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Abstract— A polynomial approach to deal with stability anal-
ysis of polynomial switched systems, i.e., polynomial continuous
systems with switching signals, using dissipation inequalities
under arbitrary switching is presented. It is shown that the
representation of the original switched problem into a con-
tinuous polynomial systems allows us to use the dissipation
inequality for polynomial systems. With this method and from
a theoretical point of view, we provide an alternative way to
search for a common Lyapunov function for switched systems.

Index Terms— Dissipation inequalities, Polynomial systems,
Switched systems, Stability analysis

I. INTRODUCTION

We deal with stability analysis of polynomial switched

systems, i.e., polynomial continuous systems with switching

signals, using dissipation inequalities under arbitrary switch-

ing. The most efforts in switched systems research have been

typically focused on the analysis of dynamic behaviors, such

as global uniform asymptotic stability (GUAS) with respect

to switching signals, and several classes of switched systems

that has the GUAS property have been idenfied. Several

methods have been proposed to find the common Lyapunov

function (see [1], [2], and references therein), but most of

them are too restrictive from the computational point of view,

because it is usually hard to check for a common function

over all the subsystems and this could not exist.

In the seminal papers [3], [4] foundations in dissipa-

tivity theory of dynamical systems were presented. These

foundations are based in terms of an inequality involving

a generalized system power input, or, supply rate, and a

generalized energy function, or storage function [3]. The

interpretation of this storage function establishes the con-

nection between Lyapunov stability and dissipativity. Stabil-

ity problems can be solved once the dissipativity property

is assured, and the storage function becomes a Lyapunov

function, which can be used to construct Lyapunov functions

for nonlinear dynamical systems. In general, dissipativity
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theory for switched systems has received just few attention

in the last decade [5], [6], [7]. As for a common Lyapunov

function a single storage function for all subsystems is

usually difficult to find or may not exist (computational

problems arise when a common function have to be find)

[6]. For these common functions, i.e., common Lyapunov

function and common storage function, recent computational

tools have emerged to present alternative solutions for these

problems. On the other hand, [8] – [10] present results for

polynomial differential systems on a manifold, and [8] –

[13] present techniques for the class of polynomial control

systems. We see that many control problems can be modeled

as, transformed into, or approximated by polynomial control

systems. In addition, linear control systems can be considered

as a special case of polynomial control systems. But this

wide generality implies also difficulty to study. However,

thanks to the recent computational tools for polynomials

analysis, i.e., semidefinite programming and the sum of

square decomposition [14], polynomial control systems can

be analyzed by reliable and efficient numerical methods [9].

These properties of polynomial systems on a constraint man-

ifold with the dissipasivity theory for stability analysis, give

us the elements to establish stability analysis for polynomial

switched systems reformulated as a differential polynomial

continuous system on a constraint manifold [15].

The main contribution of this paper is twofold. First,

we present a reformulation of the switched system as a

differential polynomial continuous system on a constraint

manifold. This reformulation opens several possibilities of

analysis and design of switching systems in a consistent

way and also with numerical efficiency [15]. We can profit

from some tools developed in the last decade for nonlin-

ear differential-algebraic equations (DAEs) and polynomial

system, by numerical methods as analysis as well [8] –

[13], [16], [17]. On the other hand, an alternative method

to find a common Lyapunov function for switched systems

with an efficient numerical method is presented using the

simple stability result for stability analysis of polynomial

DAEs presented in [8] –[10].

The paper is organized as follows. In Section II we present

some definitions and basic concepts. A polynomial approach

for the switched system is developed in Section III. Stability

analysis for polynomial DAEs is described in Section IV.

Finally, in Section V some conclusions are drawn.
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II. DEFINITIONS AND PRELIMINARIES

A. Basic Concepts

A switched system is a system that consists of several

continuous-time systems with discrete switching events. A

switched system may be obtained from a hybrid system by

neglecting the details of the discrete behavior and instead

considering all possible switching patterns from a certain

class. This represents a significant departure from hybrid

systems, especially at the analysis stage [1]. Switched sys-

tems have many application examples, such as power electric

circuits, automotive controllers, chemical process, etc.

The mathematical model can be described by

ẋ(t) = fσ(t)(x, u, t), (1)

where fi : R
n×R

m×R
+ → R

n are vector fields, the exoge-

nous input u ∈ R
m and σ : [0, tf ] → Q ∈ {0, 1, 2, ..., q} is a

piecewise constant function of time. Every mode of operation

corresponds to a specific subsystem ẋ(t) = fi(x, u, t), for

some i ∈ Q, and the switching signal σ determines which

subsystem is followed at each point in time, into the interval

of time [0, tf ], with tf as the final time. The control inputs, σ
and u, are both measurable functions. No assumptions about

the number of switches nor about the mode sequence are

made. In addition, we consider non Zeno behavior, i.e., we

exclude an infinite switching accumulation points in time.

The state does not have jump discontinuities.

B. Dissipativity, Passivity and Stability

Intuitively, from the concept of passivity it could be

inferred that passive systems do not have the possibility to

produce energy by themselves. It is possible to demonstrate

that if the system is expressed as purely passive system

the origin is an asymptotically unfluctuating equilibrium

point, and the storage function V turns into a Lyapunov

function. The functionality for stability analysis of passivity,

dissipativity is that this characteristic is preserved under

interconnection [18], [6]. Then, passivity is considered to

be an efficient tool for the analysis and design of large-scale

systems. In the same way we know that storage functions

induced by dissipativity is a candidate Lyapunov function for

stability analysis, this shows that stability and stabilization

problems can be solved once the dissipativity property is

assured [6].

Even if the definition of passivity and the energy specula-

tions that guide to stability are intuitive, the definition could

be misguiding when trading with hybrid systems. It would

be well-founded to conclude that if the system can switch

between two sets of state equations and if each set of them

defines a passive system, the hybrid system produced must

also be passive. But it has been proved that this conclusion

would be incorrect [18].

Switched systems have an unusual behavior. A storage

function of an inactive subsystem continues changing or

even grows on the time interval when it is inactivated. In

fact, this happens because all subsystems share the same

state variables [6]. We are dealing with analysis of stability

in switched systems under arbitrary switching, which is

the property that the switched system state goes to zero

asymptotically for any switching sequence. If this property

holds for any initial conditions, we have global uniform

asymptotic stability (GUAS) [1], [2].

III. POLYNOMIAL APPROACH

In this section, we show how the system (1) can be

reformulated into a polynomial expression that mimics the

behavior of the original system [15]. The approach followed

here has had in spirit some counterpart for 0-1 programs, see

for instance [19].

A. Polynomial Expression

The polynomial expression that is able to mimic the

behavior of the switched system is developed using a new

variable s, which works as a control variable. The starting

point is to rewrite (1) as a continuous non-switched control

system in its more general case.

First, we define a drift vector field F(x, u) : R
n × R

m →
R

n

F(x, u) = [f0(x, u), f1(x, u), ..., fq(x, u)] (2)

where fi(x, u), i ∈ Q is the function for each subsystem of

the switched systems given in (1). Now, in order to find

the polynomial expression we need for each i ∈ Q =
{0, 1, ..., q}, a quotient lk with the property that lk(i) = 0
when i �= k, and lk(k) = 1.

Let L be the vector of Lagrange polynomial interpolation

quotients ([20]) defined with the new variable s, i.e.,

L(s) = [l0(s), l1(s), ..., lq(s)]
T (3)

where

lk(s) =

q
∏

i=0
i�=k

(s − i)

(k − i)
(4)

Secondly, using these Lagrange polynomial interpolation

quotients, we see that there exists an unique polynomial P
of order q + 1 with the property of

fi(x, u) = P (x, u, i) for each i ∈ Q

This polynomial is given by

P (x, u, s) = F(x, u)L(s)
=

∑q
k=0 fk(x, u)lk(s)

(5)

where s ∈ R, and lk(s) is given by (6).

On the other hand, we can use a complementary polyno-

mial, which is used to constrain s to take only integer values.

Let Q(s) be the constraint polynomial so that

Q(s) =

q
∏

k=0

(s − k) (6)

A related continuous polynomial DAE system of the

switched system (1) is constructed in the following proposi-

tion.

Proposition 1: Consider a switched system of the form

given in (1) with a drift vector field which are in the
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form given in (3). There exists an unique polynomial

differential-algebraic equation with the polynomial state

equation P (x, u, s) given in (5) of order q + 1, and the

constraint algebraic polynomial Q(s) given in (6) as follows

ẋ = P (x, u, s)
0 = Q(s)

(7)

This polynomial DAE is an equivalent representation of the

switched system (1)

Proof. The system we are looking for has to be a polynomial

system consisting of a polynomial state equation P (x, u, s)
of degree q + 1, and a constraint polynomial Q(s), also

of degree q + 1. We know that the Lagrange polynomial

is a solution to the interpolation problem, and l j(s) is a

polynomial and has degree q +1. So that from the definition

of the Lagrange polynomial interpolation ([20]), L(s) is the

unique polynomial interpolating the given data. Now, using

equation (7), we have the equivalent representation

ẋ = P (x, u, s) =
∑q

k=0 fk(x, u)lk(s)

0 = Q(s) =
q
∏

k=0

(s − k)

we see that the solutions of the algebraic equation Q(s) = 0
constrain the values of the variable s to be in the set of

values Q. Let q be the finite number of subsystems of the

switched system (1), i.e., f0, · · · , fq. Then, the polynomial

state equation P (x, u, s) is unique due to the quotients of

the Lagrange polynomial interpolation l0, ..., lq are unique.

From the numerator of the above definition, we see that

lk(s) is an order n+1 polynomial having zeros at all of the

subsystems except the k-th. The denominator is simply the

constant which normalizes its value to 1 when fk is activated.

Thus, we have

lk(s) = δks
≡

{

1, s = k
0, s �= k

For instance, we show the most simply case when q = 1,

the system (7) has the same form of the convex combination

of two subsystems. Note that the trajectories of the original

switched system (1) correspond to piecewise constant con-

trols taking values in the set σ ∈ {0, 1, ..., q}.
The above proposition allows us to represent the switched

system as a differential algebraic equation (DAE). The notion

of DAE represents the fact that (7) consist of differen-

tial equations coupled with algebraic equations. Depending

of the problem modeling, DAEs are also called, singular

systems, descriptor systems, semistate equation, implicit

systems, and differential equations on manifolds. For this

approach, DAEs are regarded as explicit ordinary differential

equations on manifolds. While DAEs provide a convenient

modeling concept, many numerical difficulties arise due to

the fact that the dynamics are constrained to a manifold [17].

These difficulties are characterized by one of many index

concepts that exist for DAEs, i.e., global index, tractability

index, geometrical index, perturbation index, differential in-

dex, among others ( see [21], [17], and the reference therein).

The differential index is the notion used in this approach. In

general, we define the DAE as follows:

G(x, ẋ, s) = 0 (8)

We note that variable s may be regarded as another state

variable for analysis purpose. The function G : R
n×R

n×R

is assumed to be sufficiently smooth with G(0, 0, 0) = 0.

The definition of index is described as follows.

Definition 2: [22] The index of the DAE in Equation (8) is

the minimum number of times that all or part of a nonlinear

DAE must be differentiated with respect to t in order to

determine ẋ.

According to the definition, an implicit ODE has index

zero. In [21], the constrained manifold is used to define the

differentiation index and in [22], a proposition is presented

for a semi-explicit DAE that it can be extended to (7). Then,

it can be seen that the semi-explicit DAE (7) has index one

if and only if ∂Q(s)/∂s is nonsingular. Now, from the semi-

explicit DAE (7), we note that all solutions of the DAE lie

in the manifold

Γ = {(x, s)T : Q(s) = 0}

This clearly implies that we cannot find a solution if the

starting point does not belong to this manifold. Finally, the

solution of (7) may be interpreted as an explicit ODE on the

manifold Γ.

1) Numerical Example of Switched Nonlinear System: In

this section we present an illustrative example of application

of a switched nonlinear system reformulated by Proposition

1 as a differential equation on a manifold. Simulations are

done with MATLAB using the function ode15s, which is

used to solve DAE. With this example we illustrate an effi-

cient computational treatment to simulate switched systems

reformulated as a polynomial expression.

Consider the set of systems described by the drift vector

field

F(x) = [f0(x), f1(x)]

with

f0(x) =

[

−x2
1 + x2

2

−2x1x2

]

and f1 = −f0. This system is the so-called Artstein’s circle,

which is asymptotically controllable and asymptotically sta-

bilizable [23], [24]. This is presented as a switched nonlinear

system for stabilizing analysis. In Fig. 1 we can see the phase

plane for two different initial conditions. The system shows

a stable behavior for both cases.

B. Stability Problem

The switched system expressed as a polynomial

differential-algebraic system allows us to establish an alter-

native approach for stability analysis. Instead of searching for

a common Lyapunov function, or multiple Lyapunov func-

tions in order to provide stability under arbitrary switching

law (which are usually very restrictivetechniques based on
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Fig. 1. Phase plane for two different initial conditions

exhaustive algorithms [1]), we can look for a Lyapunov func-

tion using techniques developed for polynomial continuous

systems. It means that we can find a common Lyapunov

function using dissipativity inequalities as in [9]. With this

reformulation we are dealing with a polynomial differential

system on a manifold as mentioned before.

Basically, the stability problem of differential-algebraic

systems is related to the problem of stability on manifolds,

which are defined by the constraints in the system descrip-

tion. The main components for a stability analysis of DAEs

are the constraints as well as penalization arguments from

optimization theory. Using these concepts in a more general

setting, a simple yet general stability theorem in terms of

a dissipation inequality for differential-algebraic systems of

the form (8) is obtained in [8], [9], [10] as outlined in the

next section.

IV. RESULTS IN STABILITY ANALYSIS

In the previous section the switched systems is expressed

as a polynomial differential-algebraic system or a constrained

control system. With this reformulation, we can apply the

stability results for constrained control systems using dissi-

pation inequalities and sum of squares as in [8], [9], [10].

A. Stability Result for Polynomial Differential-Algebraic

Systems

The main idea behind the proposed approach is simple and

it is presented as follows. First, define the following stacked

vector of hidden constraints containing the first µ derivatives

of the vector field G along trajectories, i.e.,

Gµ(ξ, ς) =

[

G(x, ẋ, s),
d

dt
G(x, ẋ, s), · · ·

dµ

dtµ
G(x, ẋ, s)

]T

(9)

with ξ = (x, ẋ, ..., xµ+1), ς = (s, ṡ, ..., sµ+1), and

(d/dt)G(x, ẋ, s) = (∂/∂x)G(x, ẋ)ẋ + (∂/∂ẋ)G(x, ẋ)ẍ +
(∂/∂s)G(x, ẋ, s)ṡ, and so on. The following theorem gives

a simple stability result for the general differential-algebraic

systems of type (7).

Theorem 3: ([9], [10]) The equilibrium point x = 0 of the

differential-algebraic system (7) is stable for any admissible

input s = s(t), if there exists a Lyapunov function candidate

V : R
n �→ R, a function ρ:R(µ+2)(n+q) �→ R, and an integer

number µ such that the dissipation inequality

∇V (x)ẋ ≤ ‖Gµ(ξ, ς)‖
2
ρ(ξ, ς) (10)

is satisfied for some x-neighborhood Ωx((ξ, ς) = 0).
The main idea behind the inequality (10) is just to check

negative semidefiniteness of V̇ with respect to the constraint

set. Otherwise, if Gµ(ξ, ς) �= 0, one can always find a

function ρ such that inequality above is satisfied, by just

making ρ big enough. It can be interpreted ρ as Lagrange

multiplier. On the other hand, in general, according to [9],

[10], there is no universal rule how to choose µ, but in certain

cases the choice is clear. The implicit stability analysis given

by the dissipation inequality (10) corresponds exactly to an

explicit stability analysis of the vector field defined on this

constrained manifold. In this case, the differentiation index

of the differential-algebraic system is known, therefore it is

reasonable to choose µ to be equal to the differentiation index

(i.e., µ = 1).

B. Stability Analysis of Polynomial Switched Systems

In general, it is very difficult to search for a Lyapunov

function V and a function ρ for practical problems. However,

recently established methods based on semidefinite program-

ming and the sum of squares decomposition allow us to

verify Lyapunov inequalities of the form (10) very efficiently

in the case where G, V , ρ are assumed to be polynomials

[8]. Certainly, in our case functions G, V , and ρ are all of

polynomial nature. Hence, we have to establish an algorithm

in order to find a Lyapunov function V and a function ρ.

The algorithm can be summarized as follows. Given func-

tions G, Gµ, and µ, find a radially unbounded differentiable

positive definite function V and a function ρ such that the

dissipation inequality (10) is satisfied. It is impossible to

search over all functions V , ρ. Here, it is assumed that V and

ρ are polynomials up to certain degrees. Now, we can define

the dissipation inequalities for the polynomial representation

of the switched system. Since we are dealing with the study

of global uniform asymptotically stable (GUAS) systems,

it means that we are searching for a common Lyapunov

function regardless of what a switching sequence is. On the

other hand, we know from Definition 2 that the differential-

algebraic system (7) is of index one. Therefore, we may

choose µ = 1, and if we try to prove global stability of the

system (5), the following polynomial inequalities must be

satisfied,

V (x) > 0

∇V (x)P (x, s) ≤ ‖Q(s)‖
2
ρ(x, s)

which implies that

V (x) > 0

∇V (x) (
∑q

k=0 fk(x, u)lk(s)) ≤

∥

∥

∥

∥

q
∏

k=0

(s − k)

∥

∥

∥

∥

2

ρ(x, s)

(11)

for all ξ = (x, ẋ, s) ∈ R
2n. Note that if V is poly-

nomial and positive definite, it implies that V is radially
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unbounded. To verify such polynomial inequalities is an NP-

hard computational problem [8]. However, with the help

of the sum of squares decomposition, it is possible to

verify such polynomial inequalities very efficiently. On the

other hand, this problem coincides with the problem of

searching for a common Lyapunov function for the vector

field F(x, u) = [f0(x, u), f1(x, u), ..., fq(x, u)].

For illustration and clarity of exposition, consider the case

when q = 1. The dissipation inequality is of the form

∇V (x) (f0(x)(1 − s) + f1(x)s) ≤ ‖s(1 − s)‖
2
ρ(x, s)

(12)

Before we state an analytical solution of (12), we need

to introduce some basic concepts of sum of squares decom-

position. A more detailed description can be found in [14],

[13], and the references therein.

The semidefinite programming method for computing the

sum of squares decomposition is based on the Gram matrix

method (see [25] for more details).

Definition 4: , [13], [14] For x ∈ R
n a multivariate

polynomial p(x) is sum of squares (SOS) if there exist some

polynomials ri(x), i = 1, ..., M such that

p(x) =

M
∑

i=1

r2
i (x) (13)

It is clear that p(x) being an SOS naturally implies p(x) ≥
0 for all x ∈ R

n. An equivalent characterization of SOS

polynomials is given in the following proposition.

Proposition 5: [14] A polynomial p(x) of degree 2d is a

SOS if and only if there exists a positive semidefinite matrix

Q and a vector of monomials Z(x) containing monomials

in x of degree ≤ d such that

p(x) = Z(x)T QZ(x)

Since, we have that P (x, s) is a polynomial vector field,

and that we are searching for V (x) that is also a polynomial

in x. To solve the testing conditions inequality (12), we

can restrict our attention to cases in which the conditions

admit SOS decompositions. The only apparent difficulty is

the restriction of V (x) to be positive definite, not just positive

semidefinite. To deal with this problem we can use the

following proposition.

Proposition 6: [14] Given a polynomial V (x) of degree

2d, let ϕ(x) =
∑n

i=1

∑d
j=1 ǫi,jx

2j
i such that,

d
∑

j=1

ǫi,j > γ ∀i = 1, ..., n, (14)

with γ a positive number, and ǫi,j ≥ 0 for all i and j. Then

the condition

V (x) − ϕ(x) is a SOS (15)

guarantees the positive definiteness of V (x).

Now we can pose the inequality (12) as follows. Find a

polynomial V (x) such that

V (x) − ϕ(x) ≥ 0 is SOS

−∇V (x) (
∑q

k=0 fk(x, u)lk(s)) + · · ·
∥

∥

∥

∥

q
∏

k=0

(s − k)

∥

∥

∥

∥

2

ρ(x, s) ≥ 0 is SOS

(16)

the polynomials V (x), ρ(x, s), and the positive definite

function ϕ(x) can be computed using SOSTOOLS [11].

C. Numerical Example 1: Two-switched linear case

Consider for simplicity the polynomial (7) when q = 1.

First, we deal with the optimal control problem, when all

the vector fields are linear, i.e., fi(x, u, t) = Aix, where

Ai ∈ R
n×n. This yields linear autonomous switched system,

i.e.,

ẋ(t) = Aσ(t)x(t) (17)

Using the polynomial transformation (7) we have,

ẋ(t) = P (x, s) =
(

∑1
k=0 AkLk(s)

)

x(t)

= A0L0x(t) + A1L1x(t)
(18)

with L0 = (1 − s), L1 = s. Combining (17) and (18), we

obtain the dynamics given by

ẋ(t) = (A0(1 − s) + A1s)x(t)
Q(s) = s(s − 1) = 0

(19)

Note that the trajectories of the original switched system

(1) correspond to piecewise constant controls taking values

in the set {0, 1}. In particular, ẋ(t) = A0x(t) results by

setting s = 0 in (7), while ẋ(t) = A1x(t) results by setting

s = 1. The switching behavior is defined by the constrained

polynomial Q(s). For illustration consider the linear two-

switched system with

A0 =

[

−1.1 1.4
−0.1 0.8

]

, A1 =

[

−0.3 1.1
−0.4 0.1

]

Using these matrices and Equations (18) and (19), we

obtain,

− ∂V
∂x1

[(−1.1 + 0.8s)x1 + (1.4 − 0.3s)x2] · · ·

− ∂V
∂x2

[(−0.1 − 0.3s)x1 + (0.8 − 0.7s)x2] · · ·

+
(

s4 − 2s3 + s2
)

ρ(x, s) ≥ 0

using the MATLAB toolbox SOSTOOLS [11], a Lyapunov

function of degree six is found,

V (x) = 3.826x2
1 − 0.9845x4

1 + 2.914x4
2 + 3.14x2

2

−7.041x1x2 − 8.6513x1x
3
2 + 6.105x2

1x
2
2

+0.6764x6
1 − 0.111x6

2 + 0.1x4
1x

4
2

which proves that the origin is a stable point of the linear

switched system (18) reformulated as a polynomial DAE (7).
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D. Numerical Example 2: Two-switched nonlinear case -

Artstein’s circle

A more interesting case is the nonlinear switched system

case. We use the example presented in Section III in order

to prove stability under arbitrary switching. First, we obtain

the polynomial DAE reformulation

ẋ(t) = (f0(1 − s) + f1s)x(t)

=

[

(x2
1 − x2

2)(2s − 1)
(2x1x2)(2s − 1)

]

Q(s) = s(s − 1) = 0

Again, using these polynomial matrices and equations (19)

and (18), we obtain,

− ∂V
∂x1

(x2
1 − x2

2)(2s − 1) − ∂V
∂x2

(2x1x2)(2s − 1) · · ·

+
(

s4 − 2s3 + s2
)

ρ(x, s) ≥ 0

using the MATLAB toolbox SOSTOOLS [11], a Lyapunov

function of degree six is found,

V (x) = 0.10434x2
1 − 0.00682x4

1 − 0.00211x4
2 + 0.113x2

2

−0.1x1x
2
2 + 0.0268x2

1x
2
2 + 0.1x3

1x
2
2 + 0.002x6

2

which proves that the Artstein circle system reformulated

as a polynomial DAE (7) is stable. We note that for these

examples we have tested different values of γ in order to

obtain a Lyapunov function with nice coefficients, in this

way we have used a value for γ of the order of 10 5.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have developed a new method for

stability analysis of switched systems based on a polynomial

approach. First, we transform the original problem into a

polynomial system, that is able to mimic the switching be-

havior but with a continuous differential-algebraic nonlinear

representation. From a theoretical point of view, we show

that the representation of the original switched problem

into a continuous polynomial systems allow us to use the

dissipation inequality for polynomial systems. With this

method and from a theoretical point of view, we provide an

alternative way to search for a common Lyapunov function

for switched systems. This work opens several possibilities

for the system analysis, as stability analysis by using sum

of squares [14], and some other analysis as controllability,

observability, sensivity among others. Some results on con-

trollability of switched systems related with non-switched

polynomial system have been presented in [26]. It means

that with this approach, we have the possibility of analysis

and control for nonlinear switched systems in a consistent

way.
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