = (0.0629, 0.1525, 0.2479,−0.5830).) To understand this

phenomenon, we recall that the uncontrolled trajectory Tdam

has an equilibrium point that is located far from the area with

large EN . Hence, it should be hard to drastically modify this

trajectory such that it could reach that area. It is actually

observed in Fig. 5 that the controlled trajectory T c
dam shows

almost the same time-evolution as the autonomous one Tdam.

The above results suggest that strong stability of the

autonomous system sometimes makes it difficult for the state

to transit into a desirable entangled target.

IV. A REALISTIC CONTROL SCENARIO

Finally, we return to the original setup of the network. That

is, the quantum channel is in contact with an environment,

and the homodyne detector is replaced by a realistic LPF

with finite bandwidth. The purpose here is to study the

impacts of these realistic components on the entanglement

of the cavity state. The covariance matrix of the cavity state

corresponds to the left-upper 4×4 submatrix of Vt that is the

solution of Eq. (4) with Are and Dre given in Eqs. (9) and

(10). Note that the cavity state is the reduced one with the

detector mode traced out. We here focus only on the network

0 1 2 3
0.0

1.0

2.0

0 1 2 3
0.0

0.5

1.0

EN

P

(a)

(b)

g

g

Fig. 4. The logarithmic negativity (a) and the purity (b) of the steady
cavity state with feedback control. g is the control gain. The solid and
dotted lines correspond to the dispersive-damped and damped-damped cases,
respectively. The parameters are m = 0.2 and κ = 1.
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t= 8+
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Tdam
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∼

c

c

c

Fig. 5. Trajectories of the parameters (∆̃,det(V )) with feedback control.
T c

dam
and T c

dis
correspond to the damped-damped and dispersive-damped

cases, respectively. The initial state is the same as before: V0 = 2I .

where the first cavity interacts with the field dispersively.

For the control Hamiltonian, we use the same coefficient

vector f̄ = (0.1212, 2.2196,−0.3163,−3.2277)T. It should

be noted that, in this realistic case, we cannot follow the

discussion in Section III-B to obtain a reasonable coefficient

vector f .

First, consider Fig. 6 (a). This shows some plots of EN

with the time-constant τ changing between 0.01 ≤ τ ≤ 0.6
and with the fixed transmittance α = 1 (i.e., no loss in the

channel). The most upper line almost coincides with the ideal

one shown in Fig. 4 (a). That is, the entanglement in the

realistic situation continuously converges to the ideal one

as τ → 0. We also observe that the degradation of EN is

small with respect to τ . Since the detector is regarded as

a component of the controller, these results imply that the

realistic proportional feedback is robust against signal loss

in the LPF. In other words, proportional feedback control is

reliable even in this realistic situation.

On the other hand, Fig. 6 (b) plots EN for some values

of the channel loss β := 1 − α with fixed τ = 0.01. We

find that EN converges to the ideal one as β → 0, similar to

the above case. However, in this case, EN rapidly decreases

with respect to β. Even for the very small loss β = 0.01,

a visible degradation occurs. Moreover, when β = 0.1,
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Fig. 6. The logarithmic negativity of the steady cavity state with feedback
control. g is the control gain. (a) From the top downwards, the lines
correspond to τ = 0.01, 0.2, 0.4, 0.6, while α = 1. (b) From the top
downwards, the lines correspond to α = 1, 0.99, 0.95, 0.90, while τ =
0.01. In both cases, the LPF noise is small; a4 = 0.01. The parameters are
m = 0.2 and κ = 1.

which still means we have a high-quality quantum channel,

EN decreases less than half of the ideal one. That is, the

entanglement is fragile to realistic channel loss.

The above results are reasonable because the channel loss

directly reflects the decrease of interaction strength, while the

finite bandwidth of LPF simply implies loss of a classical

signal. Hence the former should be a critical factor for

entanglement generation.

V. CONCLUSION

The contributions of this paper are summarized as follows.

First, it was shown that, when the first cavity is undamped

and the second one is damped, the overall cavity state obtains

a significant amount of entanglement, which however disap-

pears in a finite time. Then, we have shown that proportional

measurement feedback can avoid this entanglement sudden-

death, and further, enhances the entanglement. Moreover,

it was shown that the proportional feedback controller is

reliable under the influence of signal loss in a realistic

detector, although imperfection in the quantum channel is a

critical issue that largely degrades the achieved entanglement.
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