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Abstract— In this paper, we propose a finite-dimensional
approximation for a nonlinear infinite-dimensional system via
balanced realization. The proposed method is accomplished by
balanced realization and singular value analysis for nonlinear
systems. This approach is expected to derive effective ap-
proximate models preserving particular input-output behavior.
Necessary and sufficient conditions characterizing balanced
realization for infinite-dimensional systems are derived. Fur-
thermore, the effectiveness of the proposed method is shown
by a numerical simulation.

I. INTRODUCTION

Various model order reduction methods have been pro-

posed [1], balanced truncation method is often used since it

conserves input-output behavior. Furthermore, for continuous

time systems, the stability of the approximated model is

preserved. For nonlinear systems, Scherpen formulated a

basic framework for balanced realization [2]. Then a precise

solution to this problem and the corresponding balanced

truncation method were derived [3], [4].

Glover et al. [5] proposed balanced realization and bal-

anced truncation for infinite-dimensional linear systems.

However, there is no result for infinite-dimensional non-

linear systems so far. Therefore we discuss this prob-

lem and its finite-dimensional approximation. Conventional

finite-dimensional approximation methods, such as mode

decomposition, Taylor series expansion and finite element

method are accomplished by approximating the whole state

equations. On the other hand, balanced truncation pays

attention to the input-output behavior of systems and tries

to approximate them with respect to input-output relation. In

this paper, balanced realization for infinite-dimensional non-

linear systems is formulated and characterized by a pair of

Hamilton-Jacobi equations (HJEs). An approximate solution

to those equations is proposed based on Galerkin method.

Direct application of Galerkin method to HJEs on infinite

dimensional signal spaces requires computation of infinite

number of integrals. An approximation algorithm with finite

number of integral computation is proposed, which works

out by applying Galerkin method in two different steps:

approximation to the state equations and that to HJEs. As

a result, a finite-dimensional approximated system is derived

by applying balanced truncation.
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Section II refers to balanced realization and model or-

der reduction for finite-dimensional systems. Section III

generalizes them for infinite-dimensional systems. A finite-

dimensional approximation method is proposed in Section

IV. In Section V, the effectiveness of the proposed method

is demonstrated by a numerical simulation.

Notation In this paper, ‖x‖ := (xTx)1/2 for x ∈ R
n.

The symbol 〈x, y〉 := xTy denotes the inner product

for x, y ∈ R
n. Let us define the inner product on L2

as 〈x, y〉L2 :=
∫ b

a x(t)
Ty(t) d t and the norm on L2 as

‖x‖L2 :=
√

〈x, x〉L2 . Moreover, the class-K and class-

KL functions are defined as follows. A continuous function

α : [0,∞) → [0,∞) is called class-K if α is monotonically

increasing and satisfies α(0) = 0. A continuous function

β : [0,∞) × [0,∞) → [0,∞) is called class-KL if β(r, s)
is a class-K function with respect to r for ∀s ∈ [0,∞),
if β(r, s) is monotonically decreasing with respect to s for

∀r ∈ [0,∞) and if lims→∞ β(r, s) = 0.

II. PRELIMINARIES

This section refers to balanced realization and balanced

truncation for finite-dimensional nonlinear systems [3], [4].

Consider an input-affine, time invariant, asymptotically stable

nonlinear system

Σf :

{

ẋ = f(x) + g(x)u x(0) = x0

y = h(x)
(1)

with x(t) ∈ R
n, u(t) ∈ R

m, y(t) ∈ R
r. The next assumption

is adopted in what follows.

Assumption 1: Hankel singular values of the Jacobian

linearization of Σf at x = 0 are nonzero and distinct.

For this system, the controllabirity and obserbability func-

tions Lc and Lo are defined as follows.

Definition 1:

Lc(x
0) := min

u∈L2(−∞,0)

x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞

‖u(t)‖2 d t (2)

Lo(x
0) := 1

2

∫

∞

0 ‖y(t)‖2 d t, x(0) = x0 (3)

By Definition 1, if ẋ = f(x) is asymptotically stable, the

existence and the positive definiteness of Lc is equivalent to

reachability of Σf with respect to L2 input signals, and the

existence and the positive definiteness of Lo is equivalent to

zero-state observability of Σf . The functions Lc and Lo are

the solutions of Hamilton-Jacobi equations

∂Lc(x)
∂x f(x)+ 1

2
∂Lc(x)

∂x g(x)g(x)T ∂Lc(x)
∂x

T
=0 (4)

∂Lo(x)
∂x f(x) + 1

2h(x)
Th(x) = 0 (5)
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where the origin of ẋ = −f(x)−g(x)g(x)T(∂Lc(x)/∂x)
T is

asymptotically stable. Related to Lc and Lo, the following

theorem is characterized by the equation of singular value

analysis for the corresponding nonlinear Hankel operators.

Theorem 1: [6], [3] Assume that λ ∈ R and ξ ∈ R
n satisfy

∇Lo(ξ) = λ ∇Lc(ξ). (6)

Then σ =
√

Lo(ξ)/Lc(ξ) is Hankel singular value, and

the solution ξ to (6) is on the coordinate axes of balanced

realization.

According to Theorem 1, we can obtain Hankel singular

values by solving (6). Balanced realization of Σf can be

derived by transforming the solution curves of ξ into the co-

ordinate axes. Furthermore, the following theorem indicates

nonlinear balanced realization.

Theorem 2: [3], [4] Under Assumption 1, there exists a

coordinate transformation x = Φ(z) on a neighborhood U
of the origin satisfying

Lc(Φ(z)) = 1
2

∑n
i=1

z2
i

σi(zi)
, Lo(Φ(z)) = 1

2

∑n
i=1 z

2
i σi(zi).

Balanced truncation for nonlinear systems is implemented

as follows. Suppose that Σf is in a balanced realization Σbr

whose state is denoted z. Assume that the Hankel singular

values satisfy σ1 ≥ · · · ≥ σk ≫ σk+1 ≥ · · · ≥ σn ≥ 0
for a certain k, (1 ≤ k ≤ n). This means that za :=
(z1, · · · , zk) ∈ R

k has much more influence on the input-

output behavior of Σbr than zb := (zk+1, · · · , zn) ∈ R
n−k.

According to the division z = (za, zb), let us divide f(z) =
(fa(z), f b(z)) and g(z) = (ga(z)T, gb(z)T)T correspond-

ingly. Then, the nonlinear reduced model is obtained by

substituting zb ≡ 0 as follows.

Σbr :

{

ża = fa(za, 0) + ga(za, 0)u z(0) = z0

y = h(za, 0)

III. BALANCED REALIZATION FOR

INFINITE-DIMENSIONAL NONLINEAR SYSTEMS

It is shown in this section that Lc and Lo for infinite-

dimensional nonlinear systems are also characterized by

HJEs. Consider an input-affine, time invariant, asymptoti-

cally stable nonlinear infinite-dimensional system

Σ :

{

d x(t)
d t = F (x(t)) +

∑m
i=1 ui(t)Gi(x(t))

y(t) = H(x(t))
(7)

with x(t) in Sobolev spaces H1(Ω) with Ω ⊂ R
n, u(t) =

(u1(t), · · · , um(t))T ∈ R
m, y(t) ∈ R

r, F,Gi : H1(Ω) →
Ln

2 (i = 1, · · · ,m) and H : H1(Ω) → R
r. The origin

x = 0 is the equilibrium, that is, F (0) = 0 and H(0) = 0
without loss of generality. Let Σ be asymptotically stable in

the following sense.

Definition 2: The origin x = 0 of Σ is said to be

asymptotically stable if there exists a class-KL function β
satisfying ‖x(t)‖L2 ≤ β(‖x(0)‖L2 , t).

The definition of Lc and Lo for infinite-dimensional

systems are similar to (2) and (3), respectively.

Lc(x
0) := min

u∈L2(−∞,0)

x(−∞)=0,x(0)=x0

1

2

∫ 0

−∞

‖u(t)‖2 d t

Lo(x
0) := 1

2

∫

∞

0
‖y(t)‖2 d t, x(0) = x0

Next theorem characterizes Lc and Lo for infinite-

dimensional systems as natural generalization for the finite-

dimensional ones.

Theorem 3: Consider the system (7). Suppose that the ori-

gin of ẋ = F (x) is asymptotically stable on a neighborhood

W of 0. Then the following statements hold.

(i) Suppose that

〈∇Ľo(x), F (x)〉L2 + 1
2H(x)TH(x) = 0, Ľo(0) = 0 (8)

has a smooth solution Ľo on Wo ⊂ W satisfying 0 ≤
Ľo(x) ≤ αo(‖x‖L2) with a class-K function αo. Then

the observability function Lo exists and coincides with the

unique solution Ľo of (8) on Wo.

(ii) Suppose that

〈∇Ľc(x), F (x)〉L2 + 1
2

∑m
i=1〈∇Ľc(x), Gi(x)〉

2
L2

= 0,

Ľc(0) = 0 (9)

has a smooth solution Ľc on a neighborhood Wc ⊂W such

that the origin of

ẋ = −F (x) −
∑m

i=1Gi(x)〈∇Ľc(x), Gi(x)〉L2 (10)

is asymptotically stable on Wc and Ľc satisfies 0 ≤ Ľc(x) ≤
αc(‖x‖L2) with a class-K function αc. Then the control-

lability function Lc exists on Wc and coincides with the

solution of (9) on Wc such that the origin of the system (10)

is asymptotically stable.

Proof. See Appendix.

Theorem 3 proves the sufficiency of the Hamilton-Jacobi

equations (8) and (9) for the existence of Lc and Lo. The

following theorem proves the necessity.

Theorem 4: Consider the system (7). Suppose that the ori-

gin of ẋ = F (x) is asymptotically stable on a neighborhood

W of 0. Then the following statements hold.

(i) Suppose that the observability function Lo exists on

Wo ⊂W and is smooth. Then

〈∇Ľo(x), F (x)〉L2 + 1
2H(x)TH(x) = 0, Ľo(0) = 0 (11)

has a solution Ľo = Lo on Wo.

(ii) Suppose that a controllability function Lc exists on

Wc ⊂W and is smooth. Then

〈∇Ľc(x), F (x)〉L2 + 1
2

∑m
i=1〈∇Ľc(x), Gi(x)〉

2
L2

= 0,

Ľc(0) = 0 (12)

has a solution Ľc = Lc such that the origin of (10) is

asymptotically stable on Wc.

Proof. See Appendix.
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IV. APPROXIMATE SOLUTIONS TO HAMILTON-JACOBI

EQUATIONS FOR INFINITE-DIMENSIONAL SYSTEMS

This section proposes an approximate solution to (8) and

(9) based on Galerkin method. Approximate solutions to (4)

and (5) have been already proposed by many authors, see e.g.

[7] and [8]. The method based on [8] is adopted here. An

approximate solution given by Galerkin method comes closer

and closer to the exact one as the approximate accuracy

becomes higher and higher [9], [10].

A. Galerkin method

Let X be a real Hilbert space and X ′ be the dual space

of X . Let a : X×X → R be a continuous bilinear operator.

Consider a problem to find x ∈ X satisfying

a(x, y) = f(y), ∀y ∈ X (13)

for f ∈ X ′. If the operator a satisfies a certain condition,

the problem (13) has the unique solution [10]. Suppose that

a satisfies this condition. Then try to find an approximate

solution x ∈ X on a finite-dimensional subspace Xh :=
span{x1, · · · , xN} ⊂ X . That is, consider the problem

a(xh, yh) = f(yh), ∀yh ∈ Xh instead of (13) and find

an approximate solution xh in Xh. Here the subscript h
indicates the approximate accuracy whereN → ∞ as h→ 0.

B. Proposed algorithm

Utilizing Galerkin method to solve (8) and (9), approxi-

mate solutions to Lc and Lo can be found. These solutions

converge to the exact ones as h → 0. However, direct

application of Galerkin method to (8) and (9) requires one to

compute infinite number of integrals. Therefore we cannot

calculate the approximate solution in practice. Here, let us

derive finite-dimensional HJEs first by applying Galerkin

method to (7). Then obtain approximate solutions to Lc and

Lo by solving the approximated HJEs by applying Galerkin

method once again. Since it is easier to solve (8) than to

solve (9), we discuss how to solve (8) in detail below.

Consider an input-affine system

Σ :

{

∂x(s,t)
∂t = F (x(·, t), s) +

∑m
i=1 ui(t)Gi(x(t))

y(t) = H(x(·, t))
(14)

with x(·, t) ∈ H1(Ω), u(t) ∈ R
m, y(t) ∈ R

r. The origin is

an equilibrium. The variable s ∈ R is the spatial axis. The

symbols F,Gi and H are operators including calculation

such as integrals with respect to s. Suppose that Σ is

asymptotically stable. Let x(s, t) be described by a series

expansion as x(s, t) =
∑

∞

j=1〈x(s, t), φj(s)〉L2 , φj(s) =
∑

∞

j=1 ξj(t)φj(s) with a set of complete orthogonal functions

{φj}, (j = 1, 2, · · · ) in the spatial space. Approximation

of x is represented in a subspace spanned by {φj}, (j =
1, · · · , Ns) as follows.

x(s, t) =
∑Ns

j=1 ξj(t)φj(s) (15)

The inner product calculation is carried out by substituting

(15) for the state equation in (14) as
〈

∂
∂t (

∑Ns

j=1 ξj(t)φj(s)) − F (x(·, t), s)

−G(x(·, t), s)u(t), φi(s)
〉

L2
= 0, i = 1, · · · , Ns. (16)

A finite-dimensional approximate state equation is derived

by solving (16). Also an approximate solution to the output

equation in (14) is calculated on the same subspace. As a

consequence, a finite-dimensional approximate state space

equation is derived as follows.

Σξ :

{

ξ̇ = f(ξ) + g(ξ)u

y = h(ξ)
(17)

Next, let Lo be described by a series expansion with a

set of complete orthogonal functions {ψj}, (j = 1, 2, · · · )
with respect to ξ, Lo(ξ) =

∑

∞

j=1 qjψj(ξ), qj ∈ R (j =
1, 2, · · · ). Then solve (8) related to Lo by Galerkin method.

On a subspace XNξ
spanned by {ψj}, (j = 1, · · · , Nξ), the

approximation to Lo is described as follows.

Lo(ξ) =
∑Nξ

j=1 qjψj(ξ) (18)

Substitute (17) and (18) for (8) and calculate
〈

〈∇
∑Nξ

j=1 qjψj(ξ), f(ξ)〉 + 1
2h(ξ)

Th(ξ), ψi(ξ)
〉

= 0 (19)

to find qj(j = 1, · · · , Nξ) where i = 1, · · · , Nξ. Then an

approximate solution to Lo is obtained. Since this solution

depends on the choice of {φi} and {ψi}, it is important to

choose them to preserve the feature of the original system.

For example, the eigenfunctions of the system were chosen

in the numerical example described in Section V. Here the

convergence of the approximate solution to the exact one is

an important issue. The convergence of Galerkin solutions

is proven stated in the beginning of Section IV. Here let

Ns → ∞ first, next let Nξ → ∞, then the approximate

solution to Lo will converge to the exact one because of

(19). The detailed treatment on the convergence of the

approximate solutions of finite-dimensional Hamilton-Jacobi

equations based on Galerkin method is discussed in [11].

Equation (9) can also be solved by the above method. For

Σξ, the function Lc is described by Lc =
∑Nξ

i=1 pjψj(ξ)
on XNξ

where pj ∈ R (j = 1, .., Nξ). However, this is a

quadratic equation with respect to the variable pj as

〈

〈∇
∑Nξ

j=1 pjψj(ξ), f(ξ)〉 + 1
2

∑m
i=1〈∇

∑Nξ

j=1 pjψj(ξ),

gi(ξ)
T〉2, ψk(ξ)

〉

=0, k = 1, · · · , Nξ. (20)

This equation is solved by the asymptotic approximation

[12] to solve (4) the Hamilton-Jacobi equation in the finite

dimensional case. This method is to solve a linear recurrence

equation (21) with respect to pkj instead of the quadratic

equation (20).
〈

〈∇
∑Nξ

j=1 pkjψj(ξ), f(ξ)〉 + 1
2

∑m
i=1〈∇

∑Nξ

j=1 pkjψj(ξ),

gi(ξ)
T〉〈∇

∑Nξ

j=1 p(k−1)jψj(ξ), gi(ξ)
T〉, ψk(ξ)

〉

=0, (21)

k = 1, · · · , Nξ. It is proven in [12] that if (5) is solved

by asymptotic approximation, then the solution converges
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to the exact one. Therefore, similarly to the Lo case, let

Ns → ∞, then let Nξ → ∞, and employ another iteration

for the asymptotic approximation, then the approximation to

Lc will converge to the exact one.

It is expected that the accuracy of the solutions of (6) can

be improved by improving that of the approximate solutions

to Lc and Lo obtained by the above procedure since (6)

is characterized by the gradients of Lc and Lo. Therefore,

the accuracy of balanced realization and Hankel singular

values are also improved. The computational algorithm is

summarized as follows.

The computational algorithm

1) Apply Galerkin method to the state equation of the

system (7).

2) Derive (8) and (9) from finite-dimensional approxima-

tion to the state equation, and solve them by Galerkin

method. As a result, approximate solutions to Lc and

Lo are obtained.

3) Solve (6) to find the Hankel singular values and the

coordinate axes which yield a balanced realization. The

detailed way of calculation is shown in [13].

4) Apply balanced truncation to obtain a reduced order

finite-dimensional model.

V. NUMERICAL EXAMPLE

Consider the two-link flexible arm shown in Fig. 1,

which rotates in a horizontal plane. See [14] for the de-

tail. Link 1 is a rigid beam. Link 2 is an elastic one.

),( tsw

s

X

Y

1x

2L

1L

2x

2y

1y

1θ

2θ
1τ

2τ

1link

2link

O

),( tsw

s

X

Y

1x

2L

1L

2x

2y

1y

1θ

2θ
1τ

2τ

1link

2link

O

Fig. 1. Two link flexible arm

Link 2 has a concentrated

mass at the tip of the arm.

Each Link i is fixed to a

vertical gear shaft driven by

a DC Motor i. Let τi(t) be

the torque generated by mo-

tor i, θi(t) be the rotational

angle of Link i, µi and ki be

the viscous damping and the

elastic coefficient of Link i,
respectively. The origin of the inertial coordinate frame O-

XY is the rotation center of Motor 1. The origin of the

coordinate frame Oi-xiyi is fixed to the rotation axis of

Motor i. Here O = O1. J1 is the inertial moment of Link 1,

which includes the inertia moment of the rotor of Motor 1.

J2 is the inertial moment of the rotor of Motor 2. Li is the

length of Link i. I is the geometric moment of inertia. E is

the Young’s modules. ρ is the line density. d is the coefficient

of viscous damping generated from the elasticity of Link 2.

w(s, t) is the transverse displacement of Link 2 at a spatial

point s ∈ (0, L2) at time t. Here the spatial variable s is

the distance from O2 to an arbitrary point on the coordinate

axis x2. Since the flexible arm rotates in a horizontal plane,

there is no influence of gravity. Therefore, there is neither

displacement in vertical plane nor twist of the arm. The

vector s ∈ R
2 denotes the position of an arbitrary point

of Link 2 in X−Y coordinates. The vector L ∈ R
2 denotes

the position of the tip of the arm in X − Y coordinates.

Fig. 2. Time responses of the displacement of the concentrated load

Then, the kinetic energy T , the potential energy V and the

external virtual work δW generated by motors are

T = 1
2J1θ̇

2
1(t) + 1

2J2

(

θ̇1(t) + θ̇2(t)
)2

+ 1
2mL̇

T
L̇,

+ 1
2

∫ L2

0 ṡ
T
ṡρ d s+ 1

2k1θ1
2(t) + 1

2k2θ2
2(t),

V = 1
2

∫ L2

0
EI(w′′(s, t))2 d s

δW =
∑2

i=1 τi(t)δθi(t).

(22)

By the Hamilton’s variational principle, a partial differ-

ential equation (PDE) with respect to the elastic dis-

placement, boundary conditions and equations of motion

with respect to motors are obtained from (22). The PDE

is an infinite-dimensional equation and is represented in

the form of the first equation in (7) where the state

x(t) = (θ1(t), θ2(t), w(s, t), θ̇1(t), θ̇2(t), ẇ(s, t))T. Equa-

tions of motion with respect to motors are finite-dimensional.

As proposed in Section IV-B, in order to solve Hamilton-

Jacobi equations by Galerkin method, the PDE is approx-

imated to finite-dimensional one first, then the state x is

described by a series of eigenfunctions φ1(s) and φ2(s)
of the arm, w(s, t) =

∑2
i=1 ξi(t)φi(s). The eigenfunctions

of the system are a set of complete orthogonal functions

φi(s) = 1
Ci

(cosh γis
L2

− cos γis
L2

− ηi(sinh γis
L2

− sin γis
L2

)),

where ηi = cosh γi+cos γi

sinhγi+sin γi
, i = 1, 2, · · · , Ci is an arbitrary

constant and γi satisfies 1+coshγ cos γ+ m
ρL2

(sinh γ cos γ−
cosh γ sinγ) = 0 with 0 < γ1 < γ2 < · · · . This derives

a finite-dimensional approximate equation with respect to

the elastic displacement, from this equation and equations of

motion with respect to the motors, a finite-dimensional state

equation is derived, which is in the form of (17) with the

8-dimensional state ξ = (θ1, θ2, ξ1, ξ2, θ̇1, θ̇2, ξ̇1, ξ̇2)
T, the

input torque to each link u = (τ1, τ2)
T and the output y(t) =

w(L2, t) , which is the displacement of the concentrated mass

at the tip of the arm. The following physical parameters are

adopted in simulations. Li = 1 (m), Ji = 1 (kgm2), ki =
1 (Pa), µi = 0.1 (m2/s),m = 0.5 (kg), ρ = 2 (kg/m), E =
10 (Pa), I = 1 (m4) and d = 1 (s).

The response of the approximated model is depicted in

Fig. 2. For comparison, the figure depicts the responses of
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4 different models for wave pulses τ1(t) and τ2(t) with the

initial state x(0) = 0. The solid line depicts the response of

the 12-dimensional model obtained by mode decomposition,

which is supposed to be close to that of the original model.

The dotted line depicts that of the 6-dimensional model by

mode decomposition. The dashed-dotted line depicts that of

the 6-dimensional model derived by applying the proposed

method to the Jacobian linearized model of the original.

The dashed line depicts that of the 6-dimensional model

by the proposed method. Comparing three 6-dimensional

models, the response of the model derived by the proposed

method is the closest to that of the 12-dimensional model,

that is, the proposed method provides the best approximation.

Therefore, it shows the effectiveness of the proposed method.

VI. CONCLUSION

This paper has discussed balanced realization for infinite-

dimensional nonlinear systems. A relation between the en-

ergy functions and Hamilton-Jacobi equations is clarified.

A finite-dimensional approximation method for infinite-

dimensional nonlinear systems and its computational algo-

rithm were proposed based on them. Moreover, a numerical

example exhibited the effectiveness of the proposed finite-

dimensional approximation method. There still exist many

open problems: for example, when the approximate solutions

obtained by the proposed method will converge to exact ones.
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APPENDIX

Proof of theorem 3

Proof: Suppose that (8) has a solution Ľo on Wo and

that the origin of ẋ = F (x) is asymptotically stable. Let the

initial state x(0) = x0 ∈Wo and the input of the system (7)

equal to 0. Then the following equation is obtained.
{

ẋ = F (x)

y = H(x)
(23)

Consider the solution x(t) of the system (23). Then the

definition of the observability function Lo (3) gives

Lo(x
0) = 1

2

∫

∞

0
‖y(t)‖2 d t

= 1
2

∫

∞

0
H(x(t))TH(x(t)) d t

= −
∫

∞

0 〈∇Ľo(x(t)), F (x(t))〉L2 d t

= −
∫

∞

0
d
d t Ľo(x(t)) d t

= − limt→∞ Ľo(x(t)) + Ľo(x
0) (24)

for x0 ∈ Wo. Since Ľo(x) ≤ αo(‖x‖L2), Ľo(x(t)) ≤ αo ◦
βo(‖x

0‖L2 , t). On the other hand, since αo ◦βo ∈ class-KL,

which is given by αo ∈ class-K and βo ∈ class-KL, and

since Ľo(x) ≥ 0, limt→∞ Ľo(x(t)) = 0, ∀x0 ∈ Wo. Then

(24) implies Lo(x
0) = Ľo(x

0). Therefore, Lo coincides with

Ľo. The uniqueness of Ľo is proven by reductio ad absurdum.

If (8) has another solution L̃o 6= Ľo then L̃o = Lo = Ľo

can be proven immediately, which contradicts L̃o 6= Ľo.

Therefore, (8) has the unique solution Ľo. This proves the

part (i) of Theorem 3.

For the part (ii) of Theorem 3, suppose that (9) has

a solution Ľc on Wc and that the origin of (10) is

asymptotically stable. As in the definition (2) of Lc, let

limt→−∞ ‖x(t)‖L2 = 0 and an input u accomplish x(0) =
x0 ∈ Wc. Differentiating the solution Ľc(x(t)) of (9) with

respect to time t along x(t) satisfying

d x(t)
d t = F (x(t)) +

∑m
i=1 ui(t)Gi(x(t)), (25)

then

d
d t Ľc(x(t))

= d Ľc(x(t)) (F (x(t)) +
∑m

i=1 ui(t)Gi(x(t)))

= 〈∇Ľc(x(t)), F (x(t))〉L2

+ d Ľc(x(t))
∑m

i=1 ui(t)Gi(x(t))

= − 1
2

∑m
i=1〈∇Ľc(x(t)), Gi(x(t))〉

2
L2

+
∑m

i=1〈∇Ľc(x(t)), Gi(x(t))〉L2ui(t)

= −
∑m

i=1
1
2 (ui(t) − 〈∇Ľc(x(t)), Gi(x(t))〉L2 )

2

+ 1
2‖u(t)‖

2

≤ 1
2‖u(t)‖

2. (26)

On the other hand, since Ľc is positive definite and satisfies

0 ≤ Ľc(x) ≤ αc(‖x‖L2), and limt→−∞ ‖x(t)‖L2 = 0,

limt→−∞ Ľc(x(t)) = 0. Equation (26) implies

Ľc(x
0) =

∫ 0

−∞

d
d t Ľc(x(t)) d t

=
∫ 0

−∞

(

−
∑m

i=1
1
2 (ui(t) − 〈∇Ľc(x(t)),

Gi(x(t))〉L2 )
2 + 1

2‖u(t)‖
2
)

d t
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≤ 1
2

∫ 0

−∞
‖u(t)‖2 d t. (27)

Therefore, Ľc(x
0) is a lower bound of 1

2

∫ 0

−∞
‖u(t)‖2 d t.

Since the origin of (10) is asymptotically stable, it is clear

that

ui(t) = 〈∇Ľc(x(t)), Gi(x(t))〉L2 , i = 1, · · · ,m (28)

render limt→−∞ ‖x(t)‖L2 = 0 for an arbitrary x0. These

input signals give the minimum

Ľc(x
0) = min

u∈L2(−∞,0)

x(−∞)=0,x(0)=x0∈Wc

1

2

∫ 0

−∞

‖u(t)‖2 d t.

Therefore we have Lc(x
0) = Ľc(x

0). This proves the part

(ii) of Theorem 3 and completes the proof.

Proof of Theorem 4

Proof: Suppose that there exists the smooth observabil-

ity function Lo for the system (7) on a neighborhood Wo of

0 and that the origin of ẋ = F (x) is asymptotically stable.

Let x(t) be the state of the system (23) and x(0) = x0 ∈Wo.

Since x(t) ∈Wo, the definition of Lo implies,

Lo(x(t)) = 1
2

∫

∞

t
‖y(τ)‖2 d τ

= 1
2

∫

∞

t H(x(τ))TH(x(τ)) d τ,

where u(τ) ≡ 0, t ≤ τ < ∞. Differentiating the above

equation with respect to time t,

d
d tLo(x(t)) = − 1

2H(x(t))TH(x(t))

∴ 〈∇Lo(x), F (x)〉L2 + 1
2H(x)TH(x) = 0.

Here Lo(0) = 0 holds obviously. Therefore Lo is the solution

of (11). As in a similar way to the proof to Theorem 3, Lo

coincides with the solution of (11). Therefore, the part (i) of

Theorem 4 is proven.

For the part (ii) of Theorem 4, suppose that there exists

the smooth controllability function Lc of the system (7) on a

neighborhood Wc of 0. The definition (2) of Lc derives the

following equation for a state xt ∈Wc of the system (7).

Lc(x
t) = min

u∈L2(−∞,t)

x(−∞)=0,x(t)=xt

1

2

∫ t

−∞

‖u(t)‖2 d t (29)

Let u⋆(t) denote the optimal input then

u⋆(t) = arg min
u∈L2(−∞,0)

x(−∞)=0,x(t)=xt

1

2

∫ t

−∞

‖u(t)‖2 d t.

Suppose that x(t) is the state of the system (25). Differenti-

ating (29) with respect to time t

1
2‖u

⋆(t)‖2

= d
d tLc(x(t))

= 〈∇Lc(x(t)), F (x(t)) +
∑m

i=1Gi(x(t))u
⋆
i (t)〉L2 .

(30)

Now, apply the input u = u⋆ and steer the state from x(t) =
xt to x(t + ε) = xt+ε. Moreover, consider a continuous

input u and suppose that u steers the state from x(t) = xt

to x(t+ ε) = xt+ε. Define an input û as

û(τ) :=

{

u⋆(τ) (τ < t)

u(τ) (t ≤ τ ≤ t+ ε)

where ε > 0 is a small constant. Next, consider the following

cost function Jε.

Jε(û) := 1
2

∫ t+ε

−∞
‖û(τ)‖2 d τ

= 1
2

∫ t

−∞
‖u⋆(τ)‖2 d τ + 1

2

∫ t+ε

t
‖u(τ)‖2 d τ (31)

Since u⋆ is optimal, it minimizes Jε.

Lc(x
t) = min

u∈L2(−∞,t)

x(−∞)=0,x(t)=xt

1

2

∫ t

−∞

‖u(τ)‖2 d τ

= 1
2

∫ t

−∞
‖u⋆(τ)‖2 d τ (32)

The continuity of u and the intermediate-value theorem

implies the existence of a continuous function a satisfying

0 < a(ε) < 1 and

1
2

∫ t+ε

t
‖u(τ)‖2 d τ = 1

2ε‖u(t+ a(ε)ε)‖2. (33)

Substituting (32) and (33) for (31) yields

Jε(û) = Lc(x
t) + 1

2ε‖u(t+ a(ε)ε)‖2. (34)

Moreover, similarly to (32),

Jε(u
⋆) = Lc(x

t+ε) (35)

On the other hand, it follows from the intermediate-value

theorem and the continuity of Lc with respect to t that there

exists a continuous function b satisfying 0 < b(ε) < 1 and

Lc(x(t + ε))

= Lc(x(t)) + εd Lc(x(τ))
d τ |τ=t+b(ε)ε

= Lc(x(t)) + ε〈∇Lc(x(t + b(ε)ε), F (x(t+ b(ε)ε))

+G(x(t+ b(ε)ε))u(t+ b(ε)ε)〉L2 . (36)

Since u⋆ is optimal, Jε(û) ≥ Jε(u
⋆). As a result, the

following equation is obtained from (34), (35) and (36).

d
d ε (Jε(û) − Jε(u

⋆))

= d
d ε

(

Lc(x
t) + 1

2ε‖u(t+ a(ε)ε)‖2 − Lc(x
t+ε)

)

= lim
ε→0

(

1
2‖u(t+ a(ε)ε)‖2 − 〈∇Lc(x(t+ b(ε)ε),

F (x(t+ b(ε)ε)) +G(x(t+ b(ε)ε))u(t+ b(ε)ε)〉L2

)

= 1
2‖u(t)‖

2 − 〈∇Lc(x(t), F (x(t)) +G(x(t))u(t)〉L2

= −〈∇Lc(x(t)), F (x(t))〉L2

− 1
2

∑m
i=1〈∇Lc(x(t)), Gi(x(t))〉

2
L2

+ 1
2

∑m
i=1(ui(t) − 〈∇Lc(x(t)), Gi(x(t))〉L2 )

2 (37)

Since the optimal input u = u⋆ = (u⋆
1, . . . , u

⋆
m) minimizes

the above equation,

u⋆
i = 〈∇Lc(x), Gi(x)〉L2 . (38)

By substituting (38) for (30), (12) is obtained. Lc fulfilling

(12) is such that (10) is asymptotically stable, the uniqueness

of the solution follows from the proof of theorem 3. These

prove the part (ii) of Theorem 4 and completes the proof.
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