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Abstract—In this article, resilient delay-dependent adaptive

control algorithms are developed for closed-loop stabilization
of a class of uncertain time-delay systems with time-varying

state delay, nonlinear dynamical perturbation, and controller
gain perturbation. The norm of the nonlinear perturbation

is assumed to be bounded by a weighted norm of the state
such that the upper value of the weight is unknown, and the

norm of the uncertainty of the state feedback gain is assumed
to be bounded by a positive constant. The results presented

here can be considered as extension of previous work that
assumes that the upper value of the nonlinear perturbation

weight is known. Here, adaptive control schemes are developed
to guarantee asymptotic stabilization of the closed-loop system

when the upper bound of the state feedback gain perturbation
is known and unknown.

I. INTRODUCTION

Time delay systems are widely encountered in many real

applications, such as chemical processes and communication

networks. Hence, the problem of controlling time-delay

systems has been investigated by many researchers in the

past few decades. It has been found that controlling time-

delay system can be a challenging task, especially in the

presence of uncertainties and parameter variations. Several

techniques have been studied in the analysis and design

of time delay systems with parameter uncertainties. Such

techniques include robust control [1], [2], H∞ control [3],

[4], [5], [6], and sliding mode control [7], [8], [9], [10],

[11]. In the case where uncertain time-delay systems include

a nonlinear perturbation, several adaptive control approaches

have been introduced [12], [13], [14], [15], [16], [17].

In [12], [14], the authors developed state feedback controllers

when the state vector is available for measurement and the

upper bound on the delayed state perturbation vector is

known. For the case where the upper bound of the nonlinear

perturbation is known, more stabilizing controllers with sta-

bility conditions have been derived in [15], [13]. However, in

many real control problems, the bounds of the uncertainties

are unknown. For such a class of systems, the author in [16]

has developed a continuous time state feedback adaptive

controller to guarantee uniform ultimate boundedness for

systems with partially known uncertainties. For a class of

systems with multiple uncertain state delays that are assumed

to satisfy the matching condition, an adaptive law that guar-

antees uniform ultimate boundedness has been introduced

in [17]. In all of the papers discussed above, the authors
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investigated delay-independent stabilization and control of

time-delay systems. Delay-dependent stabilization and H∞

control of time-delay systems have been studied in [18],

[19], [20], [21], [22], [23], [1]. In [1], the author discussed

stabilization conditions and analyzed passivity of continuous

and discrete time-delay systems with time-varying delay and

norm-bounded parameter uncertainties. The results in [1]

have been extended in [24] to consider designing delay-

dependent adaptive controllers for a class of uncertain time-

delay systems with time-varying delays in the presence of

nonlinear perturbation. In [24], the nonlinear perturbation is

assumed to be bounded by a weighted norm of the state

vector, and for this problem adaptive controllers have been

developed for the two cases where the upper bound of the

weight is assumed to be known and unknown.

An inherent assumption in the design of all of the above

control algorithms is that the controller will be implemented

perfectly. In [25], the authors extended the results in [24]

to investigate the resilient control problem [26], [27], [28],

where perturbation in controller state feedback gain is con-

sidered. It has been assumed in [25] that the nonlinear

perturbation is bounded by a weighted norm of the state

such that the value of the weight is known, and the norm of

the uncertainty of the state feedback gain is assumed to be

bounded by a positive constant. Under these assumptions,

adaptive controllers were designed when the value of the

upper bound of the state feedback gain perturbation is known

and unknown. This paper extends the results in [25] to

consider the problem where the the upper bound of the

nonlinear perturbation weight is unknown. For this problem,

asymptotically stabilizing adaptive controllers are derived for

both cases where the upper bound of the norm of the state

feedback gain perturbation is known and unknown.

The paper is organized as follows. In Section II, we define

the problem statement. Then, in Section III, we present

the main stability results, and finally in Section IV some

concluding remarks are outlined.

Notations and Facts: In the sequel, the Euclidean norm is

used for vectors. We use W>, W−1, and ||W || to denote,

respectively, the transpose of, the inverse of, and the induced

norm of any square matrix W . We use W > 0 (≥, <,≤ 0) to

denote a symmetric positive definite (positive semidefinite,

negative, negative semidefinite) matrix W , and I to denote

the n × n identity matrix. The symbol • will be used in

some matrix expressions to induce a symmetric structure,

that is if the matrices L = L> and R = R> of appropriate
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dimensions are given, then
[

L N

• R

]

=

[

L N

N> R

]

.

Now, we introduce the following facts that will be used later

on to establish the stability results.

Fact 1: [1] Given matrices Σ1 and Σ2 with appropriate

dimensions, it follows that

Σ1Σ2 + Σ>

2 Σ>

1 ≤ α−1 Σ1Σ
>

1 + α Σ>

2 Σ2, ∀ α > 0.

Fact 2 (Schur Complement): [1], [29] Given constant matri-

ces Ω1, Ω2, Ω3 where Ω1 = Ω>

1 and 0 < Ω2 = Ω>

2 then

Ω1 + Ω>
3 Ω−1

2 Ω3 < 0 if and only if

[

Ω1 Ω>

3

Ω3 −Ω2

]

< 0 or

[

−Ω2 Ω3

Ω>

3 Ω1

]

< 0.

II. PROBLEM STATEMENT

Consider the class of dynamical systems with state delay

ẋ(t) = Aox(t) + Adx(t − τ ) + Bou(t) + E (x(t), t) (1)

where x(t) ∈ <n is the state vector, u(t) ∈ <m is the control

input, E (x(t), t) : <n ×< → <n is an unknown continuous

vector function that represents a nonlinear perturbation, and

τ is some unknown time-varying state delay factor satisfying

0 ≤ τ ≤ τ+, where the bound τ+ is a known constant. The

matrices Ao, Ad, and Bo are known real constant matrices of

appropriate dimensions. The nonlinear perturbation function

is defined to satisfy the following assumption.

Assumption 2.1: The nonlinear perturbation function

E (x(t), t) satisfies the following inequality

||E (x(t), t) || ≤ θ∗ ||x(t)||, (2)

where θ∗ is some unknown positive constant.

In this paper, resilient delay-dependent adaptive stabilization

results are established for the system (1) when uncertainties

appear in the state feedback gain of the controller.

Before we present the stability results, we start be express-

ing the delayed state as [1]

x(t − τ ) = x(t) −

∫ 0

−τ

ẋ(t + s)ds (3)

= x(t) −

∫ 0

−τ

[Ao x(t + s) + Ad x(t − τ + s)

+Bo u(t + s)] ds

−

∫ 0

−τ

E (x(t + s), t + s) ds.

Hence, if we define Aod = Ao +Ad, then the system (1) can

be expressed as

ẋ(t) = Aod x(t) + Ad η(t) + Bou(t) + E (x(t), t) ,(4)

η(t) = −

∫ 0

−τ

[Ao x(t + s) + Ad x(t − τ + s)

+Bo u(t + s) + E (x(t + s), t + s)] ds.

III. MAIN RESULTS

In the sequel, the main design results will be presented. To

stabilize the system (4), we introduce the following control

law:

u(t) = (K + ∆K)x(t) + µ(t)Ix(t), (5)

where I ∈ <m×n is a matrix whose elements are all ones,

µ(t) ∈ < is adapted such that closed-loop asymptotic stabi-

lization is guaranteed, K ∈ <m×n is a state feedback gain,

and ∆K(t) ∈ <m×n is the time varying uncertainty of the

state feedback gain that satisfies the following assumption.

Assumption 3.1: The uncertainty of the state feedback

gain satisfies the following inequality

||∆K(t)|| ≤ ρ∗, (6)

where ρ∗ is some positive constant.

In this section, resilient delay-dependent stabilization results

are established for the system (4) considering the following

two cases:

1) The uncertainty of the state feedback gain satisfies

Assumption 3.1 such that ρ∗ is assumed to be a known

positive constant.

2) The uncertainty of the state feedback gain satisfies

Assumption 3.1 such that ρ∗ is assumed to be an

unknown positive constant.

A. Adaptive Control when ρ∗ is Known

To stabilize the system (4) when ρ∗ is known, we consider

the control law (5). Let us define θ̃(t) = θ̂(t) − θ∗, where

θ̂(t) is the estimate of θ∗, and θ̃(t) is error between the

estimate and the true value of θ∗. Also, let us define z(t) =
µ(t)x(t), and let the Lyapunov-Krasovskii functional for the

transformed system (4) be selected as:

Va(x)
∆
= V1(x) + V2(x) + V3(x) + V4(x) + V5(x)

+ V6(x) + V7(x) + V8(x) + V9(x), (7)

where

V1(x) = x>(t)Px(t), (8)

V2(x) = r1

∫ 0

−τ

∫

t

t+s

x>(α)A>

o Aox(α)dαds, (9)

V3(x) = r2

∫ 0

−τ

∫ t

t+s−τ

x>(α) A>

d

Ad x(α) dα ds, (10)

V4(x) = r3

∫ 0

−τ

∫ t

t+s

x>(α) K>B>

o

BoK x(α) dα ds, (11)

V5(x) = r4

∫ 0

−τ

∫

t

t+s

x>(α) ∆K>(t)B>

o

Bo∆K(t) x(α) dα ds, (12)

V6(x) = r5

∫ 0

−τ

∫ t

t+s

z>(α) I>B>

o

BoI z(α) dα ds, (13)
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V7(x) = r6

∫ 0

−τ

∫

t

t+s

E>(x, α) E(x, α) dα ds, (14)

V8(x) = µ2(t), (15)

V9(x) = (1 + θ∗)
[

θ̃(t)
]2

, (16)

where r1 > 0, r2 > 0, r3 > 0, r4 > 0, r5 > 0 and r6 > 0
are positive scalars, and P = P> ∈ <n×n > 0. It can be

shown that the time derivative of the Lyapunov-Krasovskii

functional is

V̇a(x) = V̇1(x) + V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x)

+ V̇6(x) + V̇7(x) + V̇8(x) + V̇9(x), (17)

where

V̇1(x) = x>(t)P ẋ(t) + ẋ>(t)Px(t), (18)

V̇2(x) = τr1x
>(t)A>

o Aox(t)

−r1

∫ 0

−τ

x>(t + s)A>

o Aox(t + s)ds, (19)

V̇3(x) = τr2x
>(t)A>

d
Adx(t) − r2

∫ 0

−τ

x>(t + s − τ )

A>

d
Adx(t + s − τ )ds, (20)

V̇4(x) = τr3x
>(t)K>B>

o BoKx(t)

−r3

∫ 0

−τ

x>(t + s)K>B>

o
BoKx(t + s)ds, (21)

V̇5(x) = τr4x
>(t)∆K(t)>B>

o
Bo∆K(t)x(t)

−r4

∫ 0

−τ

x>(t + s)∆K>(t + s)B>

o

Bo∆K(t + s)x(t + s)ds, (22)

V̇6(x) = τr5z
>(t)I>B>

o
BoIz(t)

−r5

∫ 0

−τ

z>(t + s)I>B>

o BoIz(t + s)ds, (23)

V̇7(x) = τr6 E>(x, t) E(x, t)

−r6

∫ 0

−τ

E>(x, t + s) E(x, t + s) ds, (24)

V̇8(x) = 2 µ(t) µ̇(t), (25)

V̇9(x) = 2 (1 + θ∗) θ̃(t)
˙̃
θ(t),

= 2 (1 + θ∗)
[

θ̂(t) − θ∗
]

˙̂
θ(t). (26)

The next Theorem provides the main results for this case.

Theorem 1: Consider system (4). If there exist matrices
0 < X = X> ∈ <n×n, Y ∈ <m×n, Z ∈ <n×n, and scalars
ε1 > 0, ε2 > 0, ε3 > 0, ε4 > ε, ε5 > ε and ε6 > ε
(where ε is an arbitrary small positive constant) such that
the following LMI

















AodX + XAod

+BoY + Y>B>
o

+τ+ (ε1 + ε2

+ε3 + ε4 + ε5

+ε6) AdA>

d

τ+XA>
o τ+XA>

d
τ+Z

• −τ+ε1I 0 0
• • −τ+ε2I 0
• • • −τ+ε3I

















< 0,

(27)

has a feasible solution, and K = YX−1, and µ(t) is

adapted subject to the adaptive laws

µ̇(t) = Proj
{

α1 sgn (µ(t)) ||x(t)||2 + α2 µ(t) ||x(t)||2

+α3 sgn (µ(t)) θ̂(t) ||x(t)||2, µ(t)
}

, (28)

˙̂
θ(t) = γ ||x(t)||2, (29)

where Proj{·} [30] is applied to ensure that |µ(t)| ≥ 1 as

follows

µ(t) =







µ(t) if |µ(t)| ≥ 1
1 if 0 ≤ µ(t) < 1
−1 if −1 < µ(t) < 0,

and the adaptive law parameters are selected such that

α1 < −
[

||PBoI||+ τ+r4 (ρ∗)
2
||B>

o Bo||+ ρ∗||PBo||
]

,

α2 < −1
2
τ+r5||I

>B>
o BoI||, α3 < −γ, γ > 1

2
τ+r6 and

θ̂(0) > 1, then the control law (5) will guarantee asymptotic

stabilization of the closed-loop system.

Proof: As shown in (17), the time derivative of Va(x)
is

V̇a(x) = V̇1(x) + V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x)

+ V̇6(x) + V̇7(x) + V̇8(x) + V̇9(x),

= x>(t)P ẋ(t) + ẋ>(t)Px(t) + V̇2(x)

+ V̇3(x) + V̇4(x) + V̇5(x) + V̇6(x)

+ V̇7(x) + V̇8(x) + V̇9(x). (30)

Using the system equation defined in (4) and the control

law (5), we have

V̇a(x) = x>(t)
[

PAod + A>

odP + PBoK

+K>B>

o P
]

x(t)

−2x>(t)PAd

∫ 0

−τ

Aox(t + s)ds

−2x>(t)PAd

∫ 0

−τ

Adx(t − τ + s)ds

−2x>(t)PAd

∫ 0

−τ

BoKx(t + s)ds

−2x>(t)PAd

∫ 0

−τ

Bo∆K(t + s)x(t + s)ds

−2x>(t)PAd

∫ 0

−τ

µ(t + s)BoIx(t + s)ds

−2x>(t)PAd

∫ 0

−τ

E(x, t + s)ds

+2x>(t)PBo∆K(t)x(t)

+2µ(t)x>(t)PBoIx(t) + 2x>(t)PE(x, t)

+ V̇2(x) + V̇3(x) + V̇4(x) + V̇5(x)

+ V̇6(x) + V̇7(x) + V̇8(x) + V̇9(x). (31)
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By applying Fact 1, we have

−2x>(t)PAd

∫ 0

−τ

Aox(t + s)ds

≤ r−1
1

∫ 0

−τ

x>(s)PAdA
>

d Px(s)ds

+r1

∫ 0

−τ

x>(t + s)A>

o
Aox(t + s)ds

≤ τ+r−1
1 x>(t)PAdA>

d
Px(t)

+r1

∫ 0

−τ

x>(t + s)A>

o Aox(t + s)ds, (32)

where r1 is a positive scalar. Similarly, if r2, r3 and r4 are

positive scalars, we have

−2x>(t)PAd

∫ 0

−τ

Adx(t − τ + s)ds

≤ τ+r−1
2 x>(t)PAdA>

d Px(t)

+r2

∫ 0

−τ

x>(t − τ + s)A>

d Adx(t − τ + s)ds, (33)

−2x>(t)PAd

∫ 0

−τ

BoKx(t + s)ds

≤ τ+r−1
3 x>(t)PAdA

>

d Px(t)

+r3

∫ 0

−τ

x>(t + s)K>B>

o
BoKx(t + s)ds, (34)

and

−2x>(t)PAd

∫ 0

−τ

Bo∆K(t + s)x(t + s)ds

≤ τ+r−1
4 x>(t)PAdA

>

d Px(t) + r4

∫ 0

−τ

x>(t + s)

∆K>(t + s)B>

o Bo∆K(t + s)x(t + s)ds. (35)

Now, let r5 be a positive scalar, then using Fact 1 we have

−2x>(t)PAd

∫ 0

−τ

µ(t + s)BoIx(t + s)ds

= −2x>(t)PAd

∫ 0

−τ

BoIz(t + s)ds

≤ τ+r−1
5 x>(t)PAdA>

d Px(t)

+r5

∫ 0

−τ

z>(t + s)I>B>

o BoIz(t + s)ds. (36)

Also, if r6 is a positive scalar, then using Fact 1 we have

−2x>(t)PAd

∫ 0

−τ

E(x, t + s)ds

≤ τ+r−1
6 x>(t)PAdA>

d Px(t)

+r6

∫ 0

−τ

E>(x, t + s)E(x, t + s)ds. (37)

Using Assumptions 2.1 and 3.1, it can be shown that

2µ(t)x>(t)PBoIx(t) ≤ 2||PBoI|| |µ(t)| ||x(t)||2, (38)

2x>(t)PBo∆K(t)x(t) ≤ 2 ρ∗ ||PBo|| ||x(t)||2, (39)

and

2x>(t)PE(x(t)) ≤ 2 ||P || θ∗ ||x(t)||2. (40)

Using equations (32)- (40) and equations (18)- (26) (with the

fact that 0 ≤ τ ≤ τ+) in (31), we have

V̇a(x) ≤ x>(t)Ξx(t)

+τ+r4x
>(t)∆K>(t)B>

o
Bo∆K(t)x(t)

+τ+r5z
>(t)I>B>

o BoIz(t)

+τ+r6E
>(x, t)E(x, t) + 2ρ∗||PBo|| ||x(t)||2

+2||PBoI|| |µ(t)| ||x(t)||2

+2θ∗||P || ||x(t)||2 + 2 µ(t) µ̇(t)

+2 (1 + θ∗)
[

θ̂(t) − θ∗
]

˙̂
θ(t), (41)

where

Ξ = PAod + A>

odP + PBoK + K>B>

o P

+τ+
(

r−1
1 + r−1

2 + r−1
3 + r−1

4 + r−1
5 + r−1

6

)

PAdA
>

d P

+τ+r1A
>

o Ao + τ+r2A
>

d Ad + τ+r3K
>B>

o BoK. (42)

To guarantee that x>(t)Ξx(t) < 0, it sufficient to show that

Ξ < 0. Let us introduce the linearizing terms, X = P−1,

Y = KX , and Z = X>K>B>
o . Also, let ε1 = r−1

1 , ε2 =
r−1
2 , ε3 = r−1

3 , ε4 = r−1
4 , ε5 = r−1

5 and ε6 = r−1
6 . Now, by

pre-multiplying and post-multiplying Ξ by X , we have

XΞX = AodX + XA>

od + BoY + Y>B>

o

+τ+ (ε1 + ε2 + ε3 + ε4 + ε5 + ε6) AdA
>

d

+τ+ε−1
1 XA>

o AoX + τ+ε−1
2 XA>

d AdX

+τ+ε−1
3 ZZ>. (43)

By invoking the Schur complement of (43), we arrive at the

LMI (27) which guarantees that Ξ < 0, and consequently

x>(t)Ξx(t) < 0. Now, we need to show that the remaining

terms of (41) are negative definite. Using the definition of

z(t) = µ(t)x(t), we know that

τ+r5z
>(t)I>B>

o BoIz(t)

≤ τ+r5 ||I>B>

o
BoI|| µ

2(t) ||x(t)||2. (44)

Also, using Assumptions 2.1 and 3.1 , we have

τ+r6E
>(x, t)E(x, t) ≤ τ+r6 (θ∗)

2
||x(t)||2, (45)

and

τ+r4x
>(t)∆K>(t)B>

o Bo∆K(t)x(t)

≤ τ+r4 (ρ∗)
2
||B>

o Bo|| ||x(t)||2. (46)

Now, using (44)- (46), the adaptive laws (28)- (29), and the
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fact that |µ(t)| ≥ 1, equation (41) becomes

V̇a(x) ≤ x>(t)Ξx(t) + τ+r4 (ρ∗)
2
||B>

o Bo|| ||x(t)||2

+τ+r5 ||I>B>

o
BoI|| µ

2(t) ||x(t)||2

+τ+r6 (θ∗)
2
||x(t)||2 + 2ρ∗||PBo|| ||x(t)||2

+2||PBoI|| |µ(t)| ||x(t)||2

+2θ∗||P || ||x(t)||2 + 2α1 |µ(t)| ||x(t)||2

+2α2 µ2(t) ||x(t)||2

+2α3 |µ(t)| θ̂(t) ||x(t)||2

+2γ |µ(t)| θ̂(t) ||x(t)||2 − 2γ θ∗ ||x(t)||2

+2γ θ∗ θ̂(t) ||x(t)||2 − 2γ (θ∗)2 ||x(t)||2.(47)

It can be shown that V̇a(x) < 0 if the adaptive law param-

eters α1, α2, and α3 are selected as stated in Theorem 1,

and γ is selected to satisfy the following two conditions:

γ > 1
2
τ+r6 and ||P || − γ + γθ̂(t) < 0. Hence, we need to

select γ such that

γ > max

{

1

2
τ+r6 ,

||P ||

1 − θ̂(t)

}

. (48)

It is clear that when θ̂(t) > 1, we only need to ensure that

γ > 1
2
τ+r6. Note that from equation (29), θ̂(t) > 1 can be

easily ensured by selecting θ̂(0) > 1 and γ > 1
2
τ+r6

to guarantee that θ̂(t) in equation (29) is monotonically

increasing. Hence, we guarantee that

V̇a(x) ≤ x>(t)Ξx(t), (49)

where Ξ < 0. Hence, V̇a(x) < 0 which guarantees asymp-

totic stabilization of the closed-loop system.

B. Adaptive Control when ρ∗ is Unknown

To stabilize the system (4) when ρ∗ is unknown, the

control law (5) is considered. Before we present the stability

results for this case, let us define ρ̃(t) = ρ̂(t)−ρ∗ , where ρ̂(t)
is the estimate of ρ∗, and ρ̃(t) is error between the estimate

and the true value of ρ∗. Here, the following Lyapunov-

Krasovskii functional is used

Vb(x) = Va(x) + V10(x), (50)

where Va(x) is defined in equations (7), and V10(x) is

defined as

V10(x) = (1 + ρ∗) [ρ̃(t)]
2
, (51)

where its time derivative is

V̇10(x) = 2 (1 + ρ∗) ρ̃(t) ˙̃ρ(t). (52)

Since ρ̃(t) = ρ̂(t) − ρ∗, then ˙̃ρ(t) = ˙̂ρ(t). Hence, equa-

tion (52) becomes

V̇10(x) = 2 (1 + ρ∗) [ρ̂(t) − ρ∗] ˙̂ρ(t). (53)

The next Theorem provides the main results for this case.

Theorem 2: Consider system (4). If there exist matrices

0 < X = X> ∈ <n×n, Y ∈ <m×n, Z ∈ <n×n, and scalars

ε1 > 0, ε2 > 0, ε3 > 0, ε4 > ε, ε5 > ε and ε6 > ε

(where ε is an arbitrary small positive constant) such that

the LMI (27) has a feasible solution, and K = YX−1, and

µ(t) is adapted subject to the adaptive laws

µ̇(t) = Proj
{

β1 sgn (µ(t)) ||x(t)||2 + β2 µ(t) ||x(t)||2

+β3 sgn (µ(t)) θ̂(t) ||x(t)||2

+β4 sgn (µ(t)) ρ̂(t) ||x(t)||2, µ(t)
}

, (54)

˙̂
θ(t) = σ ||x(t)||2, (55)

˙̂ρ(t) = ς ||x(t)||2, (56)

where Proj{·} [30] is applied to ensure that |µ(t)| ≥ 1 as

follows

µ(t) =







µ(t) if |µ(t)| ≥ 1
1 if 0 ≤ µ(t) < 1
−1 if −1 < µ(t) < 0,

and the adaptive law parameters are selected such that

β1 < − [||PBoI||], β2 < −1
2
τ+r5||I

>B>
o BoI||, β3 < −σ,

β4 < −ς, σ > 1
2
τ+r6, ς > 1

2
τ+r4||B

>
o Bo||, θ̂(0) > 1 and

ρ̂(0) > 1, then the control law (5) will guarantee asymptotic

stabilization of the closed-loop system.

Proof: The time derivative of Vb(x) is

V̇b(x) = V̇a(x) + V̇10(x). (57)

Following the steps used in the proof of Theorem 1 and using

equation (53), it can be shown that

V̇b(x) ≤ x>(t)Ξx(t)

+τ+r4x
>(t)∆K>(t)B>

o Bo∆K(t)x(t)

+τ+r5z
>(t)I>B>

o BoIz(t)

+τ+r6E
>(x, t)E(x, t) + 2ρ∗||PBo|| ||x(t)||2

+2||PBoI|| |µ(t)| ||x(t)||2

+2θ∗||P || ||x(t)||2 + 2 µ(t) µ̇(t)

+2 (1 + θ∗)
[

θ̂(t) − θ∗
]

˙̂
θ(t)

+2 (1 + ρ∗) [ρ̂(t) − ρ∗] ˙̂ρ(t), (58)

where Ξ is defined in equation (42). Using the linearization

procedure and invoking the Schur complement (as in the

proof of Theorem 1), it can be shown that Ξ is guaranteed

to be negative definite whenever the LMI (27) has a feasible

solution. Using the adaptive laws (54)- (56) in (58) and the

fact that |µ(t)| ≥ 1, we get

V̇b(x) ≤ x>(t)Ξx(t) + τ+r4 (ρ∗)
2
||B>

o Bo|| ||x(t)||2

+τ+r5 ||I>B>

o BoI|| µ
2(t) ||x(t)||2

+τ+r6 (θ∗)2 ||x(t)||2 + 2ρ∗||PBo|| ||x(t)||2

+2||PBoI|| |µ(t)| ||x(t)||2

+2θ∗||P || ||x(t)||2 + 2β1 |µ(t)| ||x(t)||2

+2β2 µ2(t) ||x(t)||2

+2β3 |µ(t)| θ̂(t) ||x(t)||2

+2β4 |µ(t)| ρ̂(t) ||x(t)||2

+2σ |µ(t)| θ̂(t) ||x(t)||2 − 2σ θ∗ ||x(t)||2

+2σ θ∗ θ̂(t) ||x(t)||2 − 2σ (θ∗)
2
||x(t)||2
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+2ς |µ(t)| ρ̂(t) ||x(t)||2 − 2ς ρ∗ ||x(t)||2

+2ς ρ∗ ρ̂(t) ||x(t)||2 − 2ς (ρ∗)
2
||x(t)||2.(59)

Arranging terms of equation (59), it can be shown that

V̇b(x) < 0 if the adaptive law parameters β1, β2, β3, and

β4 are selected as stated in Theorem 2, and σ and ς are

selected to satisfy the following conditions: σ > 1
2
τ+r6,

2||P ||−σ +σθ̂(t) < 0, ς > 1
2
τ+r4||B

>
o Bo||, and ||PBo||−

ς + ςρ̂(t) < 0. Hence, we need to select σ and ς such that

σ > max

{

1

2
τ+r6 ,

||P ||

1 − θ̂(t)

}

, (60)

ς > max

{

1

2
τ+r4||B

>

o Bo|| ,
||PBo||

1 − ρ̂(t)

}

. (61)

It is clear that when θ̂(t) > 1 and ρ̂(t) > 1, we only need

to ensure that σ > 1

2
τ+r6 and ς > 1

2
τ+r4||B

>
o Bo||. Note

that from equations (55)- (56), θ̂(t) > 1 and ρ̂(t) > 1 can

be easily ensured by selecting θ̂(0) > 1 and ρ̂(0) > 1 and σ

and ς as stated in Theorem 2 to guarantee that θ̂(t) and ρ̂(t)
are monotonically increasing. Hence, we guarantee that

V̇b(x) ≤ x>(t) Ξ x(t), (62)

where Ξ < 0. Hence, V̇b(x) < 0 which guarantees asymp-

totic stabilization of the closed-loop system.

IV. CONCLUSION

In this paper, we investigated the problem of designing

resilient delay-dependent adaptive controllers for a class of

uncertain time-delay systems with time-varying delays and

a nonlinear perturbation when perturbations also appear in

the state feedback gain of the controller. It is assumed that

the nonlinear perturbation is bounded by a weighted norm of

the state vector such that the upper bound of the weight is

unknown. It is also assumed that the norm of the uncertainty

of the state feedback gain is bounded by a positive constant.

For the two cases when this positive constant is known and

unknown, adaptive control schemes have been developed to

guarantee asymptotic closed-loop stabilization results.
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