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Abstract— We study the stability of multi-agent system
(MAS) formations with delayed exchange of information be-
tween the agents. The agents are described by second order
systems. They communicate via a symmetric connected com-
munication topology with constant, heterogeneous, symmetric
delays between any two neighboring agents. We consider two
different tasks for the MAS: rendezvous, where all agents meet
at an arbitrary point, and flocking, where all agents reach a
given formation and move in a predefined direction. Therefore,
we propose a decentralized control algorithm with position cou-
pling gains k ji. We prove that the MAS achieves rendezvous for
any constant delay if the communication topology is connected
and the coupling gain is sufficiently small. For larger gains,
rendezvous and flocking are delay-dependent, i.e., they are
reached for any delay smaller than a bound which depends
on k ji. Thereby, the controllers can be tuned in a totally
decentralized fashion, i.e., only based on the communication
delays to their neighbors and not considering the delays in the
rest of the network. For the analysis, we use both frequency and
time domain methods to prove delay-independent and delay-
dependent rendezvous and flocking, respectively.

Index Terms— Multi-agent systems, rendezvous, flocking,
communication delay.

I. INTRODUCTION

The analysis and control of large groups of autonomous

systems is one of the big challenges of modern engineering

science. Examples of networked systems appear in a diverse

range of research areas, such as biochemical reaction net-

works, animal flocking behavior, internet congestion control,

and coordination of robots, to name just a few. Accordingly,

scientists from physics, biology, and engineering are trying

to understand the collective group behavior of these systems.

In this work, we propose control laws for second order

MAS with delayed communications and develop decen-

tralized conditions that guarantee rendezvous and flocking,

respectively. Rendezvous refers to agents meeting at an

arbitrary point in space, and flocking describes MAS that

reach a given formation and move in a certain direction.

In both cases, we assume that the communication graph is

undirected and connected and that the communication delays

between any two neighboring agents are constant, heteroge-

neous, and symmetric. Both control laws contain position
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gains k ji as design parameters. Adapting the results from

[1], we show first that rendezvous is achieved independent

of delay for sufficiently small gains k ji. Then, we extend

the set of possible controller parameters k ji by introducing

delay-dependent rendezvous conditions, which is the main

contribution of this paper. This result is then extended to

delay-dependent flocking conditions. The controllers can be

tuned in a totally decentralized fashion, i.e., only based on the

communication delays to their neighbors and not considering

the delays in the rest of the network. To prove our results, we

apply both frequency domain and time domain arguments.

In particular, this is the first work on higher order large

scale MAS with heterogeneous communication delays that

uses time-domain arguments and obtains delay-dependent

conditions on the group behavior.

In recent years, multi-agent systems (MAS) with first

order subsystem dynamics have been studied extensively. An

overview is provided for example in [2], [3]. However, many

applications exhibit higher order subsystems. If we consider

for example point masses with actuators applying forces to

the subunits, then Newton’s second law requires at least a

second order differential equation for the position of the

subunits. Hence, second order subsystems have attracted an

increasing attention. Typical tasks for second order MAS are

rendezvous, e.g., [4], [5], and flocking, e.g., [6]–[10]. Higher

order subsystems and more complex group tasks have been

investigated in [11]–[19] to cite a few.

It is remarkable that there are very few results for higher

order MAS with delays in the communication. For consensus

problems, i.e., if first order subsystems have to agree on

a certain value, the influence of communication delays has

been studied thoroughly, see for example [20]–[27]. How-

ever, for large scale MAS of higher order subsystems, only

high gain arguments have been used so far, e.g., [1], [28].

Second order MAS with delays are also used to model car

following problems where delays turned out to be crucial

to describe certain phenomena, see for example [29]–[31].

Yet, in these contributions, the drivers only “communicate”

with one or two cars in front of them; yet, more complex

communication topologies are not studied.

The paper is organized as follows: We first review different

stability arguments for functional differential equations and

algebraic graph theory in Section II. The problem statement

is given in Section III. Then, we present delay-independent

rendezvous in Section IV, delay-dependent rendezvous in

Section V and delay-dependent flocking in Section VI. The

results are illustrated in an example in Section VII before

the paper is concluded in Section VIII.
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II. PRELIMINARIES

Systems with time-delays, like MAS with delayed com-

munication, can be represented by retarded functional differ-

ential equations (RFDE). In this section, we provide a review

on stability arguments for RFDEs as well as some basics on

algebraic graph theory.

A. Stability of Functional Differential Equations

This subsection gives a brief summary of stability results

for functional differential equations. The interested reader is

referred to [32], [33] for details.

Let R
n denote the n-dimensional Euclidean space with the

standard norm | · |. Let C ([a,b],Rn) denote the Banach space

of continuous functions mapping the interval [a,b] ⊂ R into

R
n with the topology of uniform convergence. For easier

notation, we drop the argument of C if a = −T and b =
0 for a given T > 0, i.e., C = C ([−T ,0],Rn). The norm

on C is defined as ‖ϕ‖ = sup−T ≤s≤0 |ϕ(s)|. Let ρ ≥ 0 and

x ∈ C ([−T ,ρ ],Rn), then for any t ∈ [0,ρ ], define a segment

xt ∈ C of x such that xt(s) = x(t + s),s ∈ [−T ,0].
Let Ω be a subset of C , f : Ω → R

n a given function, and

‘˙’ represent the right-hand Dini derivative. Then, we call

ẋ(t) = f (xt ) (1)

an autonomous Retarded Functional Differential Equation

(RFDE) on Ω. Given ϕ ∈ Ω and ρ > 0, a function x(ϕ) ∈
C ([−T ,ρ ],Rn) is said to be a solution to (1) with initial

condition ϕ , if xt(ϕ) ∈ Ω, x(ϕ)(t) satisfies (1) for t ∈ [0,ρ),
and x0(ϕ) = ϕ . Such a solution exists and is unique if f is

continuous and f (ϕ) is Lipschitzian in each compact set in

Ω. Note that x(ϕ)(t) ∈ R
n, whereas xt(ϕ) ∈ C . We denote

the value of the segment xt(ϕ) at time s where s ∈ [−T ,0]
as xt(ϕ)(s) = x(ϕ)(t + s). For easier notation, we often drop

the initial condition ϕ of x and xt .

An element φ ∈ C is called a steady-state or equilibrium

of (1) if xt(φ) = φ for all t ≥ 0. Without loss of generality

we assume that φ = 0 is an equilibrium of (1). The stability

of (1) around such a steady-state is defined in a way similar

to the stability of nonlinear Ordinary Differential Equations

(ODE) using an ε-δ argument, see [32].

The stability of RFDEs can be analyzed in the time-

domain using Lyapunov-type arguments. Since the state in

RFDEs is a segment of trajectory xt , the corresponding

Lyapunov function is a functional, the so-called Lyapunov-

Krasovskii functional V (xt). The derivative of V , V̇ (xt), is

the right-hand derivative along the solutions of (1).

Theorem 1 ([32]): Suppose V : C → R is continuous and

there exist nonnegative functions u,v such that u(s) → ∞ as

s → ∞ and

u(‖φ(0)‖) ≤V (φ), V̇ (φ) ≤−v(‖φ(0)‖).
Then the trivial solution x(t) = 0 of (1) is stable and every

solution is bounded. If, in addition, v(s) > 0 for s > 0, then

every solution approaches zero as t → ∞.

In this work, we only consider autonomous RFDEs where

f is completely continuous. In this case, we can conclude the

attractivity of a positively invariant set using a result similar

to LaSalle’s theorem for Ordinary Differential Equations.

Definition 1 ([32]): We say V : C → R is a Lyapunov

functional on a set G in C relative to (1) if V is continuous

on Ḡ (the closure of G) and V̇ ≤ 0 on G. Define

S = {φ ∈ Ḡ : V̇ (φ) = 0}
M = Largest set in S that is invariant with respect to (1).

Then, we have the following theorem:

Theorem 2 ([32]): If V is a Lyapunov functional on G and

xt(φ) is a bounded solution of (1) that remains in G, then

xt(φ) tends to M as t → ∞.

B. Algebraic Graph Theory

The topology of the communication network between the

agents is represented by a graph. A graph G = (V ,E )
consists of a set of vertices (nodes) V = {vi}, i ∈ I =
{1, . . . ,N}, which represent the agents, and a set of edges

(links) E ⊆ V × V , which represent the communication

channels between the agents. If vi,v j ∈ V and ei j = (vi,v j)∈
E , then there is an edge (a directed arrow) from node vi to

node v j, i.e., agent j can receive data from agent i. In this

paper, we assume that the graph G is undirected, i.e., ei j ∈ E

if and only if e ji ∈ E . We also assume that the network

topology does not contain self-loops, i.e., eii /∈ E .

The graph adjacency matrix A = [ai j], A ∈ R
N×N , is such

that ai j = 1 if ei j ∈ E and ai j = 0 if ei j /∈ E . If ei j ∈ E ,

then agents i and j are neighbors. The number of neighbors

of agent i, also called the valence or degree of vertex vi, is

denoted by ni. The diagonal valency matrix is N = diag(ni).
A path from vi to v j is a sequence of edges from E that takes

the following form (vi,vi1), (vi1 ,vi2), . . . ,(vip ,v j). If there

exists a path between two vertices, then these vertices are

connected. A graph G is connected, if any two vertices of

G are connected. More details on algebraic graph theory can

be found for example in [34].

III. PROBLEM STATEMENT

In this paper, we consider two different control problems.

First, we want to design a controller such that the MAS

achieves rendezvous of the agents, i.e., all agents eventually

meet at an arbitrary point. The second controller has to

achieve flocking of the agents, i.e., all agents asymptotically

converge to a formation and move in a certain direction,

preserving this formation. Thereby, the desired formation is

given by the distance matrix D = DT = [d ji]∈R
N×N , i.e., the

desired positions of the agents is ri(t)− r j(t) = d ji where

ri(t) and r j(t) are the position of agent i and j at time t.

Clearly, the matrix D has to be assigned such that the desired

distances are consistent. Here, we only consider flocking with

a given reference speed v∗ ∈ R.

If the input of the agents is an external force, single

integrators cannot represent the agents’ speed and position

dynamics properly. Therefore, we consider a MAS consisting

of N subunits described by second order systems with
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dynamics

ṙi(t) = vi(t)

v̇i(t) = −cvi(t)+ ui(t),
(2)

i ∈ I , where ri ∈ R is the position, vi ∈ R is the speed

of agent i, −cvi(t) is a friction drag term, and ui(t) is an

external force considered as input; all agents are assumed

to be identical. For simplicity, we discuss only dynamics in

a 1D space. Yet, our results can also be applied to 2D and

3D problems if the dynamics of the agents are decoupled

in all coordinates. The communication network between the

agents is given by a communication graph with adjacency

matrix A = [a ji]. The communication delay from agent j to

agent i is τ ji ∈ R+. We assume symmetric communication,

i.e., a ji = ai j and τ ji = τi j. The control tasks are particularly

difficult because of the communication delays. Due to these

delays, only out-dated position data of the neighboring agents

can be used for control.

IV. DELAY-INDEPENDENT RENDEZVOUS OF LARGE

SCALE MAS

First, we design a controller that achieves rendezvous

independent of delay, i.e., the rendezvous is asymptotically

attracting for any τ ji. The proposed control of agent i is

ui(t) = −
N

∑
j=1

ki

ni

a ji (ri(t)− r j(t − τ ji)) (3)

where ki is the position gain of agent i, A = [a ji] is the

adjacency matrix of the communication network, ni is the

degree of agent i, and τ ji is the communication delay between

agent j and agent i. For convenience, we introduce the

normalized adjacency matrix Ã = [ã ji] = N −1A, where N

is the diagonal valency matrix, see Section II-B. Note that Ã

is a stochastic matrix, i.e., the row and column sums equal

one. Moreover, we know that that the spectral radius of Ã is

ρ(Ã) = 1.

Theorem 3: Given a MAS consisting of N agents with

dynamics (2) and control (3), where the communication

network is connected and symmetric, i.e., a ji = ai j and

τ ji = τi j, then rendezvous is asymptotically reached, i.e.,

ri(t)− r j(t) → 0 and vi → 0 for t → ∞ and all i, j ∈ I ,

if ki < c2

2
for all i ∈ I .

Proof: The proof follows immediately from [1] and is

presented here for completeness. The closed loop dynamics

of agent i is

ṙi(t) = vi(t)

v̇i(t) = −cvi(t)− kiri(t)+
N

∑
j=1

kiã jir j(t − τ ji).

The open loop transfer function Gi(s) of agent i is

Gi(s) =
ki

s2 + cs+ ki

. (4)

The feedback loop contains the communication topology Ã

and delays τ ji. Clearly, the feedback loop has gain 1 because

ρ(Ã) = 1 and following the arguments in [1], Gi has to satisfy

|Gi( jω)| < 1 for all ω 6= 0 and (5)

lim
ω→0

|Gi( jω)| = 1. (6)

Clearly, Gi(0) = 1 is satisfied for all i and we have
∣

∣

∣

∣

ki

ki −ω2 + jcω

∣

∣

∣

∣

< 1 ⇔ ki

c2
<

1

2
, ∀i ∈ I ,

i.e., rendezvous is reached for any τ ji if ki < c2

2
for all i.

Note that the controller design is totally decentralized

because each agent can choose its ki independently as long

as it satisfies ki < c2

2
. Clearly, this rendezvous condition is

independent of the delays τ ji.

V. DELAY-DEPENDENT RENDEZVOUS OF LARGE SCALE

MAS

In the previous section, we derived an upper bound for

the position gain ki such that the MAS reaches rendezvous

for any delays τ ji. However, we often know that the delays

τ ji are bounded by some value τ ji, which might be quite

small. In this case, we expect that rendezvous is also reached

for some gains ki ≥ c2

2
. In this section, we provide a far

less restrictive delay-dependent rendezvous condition for

MAS (2). Therefore, we propose the following controller for

agent i

ui(t) = −
N

∑
j=1

k ji

ni

a ji (ri(t)− r j(t − τ ji)) (7)

where k ji is the position gain of agent i when comparing

his position with the position of agent j, A = [a ji] is the

adjacency matrix of the communication network, ni is the

degree of agent i, and τ ji is the communication delay between

agent j and agent i. The rendezvous property of (2) with

controller (7) is stated in the following theorem:

Theorem 4: Given a MAS consisting of N agents with

dynamics (2) and control (7), where the communication

network is connected and symmetric, i.e., a ji = ai j and

τ ji = τi j, then rendezvous is asymptotically reached, i.e.,

ri(t)− r j(t) → 0 and vi → 0 for t → ∞ and all i, j ∈ I ,

if k ji = ki j > 0 and c > k jiτ ji for all i, j ∈ I .

Proof: First, we reformulate the control (7) using

xi(t − τ) = xi(t)−
∫ 0

−τ
ẋi(t + η)dη . (8)

Moreover, we introduce r ji(t) = ri(t)− r j(t). With this, the

closed loop system is

ṙi(t) = vi(t)

v̇i(t) = −cvi(t)−
N

∑
j=1

k ji

ni

a ji

(

r ji(t)+
∫ 0

−τ ji

v j(t + η)dη

)

,

where ṙ ji(t) = vi(t)− v j(t). In order to prove rendezvous,

we have to show that r ji(t) → 0 and vi(t) → 0 for t → ∞.

Therefore, consider the Lyapunov-Krasovskii candidate V =
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V1 +V2 +V3 with

V1 =
1

2

N

∑
i=1

nicv2
i (t), (9)

V2 =
1

4

N

∑
i=1

N

∑
j=1

k jia jic(r ji(t))
2, (10)

V3 =
1

2

N

∑
i=1

N

∑
j=1

∫ 0

−τ ji

k2
jia jiτ ji

∫ 0

η
v2

i (t + ξ )dξ dη . (11)

Differentiating along the solutions of the MAS, we get with

k ji = ki j

V̇1 = −
N

∑
i=1

nic
2v2

i (t)−
N

∑
i=1

N

∑
j=1

k jia jicvi(t)

×
(

r ji(t)+

∫ 0

−τ ji

v j(t + η)dη

)

,

V̇2 =
N

∑
i=1

N

∑
j=1

k jia jicvi(t)r ji(t),

V̇3 =
1

2

N

∑
i=1

N

∑
j=1

∫ 0

−τ ji

k2
jia jiτ ji

(

v2
i (t)− v2

i (t + η)
)

dη .

and therefore

V̇ = −
N

∑
i=1

nic
2v2

i (t)−
N

∑
i=1

N

∑
j=1

k jia jicvi(t)

∫ 0

−τ ji

v j(t + η)dη

+
1

2

N

∑
i=1

N

∑
j=1

∫ 0

−τ ji

a jik
2
jiτ ji

(

v2
i (t)− v2

i (t + η)
)

dη

= −
N

∑
i=1

N

∑
j=1

a jic
2v2

i (t)+
1

2

N

∑
i=1

N

∑
j=1

a jik
2
jiτ

2
jiv

2
i (t)

−
N

∑
i=1

N

∑
j=1

k jia jicvi(t)

∫ 0

−τ ji

v j(t + η)dη

− 1

2

N

∑
i=1

N

∑
j=1

∫ 0

−τ ji

a jik
2
jiτ jiv

2
i (t + η)dη

= −1

2

N

∑
i=1

N

∑
j=1

a ji

(

(

c2 − τ2
jik

2
ji

)

v2
i (t)

+

∫ 0

−τ ji

c2

τ ji

v2
i (t)+ 2k jicvi(t)v j(t + η)

+k2
jiτ jiv

2
i (t + η)dη

)

= −1

2

N

∑
i=1

N

∑
j=1

a ji(c
2 − τ2

jik
2
ji)v

2
i (t)

− 1

2

N

∑
i=1

N

∑
j=1

∫ 0

−τ ji

a ji

(

c
√

τ ji

vi(t)+ k ji
√

τ jiv j(t + η)

)2

dη .

Clearly, we have V (t) > 0 if r ji(t) 6= 0 or vi(t) 6= 0 for any

i, j ∈ I . Moreover, V̇ ≤ 0 if c > k jiτ ji > 0 for all i, j such

that e ji ∈ E . Since the graph is connected, we conclude

that all solutions xt of the MAS that start in G = {xt ∈
C | V (xt) ≤ c} for any c > 0 remain in G for t ≥ 0. Going

back to Definition 1, we see that V is continuous on G

and V̇ ≤ 0 on G. The set S contains all solutions where

all agents stop, i.e., vt(s) = 0 for any s ∈ [−τ,0] and all

t > 0, where τ = maxi, j∈I τ ji. The maximal invariant set M

in S requires in addition to vt(s) = 0 for any s ∈ [−τ,0] that

r ji(t) = 0, i.e., ri(t) = r j(t), for any t. Hence, the rendezvous

is asymptotically attracting.

If we assume that agent i is able to measure the com-

munication delay τ ji from agent j, then one can tune its

position gain such that 0 < k ji < c
τ ji

. The communication

delay can be measured, for example, if all users time-stamp

their positions messages or using the round trip times τRT T .

Since the communication channel is symmetric, we have

τ ji = τi j = 1
2
τRT T . If the delay τ ji is not known but its upper

bound τ ji ≥ τ ji is known, then the controller gain can be

chosen to be 0 < k ji < c
τ ji

. The condition k ji = ki j can be

satisfied by choosing k ji = α c
τ ji

,α ∈ (0,1), if the delay is

known or by comparing the parameter k ji with the neighbor.

Clearly, the bound of Theorem 4 exceeds the bound of

Theorem 3 for sufficiently large τ ji, as will be illustrated in

an example in Section VII. An important property of Theo-

rem 4 is that the controller can be tuned and implemented in

a totally distributed fashion, i.e., without knowing the size

or configuration of the complete communication network.

VI. DELAY-DEPENDENT FLOCKING OF LARGE SCALE

MAS WITH FIXED REFERENCE SPEED

Finally, we derive a delay-dependent flocking condition

for large scale MAS with communication delays. Flocking

means that all agents converge to a formation and move

in a certain direction, preserving this formation. Here, we

consider flocking with a given reference speed v∗ ∈ R, i.e.,

the direction and the speed where the agents are supposed

to go is predefined and forms part of the controller.

The agents are again given by Equation (2). The desired

formation is given by the distance matrix D = DT = [d ji] ∈
R

N×N , i.e., the desired positions of the agents are ri(t)−
r j(t) = d ji. Assuming that the delays τ ji are known to agent

i, the MAS achieves ri(t) − r j(t) → d ji for t → ∞. The

corresponding controller is

ui(t) = cv∗−
N

∑
j=1

k ji

ni

a ji

(

ri(t)− r j(t − τ ji)−d∗
ji

)

(12)

where c is the damping parameter of (2) and d∗
ji = d ji +

v∗τ ji results from the desired distances d ji, the reference

velocity v∗, and the delays τ ji. The delay-dependent flocking

condition is stated in the following theorem:

Theorem 5: Given a MAS consisting of N agents with

dynamics (2) and control (12), a connected and symmetric

communication network, i.e., a ji = ai j and τ ji = τi j , a refer-

ence speed v∗ ∈R, and a distance matrix D = DT = [d ji], then

flocking is asymptotically reached, i.e., ri(t)−r j(t)→ d ji and

vi → v∗ for t → ∞ and all i, j ∈ I , if k ji = ki j > 0 and

c > k jiτ ji for all i, j ∈ I .

Proof: We use again (8), as well as r ji(t) = ri(t)−
r j(t) and ṽi(t) = vi(t)− v∗ to obtain the closed loop system

dynamics with control (12)

ṙ ji(t) = ṽi(t)− ṽ j(t)
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˙̃vi(t) = −cṽi(t)−
N

∑
j=1

k ji

ni

a ji

(

r ji(t)−d ji +

∫ 0

−τ ji

ṽ j(t + η)dη

)

.

The Lyapunov-Krasovskii candidate is V =V1 +V2 +V3 with

V1 =
1

2

N

∑
i=1

cniṽ
2
i (t), (13)

V2 =
1

4

N

∑
i=1

N

∑
j=1

k jia jic(r ji(t)−d ji)
2, (14)

V3 =
1

2

N

∑
i=1

N

∑
j=1

∫ 0

−τ ji

a jik
2
jiτ ji

∫ 0

η
ṽ2

i (t + ξ )dξ dη . (15)

Similarly as in the proof of Theorem 4, we differentiate along

the solutions of the MAS and get

V̇ = −
N

∑
i=1

N

∑
j=1

a jic
2ṽ2

i (t)+
1

2

N

∑
i=1

N

∑
j=1

a jik
2
jiτ

2
jiṽ

2
i (t)

−
N

∑
i=1

N

∑
j=1

k jia jicṽi(t)
∫ 0

−τ ji

ṽ j(t + η)dη

− 1

2

N

∑
i=1

N

∑
j=1

∫ 0

−τ ji

a jik
2
jiτ jiṽ

2
i (t + η)dη

= −1

2

N

∑
i=1

N

∑
j=1

a ji

(

(c2 − τ2
jik

2
ji)ṽ

2
i (t)

+

∫ 0

−τ ji

(

c
√

τ ji

ṽi(t)+ k ji
√

τ jiṽ j(t + η)

)2

dη

)

.

Again, we have V > 0 if r ji(t) 6= 0 or ṽi(t) 6= 0 for any

i, j ∈ I , and V̇ ≤ 0 if c > k jiτ ji > 0 for all i, j such that

e ji ∈ E . Using the same arguments as in the proof of

Theorem 4, we see that all solutions converge to the set

S, where ṽt(s) = vt(s)− v∗ = 0 for all s ∈ [−τ,0] and all

t > 0. The maximal invariant set M in S requires in addition

that r ji(t) = ri(t)− r j(t) = d ji for any t. Hence, flocking is

asymptotically attracting.

Surprisingly, the controller (12) achieves flocking of the

current states, i.e., ri(t)− r j(t) → d ji, by comparing states

at different points of time, namely, ri(t) and r j(t − τ ji).
This is achieved by introducing the additional term v∗τ ji,

which “predicts” the position of the neighbor. This requires

obviously that the communication delays τ ji are known.

As in the previous section, we emphasize that the algo-

rithm is completely decentralized, meaning that each agent

only needs knowledge of the delays to its neighbors in order

to perform the control task. As before, the identity k ji = ki j

can be achieved by a fixed rule depending on c and τ ji = τi j

or by communicating with each neighbor.

VII. SIMULATION EXAMPLE

We illustrate our results on a simulation example. Consider

a set of four robots with dynamics (2) with c = 1. The

robots exchange information via a communication network

with homogeneous, constant delay τ > 0. The normalized
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Fig. 1. Delay bound of Equation (17) (solid line) and of Theorem 4 (dashed
line) for MAS (2) with c = 1 and control (3) with respect to position gain k.
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(b) Rendezvous with k = 2.

Fig. 2. Simulation result for rendezvous with initial condition ϕ .

adjacency matrix is

Ã =









0 1
3

1
3

1
3

1 0 0 0

1 0 0 0

1 0 0 0









, (16)

i.e., the robots are communicating using a star topology with

agent 1 in the center. Note that the eigenvalues of Ã are

λ1,2(Ã) = ±1 and λ3,4(Ã) = 0. The task for the four robots

is to rendezvous. Therefore, we apply control (3) with ki = k.

First, we are interested in a delay-independent rendezvous.

From Section IV, we know that rendezvous is achieved for

any τ if k < 0.5. For this particular system with homogeneous

delays, we are able to calculate the exact delay-dependent

stability bound using the frequency-sweeping test, see [33]:

τ =















1√
2k−1

(

π − arctan
(√

2k−1
1−k

))

for k < 1,

π
2

for k = 1,
1√

2k−1

(

arctan
(√

2k−1
k−1

))

for k > 1.

(17)

Details are omitted due to lack of space. With Theorem 4,

we obtain k < 1
τ . The resulting stability curves are depicted

in Figure 1. The shaded area indicates delay-independent

stability. The solid curve is the delay bound (17). The dashed

line shows the delay bound from Theorem 4. Note that for

this example, Theorem 4 gives a quite accurate delay bound

for τ̄ ≥ 2.
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In Figure 2, some exemplary simulations results are shown

for the considered system with constant initial condition

ϕ(s) =
[

5 2 −3 0 2 1 −1 −1
]T

, s ∈ [−τ,0], and

communication delay τ = 0.1. Figure 2(a) shows the sim-

ulations for k = 0.5, i.e., if the position gain just reaches

the bound of delay-independent stability. Figure 2(b) shows

the simulations for k = 2. Note that the system is delay-

dependent stable for τ < 10 according to Theorem 4 and

τ < 10.33 according to (17). The simulations for k = 2 show

stronger oscillations but a much shorter rise time; the settling

time is roughly the same for both cases.

Summarizing this example, we see that the delay-

dependent rendezvous conditions derived in this paper is little

conservative and at the same time easy to compute.

VIII. CONCLUSION

We presented delay-dependent rendezvous and flocking

conditions for second order MAS with communication de-

lays. Thereby, we assumed that the communication network

is connected and that the communication delays are constant,

heterogeneous, and symmetric. The virtue of the conditions

is that they are totally decentralized, i.e., each subsystem may

tune its position gain according to a simple rule depending

on the delay to its neighbors. In particular, it is not necessary

to know the delays or a delay bound of the complete

communication network.
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