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Abstract— In this paper the design of robust H2-estimators
for the class of linear systems that depend rationally on rate-
bounded uncertain time-varying parameters is addressed. The
uncertainties are characterized by dynamic IQCs and new
LMI conditions are formulated that allow for a nontrivial
extension of the estimation problem with a weighting filter
at the output. In order to show the power of the dynamic
IQC approach, a numerical example is included in which
the result is compared with alternative approaches based on
parameter-dependent Lyapunov functions. The effectiveness
of the additional weighting filter is illustrated in a second
numerical example.

I. INTRODUCTION

During the last decade, the robust H2-estimator synthesis

problem for linear systems that are subject to white-noise

disturbances and norm-bounded parameter uncertainties has

been studied intensively. The problem can be formulated as

the design of a linear time-invariant estimator that guarantees

a norm-bound on the asymptotic variance of the estimation

error. Some early works, [1], [2], proposed solutions based

on Riccati equations and later in [3], [4] methods based on

LMI techniques were introduced for systems with parametric

uncertainties that can be captured by a polytopic region. It is

well known that these methods might be rather conservative

since the uncertain parameters are allowed to vary arbitrarily

fast. For this reason, there have been various attempts to re-

duce conservatism by using parameter-dependent Lyapunov

functions (PDLF). In [5] and [6], methods were suggested

for systems that depend affinely on uncertain time-invariant

parameters. Only recently, in [7], [8], [9], these methods were

generalized to the case in which the parameters are allowed

to be time-varying. Despite the fact that the results were

considerably improved, they all still might yield conservative

results. A second drawback is that the system matrices are

restricted to depend affinely on the uncertain parameters.

An alternative framework for stability and performance

analysis is the dynamic integral quadratic constraint (IQC)

approach, which was introduced in [10]. IQCs are very useful

in describing different types of uncertainties. One could

think, e.g., of uncertain time-delays, multiple static nonlin-

earities or uncertain LTI dynamics. Our special attention is

dedicated to IQC tests for smoothly time-varying parametric

uncertainties with bounded rates-of-variation, as was shown

in [11], [12], and as was recently extended in [13] and [14].

Until very recently, the dynamic IQC-framework was mostly

suitable for analysis purposes only. The essential difficulty

in synthesis based on dynamic IQCs was the characterization

of stability of the closed-loop system. Recently this problem

was completely resolved in [15]. A necessary and sufficient

positivity condition was derived that can be imposed on

the synthesis LMIs in order to enforce stability of the

corresponding closed-loop system. It was also shown in [15]

that this result yields a complete solution for the L2-gain

and H2-estimator synthesis problems if the uncertainties are

described by dynamic IQCs.

The first goal of this paper is to merge the new results

of [15] with the special IQC test for uncertain smoothly

time-varying parameters from [13] and to show that we can

systematically reduce conservatism with respect to the PDLF

based approaches for a broader class of systems. The second

goal is to show that the estimator synthesis problem from

[15] can be further generalized to the use of a weighting filter

at the output. With this filter, we can improve performance in

a desired frequency band of interest at the cost of a possible

degradation of performance outside the desired frequency

band. After introducing some preliminaries in Section II, we

formally state the problem in Section III. Then in Section IV,

we give a short recap of IQC theory and describe the special

IQC test for smoothly time-varying parameter uncertainties

as it was presented in [13]. This is then merged with an

IQC test for H2-performance. In Section V, we state and

prove the main result of this paper, namely, a solution in

terms of LMI conditions for the robust estimation problem

with a weighting filter at the output for systems that depend

rationally on uncertain smoothly time-varying parameters. In

Section VI, two numerical examples are given. In the first

example, we show that it is indeed possible to further reduce

conservatism with respect to the PDLF approaches that are

known from the literature. The second example illustrates the

effect of using a weighting filter that emphasizes a certain

frequency band in the estimation error. We conclude the

paper with some final remarks.
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II. NOTATION AND PRELIMINARIES

The symbol L n
2e[0,∞) is used to denote the extended

space of R
n-valued functions that are square integrable on

finite intervals. L n
2 [0,∞) ⊂ L n

2e[0,∞) represents the space

of R
n-valued functions, g : [0,∞) → R

n, of finite energy

‖g‖2 := 〈g, g〉 :=
∫ ∞

0 |g(t)|2dt. The Fourier transform of

g(t) is denoted by ĝ(iω). By an operator we mean a map

G : L a
2e[0,∞) → L b

2e[0,∞) that takes one L2e[0,∞)
space into another one. RL

m×n
∞ (RH

m×n
∞ ) will be used to

denote the space of all real-rational and proper (and stable)

matrix functions that have no poles on the imaginary axis

(closed right-half complex-plane).

We will view time-varying uncertain parameters as static

linear time-varying (LTV) operators ∆ ∈ Ls (acting by

multiplication on signals), where Ls := {∆ : [0,∞) → R}.

The variation of ∆ is defined by another static LTV op-

erator V∆ = d
dt

∆ − ∆ d
dt

acting on differentiable sig-

nals and being identical to multiplication with V∆(t) :=
d∆(t)/dt (assuming ∆(t) is differentiable). For a pre-

cise definition see [13]. The preceding concept of a time-

varying operator and its rate-of-variation motivates to in-

troduce the concept of the so called region-of-variation

(ROV) R := {(∆(t), V∆(t)) , t ∈ [0,∞)} where we as-

sume R to be compact and star-shaped with star-center

zero, i.e. τR ⊂ R, ∀ τ ∈ [0, 1]. We describe the set of

static LTV operators that vary in this region as LR :=
{∆ ∈ Ls : (∆(t), V∆(t)) ∈ R, ∀ t ∈ [0,∞)}.

III. PROBLEM FORMULATION

Consider the system interconnection in Figure 1 where

G ∈ RH ∞ represents a nominal and stable LTI system

that admits a minimal realization of the form

G :=





Gqp Gqw

Gzp Gzw

Gyp Gyw



 =







A Bp Bw

Cq Dqp Dqw

Cz Dzp Dzw

Cy Dyp Dyw







,

with A ∈ R
n×n, Bp ∈ R

n×np , Bw ∈ R
n×nw , Cq ∈

R
nq×n, Cz ∈ R

nz×n and Cy ∈ R
ny×n. The plant is

subject to perturbations of static LTV operators ∆ ∈ ∆ ⊂
L

np×nq
s , with the set ∆ representing the uncertainty. For

notational simplicity, we consider a single but repeated

LTV uncertainty ∆ = ∆r := Ir ⊗ δ ∈ ∆ where ∆ =
{(Ir ⊗ δ) : δ ∈ LR} , R ⊂ R

2. ∆r interacts with G through

a linear fractional transformation for which we require the

inverse (I − Dqp∆r)
−1

to exist for all ∆r ∈ ∆. Since Dqp

and ∆ are known this can be easily verified on beforehand.

The main goal in robust estimation is the synthesis of

a stable LTI system E := CE (sI − AE)
−1

BE + DE

that dynamically processes the measurement y ∈ R
ny to

provide an estimate ze ∈ R
nz of the signal z ∈ R

nz

with a guaranteed performance level in the H2-sense. For

general operators, there are several definitions of the H2-

norm, which are not necessarily equivalent (see e.g [16]

and references therein). We will employ a signal based

interpretation of the H2-norm. For this purpose we define

the real vector wη =
(
0 · · · 0 1 0 · · · 0

)T
∈ R

nw

∆

G

E

�

-
- -

-

6
- W -
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z e
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Fig. 1. Robust estimation problem.

with ”1” being located at the ηth position. Let eη
f be the

response of the system to an impulsive input in the direction

of wη . We say that the squared H2-norm of the map w → ef

is less then γ > 0 if we have

nw∑

η=1

‖eη
f ‖

2
2 < γ, ∀∆r ∈ ∆. (1)

In this paper we extend the robust estimation problem

from [15] with a given stable weighting filter W :=
CW (sI − AW )

−1
BW + DW , where AW ∈ R

nW×nW ,

BW ∈ R
nW×nz , CW ∈ R

nz×nW . With this filter we can

emphasize a certain frequency band of interest. Then we can

improve performance within the frequency band of interest

at the cost of a possible degradation of performance outside

the frequency band of interest. Let us now formally state the

robust estimation problem:

Problem 1: Given the plant G, the weighting filter W and

the compact region R, design a stable LTI filter E such that

for all ∆r ∈ ∆ the squared H2-norm from w → ef is less

then γ > 0.

IV. ROBUST STABILITY AND H2-PERFORMANCE FOR

LTV-SYSTEMS

Recall that an uncertainty ∆ ∈ ∆ is said to satisfy the

IQC defined by the multiplier Π ∈ RL
(nq+np)×(nq+np)
∞ if

the following condition holds true:
〈(

q
∆q

)

, Π

(
q

∆q

)〉

≥ 0, ∀q ∈ L
nq
2 .

In applications one constructs a whole family of multipliers

that are parameterized as Π = Ψ∗
PΨ with a suitable set

of symmetric matrices P and with a typically tall Ψ ∈
RH

nψ×np
∞ such that the IQC holds for all Π ∈ Π and all

∆ ∈ ∆. It is then well known from [10] that stability of the

feedback interconnection Gqp and ∆ amounts to verifying

whether the inverse (I −Dqp∆)−1 exists for all ∆ ∈ ∆ and

whether there exists an ǫ > 0 and a P = PT ∈ P for which
(

Gqp(iω)
I

)∗

Ψ(iω)∗PΨ(iω)

(
Gqp(iω)

I

)

4 −ǫI, ∀ω ∈ R.

Since we are concerned with LTV perturbations we em-

ploy the IQC-test from [13]. Let us therefore consider the

following variant of the swapping lemma:

Lemma 1 (Swapping Lemma): Consider the perturbations

∆r := Ir ⊗ δ, ∆l := Il ⊗ δ, ∆k := Ik ⊗ δ and the transfer
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matrix H ∈ RH
l×r
∞ , and let HB and HC be defined based

on a minimal realization of H as

H=

[
AH BH

CH DH

]

,HB=

[
AH BH

I 0

]

,HC=

[
AH I
CH 0

]

,

where AH ∈ R
nH×nH , BH ∈ R

nH×r and CH ∈ R
nH×l.

Then we have that
(

H HC

0 I

)

︸ ︷︷ ︸

Hle

(
∆r

V∆k
HB

)

︸ ︷︷ ︸

∆re

=

(
∆l 0
0 V∆k

)

︸ ︷︷ ︸

∆le

(
H
HB

)

︸ ︷︷ ︸

.

Hre

It is now possible to arrive at the following test from [13],

which basically is a reformulation of the test from [12].

Theorem 1: Let Gqp ∈ RH
nq×np
∞ be an arbitrary stable

transfer matrix and let us be given a compact region R ⊂ R
2.

Then for all ∆r ∈ ∆ the feedback interconnection of Gqp

and ∆r is stable if there exist a matrix P = PT and an

ǫ > 0 such that with G̃qp :=
(

Gqp 0r×k

)
and

Π=Ψ∗PΨ=

(
Hre 0
0 Hle

)∗ (
P11 P12

PT
12 P22

) (
Hre 0
0 Hle

)

,

the following FDI and LMI respectively hold true:
(

G̃qp(iω)
I

)∗

Π(iω)

(

G̃qp(iω)
I

)

4 −ǫI, ∀ω ∈ R (2)

(
I

Θ (δ, υ)

)T

P

(
I

Θ (δ, υ)

)

< 0, ∀ (δ, υ) ∈ R, (3)

where Θ (δ, υ) := diag(Il ⊗ δ, Ik ⊗ υ).
Remark 1: In order to render condition (3) tractable, sev-

eral relaxation schemes are suggested in [13]. In our numer-

ical examples we used the zeroth order Pólya relaxation. Let

us hence be given the set of vertices {(δi, υi)}m
i=1 ∈ R

2 and

let the polytopic region be defined as

P{(δi,υi)}m
i=1

:=

{
m∑

i=1

αi

(
δi, υi

)
:

m∑

i=1

αi = 1, αi ∈ [0, 1]

}

,

such that the ROV R is now defined through the given set

of vertices with Θi := diag(Il ⊗ δi, Ik ⊗ υi). Then (3) is

satisfied if there exists a P = PT for which
(

I
Θi

)T

P

(
I

Θj

)

< 0, i = 1, . . . , m, j = i, . . . , m.

Remark 2: The size of P heavily depends on the McMil-

lan degree of H . For a basis function of the form H(s) =
(
1 (s + α)−1 · · · (s + α)−µ

)T
⊗ Ir, we can obtain a min-

imal realization as

[
AH BH

CH DH

]

=
















−α 0 · · · · · · 0 1

1
. . .

. . .
. . .

... 0

0
. . .

. . .
. . .

...
...

...
. . .

. . .
. . . 0

...

0 · · · 0 1 −α 0
0 1
Iµ 0
















⊗ Ir .

For this realization we then have that l=(µ+1)r and k=µr.

In order to be able to establish a test for H2-performance

as well, we introduce the following notation:






HreG̃qp HreGqw 0
Hle 0 0

WG̃zp WGzw −W

G̃yp Gyw 0







=







Ã B̃1 B̃2 B̃

C̃1 D̃11 D̃12 0

C̃2 D̃21 D̃22 Ẽ2

C̃ F̃1 F̃2 0







=

=









Ã11 Ã12 B̃11 B̃12 B̃13

0 Ã22 B̃21 B̃22 0

0 C̃11 D̃11 D̃12 0

C̃12 C̃22 D̃21 D̃22 Ẽ2

0 C̃23 F̃1 F̃2 0









=

=



















AW 0 0 BW Cz BW Dzp 0 BW Dzw −BW

0 AH 0 BHCq BHDqp 0 BHDqw 0
0 0 AH 0 BH I 0 0
0 0 0 A Bp 0 Bw 0
0 CH 0 DHCq DHDqp 0 DHDqw 0
0 I 0 0 0 0 0 0
0 0 CH 0 DH 0 0 0
0 0 0 0 0 I 0 0

CW 0 0 DW Cz DW Dzp 0 DW Dzw −DW

0 0 0 Cy Dyp 0 Dyw 0



















where G̃qp =
(
Gqp 0

)
, G̃zp =

(
Gzp 0

)
, G̃yp =

(
Gyp 0

)
.

It is now easily verified that the weighted system intercon-

nected with the estimator admits the following realization:




A B1 B2

C1 D11 D12

C2 D21 D22



 := (4)







Ã+B̃DEC̃ B̃CE B̃1+B̃DEF̃1 B̃2+B̃DEF̃2

BEC̃ AE BEF̃1 BEF̃2

C̃1 0 D̃11 D̃12

C̃2+Ẽ2DEC̃ Ẽ2CE D̃21+Ẽ2DEF̃1 D̃22+Ẽ2DEF̃2







.

Let us also introduce the symmetric matrix variable X and

the selection matrix Φ which are respectively partitioned as

X =






X11 · · · X15

...
. . .

...

XT
15 · · · X55




 , ΦT =







I 0 0 0 0
0 I 0 0 0
0 0 0 I 0
0 0 0 0 I







,

where Φ is compatible with to the block structure of X and

where the sizes of X11 · · ·X55 are equal to the sizes of AW ,

AH , AH , A, AE respectively. We now can state the following

feasibility test for robust stability and H2-performance:

Theorem 2: There exists a stable estimator E such that

for all ∆r ∈ ∆ the interconnection of Figure 1 is stable

and the squared H2-norm from w → e is rendered less then

γ > 0, if D21 = 0 and D22 = 0 and if there exist matrices

P = PT , X = X T and Z = ZT for which (3) as well as

the following conditions hold true:






I 0
XA XB1

C1 D11

C2 D21







T





0 I 0 0
I 0 0 0
0 0 P 0
0 0 0 I







︸ ︷︷ ︸







I 0
XA XB1

C1 D11

C2 D21






≺ 0,

M (P )

(5)
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Trace (Z) < γ, (6)

BT
2 XB2 ≺ Z, (7)

ΦTXΦ ≻ 0. (8)

Proof: Since R is star-shaped with center zero, (3)

implies that the left-upper block of P is positive semi-

definite. With a simplified version of the recent result in [15]

we infer that (8) and (5) imply stability of A and, with the

KYP-lemma, the validity of (2), which in turn proves robust

stability of the feedback interconnection of Gqp and ∆r.

Now in order to prove robust H2-performance, let us

describe the closed-loop trajectories of system (4) for an

impulsive input in the direction of wη as






ẋη

qη
f

pη
f

eη
f







:=





A B1

C1 D11

C2 D21





(
xη

pη
e

)

, xη(0) = B2w
η, (9)

where xη(t), pη
e (t) and eη

f (t) are the ηth evolutions of

respectively the closed-loop state x, the signal pe which is

the extension of the input-signal p and the estimation error

signal e. Then after having right- and left-multiplied (7) and

(5) with wη and
(
xη(t)T , pη

e (t)
T

)T
and their transposes

respectively, we can integrate from zero to infinity to infer

∫ ∞

0

(
qη
f (t)

pη
f (t)

)T

P

(
qη
f (t)

pη
f (t)

)

dt+

∫ ∞

0

eη
f (t)

T eη
f (t)dt (10)

≤ xη(0)TXxη(0) ≤ wηT Zwη.

Now observe that the filtered signals p̂f and q̂f are re-

spectively defined through the relations p̂f = Hlep̂e and

q̂f = Hreq̂ where q̂ = G̃qpp̂e. We can then invoke Parseval’s

theorem, in order to transform the first term of (10) into
∫ ∞

−∞

(
q̂η
f

p̂η
f

)∗

P

(
q̂η
f

p̂η
f

)

dω =

∫ ∞

−∞

(
q̂η

p̂η
e

)∗

Π

(
q̂η

p̂η
e

)

dω

Since this is nonnegative for all ∆r ∈ ∆, we conclude
∫ ∞

0

eη
f (t)

T eη
f (t)dt − wηT Zwη ≤ 0, ∀wη. (11)

Summing over η then leads to (1) thanks to (6).

V. MAIN RESULTS

In this section we present a solution in terms of LMIs for

the robust H2-estimator synthesis problem, extended with

a weighting filter at the output. Let us hence introduce the

matrix variables

T1 =

(
I 0

T T
12 T22

)

, T2 =

(
T11 −T12

0 I

)

, T3 =

(
T11 0
0 T22

)

,

X =






X11 · · · X14

...
. . .

...

XT
14 · · · X44




 , R =







0 0 0 0
0 0 0 0
0 0 S 0
0 0 0 0







,

where R=RT is partitioned according to the block structure

of X =XT and where the sizes of T11 =T T
11, T12, T22 =T T

22

are equal to the sizes of Ã11, Ã12, Ã22 respectively. Then

we are ready to state the main result of this paper.

Theorem 3: There exists a stable estimator E such that for

all ∆r ∈ ∆ the interconnection of Figure 1 is stable and the

squared H2-norm from w to e is rendered less than γ > 0,

if there exist matrices K̃, L, M̃ , N , P = PT , R = RT ,

X = XT , T1, T2, T3, Z = ZT , for which (3), (6) as well

as the following conditions hold true:

DHDqw = 0, DW (Dzw − NDyw) = 0, (12)




R − T3 R − T T
1 T T

1 B̃2+B̃NF̃2

R − T1 R − X XB̃2+LF̃2

B̃T
2 T1+F̃T

2 NT B̃T B̃T
2 X+F̃T

2 LT −Z



≺ 0,

(13)

OTM (P )O ≺ 0, (14)

where

O=











I 0 0
0 I 0

T T
1 ÃT2+B̃M̃ T T

1 Ã+B̃NC̃ T T
1 B̃1+B̃NF̃1

K̃ XÃ+LC̃ XB̃1+LF̃1

C̃1 C̃1 D̃1

C̃2T2+Ẽ2M̃ C̃2+Ẽ2NC̃ D̃2+Ẽ2NF̃1











.

With solutions of these LMIs, one can then construct

Y =

(
T11 + T12T

−1
22 T T

12 −T12T
−1
22

−T−1
22 T T

12 T−1
22

)

, (15)

and non-singular U and V such that XY + UV T = I .

With K̄ = K̃T−1
1 −XÃY and M = M̃T−1

1 , the estimator

realization matrices AE , BE , CE , DE can then be chosen

as
(

AE BE

CE DE

)

=

(

U XB̃
0 I

)−1(
K̄ L
M N

)(
V T 0

C̃Y I

)−1

.

(16)

Proof: Let R :=

(
R 0
0 0

)

and observe that (by the

elimination lemma) (8) is equivalent to the existence of a

R = RT for which X −R ≻ 0. Moreover, since RB2 = 0,

(7) can be equivalently rewritten as
(

R− X XB2

BT
2 X −Z

)

≺ 0. (17)

Let us now perform the congruence transformation and the

bijective variable transformation that are well known to

linearize the nominal output-feedback control problem (see

e.g. [17]). For this we introduce the new variables K , L, M
and N which are defined through the following equality:
(

K L
M N

)

=

(

XÃY 0
0 0

)

+

+

(

U XB̃
0 I

) (
AE BE

CE DE

) (
V T 0

C̃Y I

)

,

where

X =

(
X U
UT •

)

, X−1 =

(
Y V
V T •

)

, Y =

(
Y I
V T 0

)

.

Then (17) and (5) can be equivalently rewritten as




Y RY −Y Y R−I B̃2+B̃NF̃2

RY −I R−X XB̃2+LF̃2

B̃T
2 +F̃T

2 NT B̃T B̃T
2 X+F̃T

2 LT −Z



≺ 0, (18)
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and

ÕTM (P ) Õ ≺ 0, (19)

respectively, where

Õ=











I 0 0
0 I 0

ÃY +B̃M Ã+B̃NC̃ B̃1+B̃NF̃1

K XÃ+LC̃ XB̃1+LF̃1

C̃1Y C̃1 D̃1

C̃2Y +Ẽ2M C̃2+Ẽ2NC̃ D̃2+Ẽ2NF̃1











.

Since (18) and (19) are not yet affine in all the variables,

we perform the additional congruence transformation with

T :=diag(T1, I) (with compatible dimensions of I) that was

suggested in [18] and as employed in [19] in a different

context. Then the following relations hold true:

Y T1 = T2, T T
1 Y T1 = T3, RY T1 = R,

KT1 = K̃, MT1 = M̃, T T
1 B̃ = B̃, C̃1Y T1 = C̃1,

T T
1 ÃT2 =

(
Ã11T11 Ã12 − Ã11T12 + T12Ã22

0 T22Ã22

)

. (20)

Observe that (20) is affine in the variables T11, T12, T22

and that the second congruence transformation yields (13)

and (14). Moreover, applying the two suggested congruence

transformations to (8) yields

T TYT (X−R)YT =

(
T3−R T T

1 −R
T1−R X−R

)

≻ 0,

which is implied by (13). Finally observe that D12 and D22

are zero if and only if (12) is satisfied.

Remark 3: By applying the Schur complement with re-

spect to the lower right identity block of M(P ), we can

transform (14) into a genuine LMI.

Remark 4: Though we have shown that it is possible

to extend the estimation problem of [15] by applying a

weighting-filter at the output for the class of LTV uncer-

tainties with bounded rates of variation, the result can be

easily extended to any type of uncertainty that can be suitably

described by IQCs of the form Π = Ψ∗PΨ, with appropriate

adaptation of the stability condition from [15].

Remark 5: It is straightforward to arrive at a solution

in terms of LMIs for the robust L2-estimator synthesis

problem. Instead of (1), we need to guarantee 〈ef , ef〉 ≤
(
γ2 − ǫ

)
〈w, w〉 for some ǫ > 0. Conditions (12), (6) and

(13) can then be disregarded and we only need to extend

(14) with the appropriate performance matrices and impose

(1) to enforce closed-loop stability.

Remark 6: The matrix variable S as well as the matrix

variables K̃ and M̃ can be eliminated (especially for analysis

purposes). According to our experience, though, elimination

of S might deteriorate a numerically reliable construction of

the estimator.

VI. NUMERICAL EXAMPLES

We will first show that we can reduce conservatism with

respect to the approaches based on PDLFs. We especially

focus on the recent results of [8], [9] where the proposed

H2-filter design methods are based on PDLFs that depend

quadratically on the uncertain parameters. It should be men-

tioned that the stochastic interpretation of the H2-norm,

which is used in [7], [8], [9], is equivalent to the signal

based interpretation we are using such that we are allowed to

compare our results. We hence took the following numerical

example from [8], [9]:





q
z
y



=











0 −1 0 0.3 −2 0
1 −0.5 0 0 1 0
1 0 0 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0

−100 100 0 0 0 1











(
p
w

)

. (21)

Figure 2 displays the squared H2-norm from w → e (W =I)

for the plant (21) with |δ(t)| ≤ 1.4 and for increasing values

of µ (length of basis) µ and |υ| (rate-bound) for the methods

from [8], [9] and those in this paper. The lines ”IQC, µ=0”

and ”PDLF 0” correspond to the standard quadratic stability

tests where δ(t) is allowed to vary arbitrarily fast. The lines

”PDLF 1” and ”PDLF 2” represent the results of [8] and

respectively use a Lyapunov function that depends affinely

and quadratically on δ. The line ”PDLF 3” corresponds to

the results of [9] and is not a complete solution in terms of

LMIs, due to a bilinear term. Hence, for this example, the

IQC approach clearly outperforms all the PDLF approaches

for sufficiently large µ.
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0
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‖
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‖
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Rate of Variation |υ(t)| for |δ(t)| < 1.4

IQC, µ = 0

IQC, µ = 1

IQC, µ = 2

IQC, µ = 3

PDLF 0

PDLF 1

PDLF 2

PDLF 3

Fig. 2. Numerical Example 1.

In our second example we illustrate the possibility to fur-

ther improve the estimation results by employing a weighting

filter at the output for the mass-spring-damper system that is

displayed in Figure 3. Mass m1 is disturbed by an external

m1 m2(t)-w1

- - x2x1
c1

k1

c2

k2

Fig. 3. Mass-spring-damper system with uncertain time-varying m2.

force w1 and mass m2 is uncertain and time-varying. The

objective is to estimate position x2 based on the measurement

x1 which is corrupted by measurement noise w2. Observe,

with k3 = k1+k2, c3 = c1+c2, p = ∆q, ∆ = |δ(t)| < 1 and
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m2 =m̂2+W2δ(t), that G can be written as





z
q
y



=














0 0 1 0 0 0 0
0 0 0 1 0 0 0

− k3

m1

k2

m1

− c3

m1

c2

m1

0 1
m1

0
k2

m̂2

− k2

m̂2

c2

m̂2

− c2

m̂2

−W2

m̂2

0 0
k2

m̂2

− k2

m̂2

c2

m̂2

− c2

m̂2

−W2

m̂2

0 0

0 1 0 0 0 0 0
50 0 0 0 0 0 1














(
p
w

)

.

For our illustration, we used the numerical values m1 =10,

m̂2 =20, c1 =10, c2 =100, k1 =10, k2 =100, W2 =15 and a

parameter trajectory δ(t)=sin(1
4 t). By plotting υ= δ̇ vs δ we

observe that the ROV is an ellipse that can be covered by a

polytope according to the left upper-plot of Figure 4. We used

the weighting filter W = 2.5s+5
5s+1 , µ=3, and a pulse signal as

the input disturbance w1 with an amplitude of 1000 that was

repeated every 10 sec with a random direction and a pulse

width of 0.1% of the period. Finally we used a band-limited

white-noise signal with variance of 0.01 for the disturbance

input w2. In the lower plot of Figure 4, the estimation error

is shown for respectively the nominal design (i.e. δ ≡ 0), the

robust design and the robust design with a weighting filter at

the output. Clearly the estimator that was designed with the

weighting filter at the output leads to an error with smaller

low frequency content.

−1 −0.43 0 0.43 1

−0.25

−0.1
0   
0.1

0.25

υ

δ

0 50 100
−3

−2

−1

0

1

Time (sec)

0 20 40 60 80 100
−0.2

−0.1

0

0.1

0.2

Time (sec)

e
(t

)

δ(t), υ(t)

Nominal, Robust, Robust+Weight

Fig. 4. Estimation error e for sinusoidal perturbations δ(t).

VII. CONCLUDING REMARKS

We have given an LMI solution for an extension of the

robust H2-estimator synthesis problem with a weighting

filter at the output, and for systems that depend rationally

on smoothly time-varying parameter uncertainties which are

characterized with dynamic IQCs. Generalizations to any

type of uncertainties that can be suitably described by

dynamic IQCs are straightforward, once the IQC multipliers

are factorized in the form assumed in this paper. Though

the results were formulated for H2-estimation, the tech-

nique readily extends to L2-gain performance. We illus-

trated through two numerical examples how to systematically

reduce conservatism with respect to approaches based on

parameter dependent Lyapunov functions and how to benefit

from an additional weighting filter at the performance output.
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