
A Distributed Randomized Approach for

the PageRank Computation: Part 2

Hideaki Ishii
Department of Computational Intelligence & Systems Science

Tokyo Institute of Technology, Yokohama 226-8502, Japan

ishii@dis.titech.ac.jp

Roberto Tempo
IEIIT-CNR, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

roberto.tempo@polito.it

Abstract— In the search engine of Google, the PageRank
algorithm plays a crucial role in ranking the obtained results.
The algorithm determines the importance of each web page
based on the link structure of the web. In this two-part
paper, we propose a distributed randomized approach for the
PageRank computation, where the pages locally update their
values by communicating with linked pages. This paper is the
second part, and we develop two enhanced distributed schemes
which deal with simultaneous updates and update termination
of the computations, respectively.

Index Terms— Distributed computation, Multi-agent consen-
sus, PageRank algorithm, Randomization, Stochastic matrices

I. INTRODUCTION

To efficiently search the web, it is critical to use search

engines that provide lists of websites matching the users’

needs. At Google, the search results take account of the

rankings made by the so-called PageRank algorithm; see,

e.g., [2], [3], [10]. This algorithm quantifies the importance

and the quality of web pages by utilizing the link structure

of the web. The basic idea is to count the number of pages

that cite a given page under some normalization rules.

As the web today consists of billions of pages, the

computation of the PageRank is a difficult and challenging

task. Currently, this is performed at Google in a centralized

fashion, and it is reported that this computation takes about

a week. However, as the web continues to grow rapidly, it

is clearly necessary to develop more efficient computational

methods [1], [4], [9], [15].

In this two-part paper with [8], we propose a distributed

randomized approach for the PageRank computation; for

recent advances in probabilistic methods in systems and

control, see [12]. The approach has three main features as

follows: First, in principle, each page computes its own

PageRank value locally by communicating with the pages

that are connected by direct links. That is, each page ex-

changes its value with the pages that it links to and those

linked to it. Second, the pages make the decision to initiate

this communication at random times. This means that, in

the implementation, there is neither a fixed order among the

pages nor a centralized agent in the web that determines

the pages to update their values. Third, the amount of

computation required at each page is very mild.

This work was supported in part by the Ministry of Education, Culture,
Sports, Science and Technology, Japan, under Grant-in-Aid for Scientific
Research No. 17760344

As we have discussed in detail in [8], this approach

has been motivated by the current research in multi-agent

consensus problems; among the many recent works, it has

an especially close relation to the stochastic approaches in,

e.g., [5], [11], [13], [14]. At the conceptual level, it is natural

to view the web as a network of agents that can make

their own computation and communicate with neighboring

agents. Also, at the technical level, the two problems share

similarities related to the use of stochastic matrices.
In this second part, we aim at enhancing the flexibility in

the approach especially from the implementation viewpoint.

In particular, we focus on regulating the computation load at

the pages and the communication rate among the pages in the

distributed scheme. We propose two directions for extending

the algorithm in [8] and establish convergence results.
The first scheme allows the random update times to be

determined in a fully distributed way. Each page randomly

updates its PageRank value, and hence simultaneous updates

by multiple pages are possible. In contrast, in the previous

scheme in [8], only one page is allowed to make an update;

this may not be practical for the real web. The probability

to update is given in terms of a new parameter. This scheme

reduces to the original centralized algorithm, if all agents

update all the time, and is consequently its generalization.
In the second scheme, the pages terminate the update

in their PageRank values when they converge to a certain

predetermined level. Once those values are communicated

to the linked pages, for this page, no further computa-

tion/communication is needed. This method is based on [9].
The paper is organized as follows: An overview of the

PageRank problem is given in Section II. In Section III, we

provide the distributed algorithm where multiple pages can

make simultaneous updates. In Section IV, the distributed

scheme with update termination is described. We illustrate

the results through a numerical example in Section V. The

paper is concluded in Section VI.

Notation: For vectors and matrices, inequalities are used

to denote entry-wise inequalities: For X,Y ∈ R
n×m, X ≤

Y implies xij ≤ yij for i = 1, . . . , n and j = 1, . . . , m;

in particular, we say that the matrix X is nonnegative if

X ≥ 0 and positive if X > 0. A probability vector is a

nonnegative vector v ∈ R
n such that

∑n

i=1 vi = 1. Unless

otherwise specified, by a stochastic matrix, we refer to a

column-stochastic matrix, i.e., a nonnegative matrix X ∈
R

n×n with the property that
∑n

i=1 xij = 1 for j = 1, . . . , n.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeC12.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 3529

Let 1 ∈ R
n be the vector with all entries equal to 1 as

1 := [1 · · · 1]T . Similarly, S ∈ R
n×n is the matrix with all

entries being 1. For x ∈ R
n, we denote by |x| the vector

containing the absolute values of the corresponding entries

of x. The norm ‖·‖ for vectors is the Euclidean norm. The

spectral radius of the matrix X ∈ R
n×n is denoted by ρ(X).

II. THE PAGERANK PROBLEM

We briefly introduce the PageRank problem based on, e.g.,

[2], [3], [10].

Consider a network of n web pages indexed by integers

from 1 to n. The network is represented by the directed graph

G = (V, E). Here, V := {1, 2, . . . , n} is the set of vertices

corresponding to the web page indices while E ⊂ V × V
is the set of edges representing the links among the pages.

The vertex i is connected to the vertex j by an edge, i.e.,

(i, j) ∈ E , if page i has an outgoing link to page j, or in

other words, page j has an incoming link from page i.
The objective of the PageRank algorithm is to provide

some measure of importance to each web page. The Page-

Rank value, or simply the value, of page i ∈ V is a real

number x∗ ∈ [0, 1]. The values are ordered: x∗
i > x∗

j implies

that page i is more important than page j.

The pages are ranked according to the rule that a page

having links from important pages is also important. This is

done in such a way that the value of one page equals the

sum of the contributions from all pages that have links to it.

In particular, we define the value of page i by

x∗
i =

∑

j∈Li

x∗
j

nj

,

where Li := {j : (j, i) ∈ E}, i.e., this is the set of page

indices that are linked to page i, and nj is the number of

outgoing links of page j. It is customary to normalize the

total of all values as
∑n

i=1 x∗
i = 1.

Let the values be in the vector form as x∗ ∈ [0, 1]n. Then,

the PageRank problem can be restated as

x∗ = Ax∗, x∗ ∈ [0, 1]n,

n∑

i=1

x∗
i = 1, (1)

where the link matrix A = (aij) ∈ R
n×n is given by

aij :=

{
1

nj
if j ∈ Li,

0 otherwise.
(2)

The value vector x∗ is a nonnegative unit eigenvector corre-

sponding to the eigenvalue 1 of A. In general, however, for

this eigenvector to exist and then to be unique, it is sufficient

that (i) the so-called dangling nodes, which are pages having

no links to others, do not exist, and (ii) the web as a graph

is strongly connected1.

To simplify the issue regarding dangling nodes, we rede-

fine the graph by bringing in artificial links. As a result, the

link matrix A becomes a stochastic matrix, having at least

one eigenvalue equal to 1. For more on this, see [8].

1A directed graph is said to be strongly connected if for any two vertices
i, j ∈ V , there is a sequence of edges which connects i to j.

The web is known not to be strongly connected in general.

To avoid this problem, a modified version of the values has

been introduced in [2] as follows: Let m ∈ (0, 1), and let

the modified link matrix M ∈ R
n×n be defined by

M := (1 − m)A +
m

n
S. (3)

This matrix is clearly positive and is further stochastic being

a convex combination of two stochastic matrices A and S/n.

By the Perron-Frobenius Theorem [6], there exists a unique

positive eigenvector for the eigenvalue 1. Hence, we redefine

the value vector x∗ by using M in place of A in (1) as

x∗ = Mx∗, x∗ ∈ [0, 1]n,

n∑

i=1

x∗
i = 1. (4)

Because of the large dimension of the link matrix M ,

the computation of the value vector x∗ relies on the power

method. That is, x∗ is computed through the recursion

x(k + 1) = Mx(k), (5)

where x(k) ∈ R
n and the initial condition x(0) ∈ R

n is a

probability vector.

The following lemma shows that, using this method, we

can asymptotically find the value vector (e.g., [6]).

Lemma 2.1: For any initial condition x(0), in the update

scheme (5) using the modified link matrix M , it holds that

x(k) → x∗ as k → ∞.

We note that the rate of convergence relies on the value

of m. In [2], a typical value is set as m = 0.15;

III. A DISTRIBUTED SCHEME WITH SIMULTANEOUS

UPDATES

In this section, we propose a distributed algorithm to

compute the value vector x∗. This is a generalization of the

simpler scheme in [8].

Consider the web with n pages from the previous section.

It is assumed that each page computes its own value locally

by communicating with the pages linked to it. At any time

instant, some pages initiate the updates of their values. For

each page, this is performed by (i) sending its value to the

pages that it is linked to and (ii) requesting the pages that

link to it for their values. All pages involved in this process

renew their values based on the latest available information.

These updates can take place in a fully distributed and

randomized manner. The decision to make an update is a

random variable. In particular, this is determined under a

given probability α ∈ (0, 1] at each time k, and hence,

the decision can be made locally at each page. In practice,

this scheme can be realized without requiring a centralized

decision maker or any fixed order among the pages for

updates. Note however that the probability α is a global

parameter in that all pages have the same α.

Formally, the proposed distributed update scheme is de-

scribed as follows. Let ηi(k) ∈ {0, 1}, i = 1, . . . , n, k ∈ Z+,

be Bernoulli processes given by

ηi(k) =

{
1 if page i initiates an update at time k,

0 otherwise

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC12.2

3530

where their probability distributions are specified as

α := Prob
{
ηi(k) = 1

}
. (6)

As in the previous section, we first describe the approach

in the A-matrix domain to simplify the discussion. The

distributed update scheme is given by

x(k + 1) = Aη1(k),...,ηn(k)x(k), (7)

where x(k) ∈ R
n is the state whose initial condition x(0)

is a probability vector, and Aη1(k),...,ηn(k) are called the

distributed link matrices.

Let yi(k) be the time average of the states xi(0), . . . , xi(k)
given by

yi(k) :=
1

k + 1

k∑

ℓ=0

xi(ℓ), k ∈ Z+, i ∈ V. (8)

We say that, for the distributed update scheme, the PageRank

value x∗ is obtained through the time average y if, for each

initial condition x(0), y(k) converges to x∗ in the mean-

square sense as

E
[∥∥y(k) − x∗

∥∥2
]
→ 0, k → ∞.

The problem of distributed PageRank computation is for-

mulated as follows: Find the distributed link matrices such

that, for the corresponding distributed update scheme, the

PageRank value x∗ is obtained through the time average.

This problem is a generalization of that in [8], where the

class of distributed link matrices is limited; there, only one of

the pages is updated at a time. To emphasize the difference,

the current approach is called the distributed scheme with

simultaneous updates. The analysis of this scheme is more

involved as we shall see.

A. Distributed link matrices

Let the distributed link matrices Aη1,...,ηn
be given by

(
Aη1,...,ηn

)
ij

:=





aij if ηi = 1 or ηj = 1,

1 −
∑

h: ηh=1 ahj if ηi = 0 and i = j,

0 if ηi = ηj = 0 and i 	= j

(9)

for ηr ∈ {0, 1}, r ∈ {1, . . . , n}, and i, j ∈ {1, . . . , n}.

Clearly, there are 2n matrices. They have the property that

(i) if ηi = 1, then the ith column and the ith row are the

same as those in the original link matrix A, (ii) if ηi = 0,

then the ith diagonal entry is chosen such that the entries of

the ith column add up to 1, and (iii) all other entries are 0.

Hence, these are constructed as stochastic matrices. We note

that these link matrices coincide with those in equation (11)

of [8] when ηi = 1 for one i and ηj = 0 for all j 	= i.

B. The average link matrix

We now analyze the average dynamics of the distributed

update scheme in (7). We define the average link matrix by

A := E
[
Aη1(k),...,ηn(k)

]
, (10)

where E[·] is the expectation with respect to ηi(k), i ∈ V .

This matrix A is clearly nonnegative and stochastic.

The following proposition shows that the average link

matrix A has a clear relation to the original link matrix A.

In particular, it implies the possibility that the two matrices

share the value vector x∗ as their eigenvectors.

Proposition 3.1: For the average link matrix A given in

(10), we have the following:

(i) A =
[
1 − (1 − α)2

]
A + (1 − α)2I .

(ii) There exists a vector z0 ∈ R
n
+ which is an eigenvector

corresponding to the eigenvalue 1 for both A and A.

C. A modified distributed update scheme

To guarantee that the distributed scheme yields the Page-

Rank value, we now introduce a modified version.

Consider the distributed update scheme in the form of

x(k + 1) = Mη1(k),...,ηn(k)x(k), (11)

where x(k) ∈ R
n, the initial condition x(0) is a probability

vector, and ηi(k) ∈ {0, 1}, i ∈ V , are specified by (6).

Here, the objective is to find the modified link matrices

Mη1,...,ηn
such that their average and the link matrix M from

(3) share an eigenvector corresponding to the eigenvalue 1.

Since such an eigenvector is unique for M , it is necessarily

equal to the value vector x∗.

For the definition of the distributed link matrices, we use

an additional parameter m̂ given by

m̂ :=
[1 − (1 − α)2]m

1 − m(1 − α)2
. (12)

Now, for η1, . . . , ηn ∈ {0, 1}, let

Mη1,...,ηn
:= (1 − m̂)Aη1,...,ηn

+
m̂

n
S. (13)

Then, let their average value be M := E[Mη1(k),...,ηn(k)].
Here, the distributed link matrices are positive stochastic

matrices, which implies that the average matrix M enjoys

the same property.

The next lemma is the key to establish the desired relation

between the distributed link matrices and their average.

Lemma 3.2: The scalar m̂ in (12) and the link matrices

Mη1,...,ηn
in (13) have the following properties:

(i) m̂ ∈ (0, 1) and m̂ ≤ m.

(ii) M = m̂
m

M +
(
1 − m̂

m

)
I .

(iii) The value x∗ in (4) is the unique eigenvector of the

average matrix M corresponding to the eigenvalue 1.

We can show by (iii) in the lemma that, in an average

sense, the distributed update scheme asymptotically obtains

the correct values. More precisely, we have E[x(k)] =

M
k
x(0) → x∗ as k → ∞.

We are now ready to state the main result of this section.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC12.2

3531

Theorem 3.3: Consider the distributed scheme with simul-

taneous updates in (11). For any update probability α ∈
(0, 1], the PageRank value x∗ is obtained through the time

average y in (8) as E
[∥∥y(k) − x∗

∥∥2]
→ 0 as k → ∞.

Several remarks are in order. This distributed update

scheme is a generalization of the original scheme in Sec-

tion II. This can be observed by taking the update probability

α to be 1. In particular, when all pages initiate their updates,

the distributed link matrix is M1,...,1; this coincides with the

original M because of m̂ = m and A1,...,1 = A in (9).

On the other hand, when α < 1, the scheme is fully

decentralized. It is parameterized by α, which determines

the frequency in the updates, communication load among

the pages, and the rate of convergence in the mean, as we

have seen above. In practice, the recursion in (11) must be

implemented at each page based on the equivalent expression

x(k + 1) = (1 − m̂)Aη1(k),...,ηn(k)x(k) +
m̂

n
1, (14)

where we used the fact that Sx(k) = 1 for all k ∈
Z+. Clearly, communication is required only over the links

corresponding to the nonzero entries in the link matrices.

Each page then performs weighted additions of its own value,

the values that it has just received, and the extra term m̂/n.

Hence, the amount of computation is fairly small.

IV. UPDATE TERMINATION IN PAGERANK COMPUTATION

In this section, we further develop the distributed algo-

rithm for calculating the PageRank. We relax the objective

and aim at obtaining approximate values of the PageRank.

The key feature here is to allow the pages to terminate

their updates at the point when the values have converged

to a certain level. The benefit is that such values need to

be transmitted only once to the linked pages; hence, the

computation and communication load can be reduced.

A. Convergence properties in a centralized setting

The idea of update termination has been introduced by [9]

in a centralized computational setting. Here, we outline the

basics of this idea and provide an analysis on convergence.

Consider the original centralized update scheme in (5).

Suppose that at time k0 ≥ 0, some pages have a good

estimate of their values in terms of relative errors. This is

determined by the new parameter δ ∈ (0, 1). For fixed k0,

let C be the set of indices of such pages defined by

C := {i ∈ V : |xi(k0) − xi(k0 − 1)| ≤ δxi(k0)} .

The cardinality of C is denoted by n1. Also, let N be the

indices not in C as N := V \ C.

Now, for the state vector x(k), we introduce a coordinate

transformation such that

x(k) =

[
xC(k)
xN (k)

]
,

where xC(k) ∈ R
n1 contains the values of the pages in C and

xN (k) ∈ R
n−n1 contains those of the pages in N . Similarly,

the link matrix M is partitioned as

M :=

[
MCC MCN

MNC MNN

]
.

Thus, in the new coordinate system, the scheme (5) becomes
[

xC(k + 1)
xN (k + 1)

]
=

[
MCC MCN

MNC MNN

] [
xC(k)
xN (k)

]
.

Now, since the state xC(k) has converged at time k0 in

an approximate sense, this state will be fixed. The proposed

algorithm updates the state x(k) through the recursion
[

xC(k + 1)
xN (k + 1)

]
=

[
I 0

MNC MNN

] [
xC(k)
xN (k)

]
, k ≥ k0. (15)

We note that the matrix appearing on the right-hand side

is nonnegative, but is no longer stochastic; the sums of the

entries of the first n1 columns are larger than 1 while those of

the other columns are smaller than 1. Hence, though x(k) ≥
0 still holds, the state x(k) may not be a probability vector.

It is clear that, after the coordinate change, the value vector

x∗ is an equilibrium of the system (15). Then, we introduce

the notation

x∗ =

[
x∗
C

x∗
N

]
. (16)

It is also straightforward to show that, for each xC ∈ R
n1 ,

the vector given by
[

xC

(I − MNN)−1MNCxC

]

is an equilibrium of (15). We note that the inverse of I −
MNN always exists because all of its nondiagonal entries

are nonpositive, that is, I − MNN is a so-called M -matrix

[7]. Let x̃(k0) be the equilibrium defined by xC(k0) as

x̃(k0) =

[
x̃C(k0)
x̃N (k0)

]
:=

[
xC(k0)

(I − MNN)−1MNCxC(k0)

]
.

(17)

After the pages in C have terminated their updates, the

dynamics of the scheme can be characterized as follows.

Lemma 4.1: Consider the update scheme (15) with the

two equilibria x∗ and x̃(k0), respectively, given by (16) and

(17). Then, the following statements hold.

(i) The state x(k) converges to x̃(k0) and, in particular,

xN (k) → x̃N (k0) as k → ∞.

(ii) If |x̃C(k0) − x∗
C | ≤ δx∗

C , then |x̃N (k0) − x∗
N | ≤ δx∗

N .

The lemma shows that if the values in xC(k0) = x̃C(k0)
are close to the true values x∗

C , then via the proposed

update scheme (15), we can still obtain an approximate value

x̃N (k0) for the rest of the states; the level of approximation

is the same, represented by the parameter δ.

B. A distributed approach

We extend the idea of update termination to the distributed

update scheme of Section III. First, to provide a convergence

result as in the previous subsection, we consider a simple

case. Then, we provide the details of the proposed algorithm.

Consider the distributed scheme in (14) for computing the

values x(k) together with their time average y(k). Suppose

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC12.2

3532

that at a given time k0, some of the time averages yi(k0)
have, in an approximate sense, converged. This is measured

by finding those that have varied only within sufficiently

small ranges for a certain number of time steps. Here, we

introduce two parameters: Let δ ∈ (0, 1) be the relative error

level, and let Ns be the number of steps. Using the history

of its own time average yi, each page i then determines at

time k0 whether the following condition holds:

|yi(k0) − yi(k0 − l)| ≤ δyi(k0), l = 1, 2, . . . , Ns. (18)

If so, then (i) the page i will terminate its update and fix

its estimate at yi(k0), and then (ii) this value yi(k0) is

transmitted to the pages connected to i by direct links where

these values will be used for further updates.

The question of interest is whether the pages that continue

with updates will reach a good estimate of their true values.

In what follows, we show that the answer is positive and

the approximation level achievable in the estimate will be as

good as that for the pages that have terminated their updates.

Let C(k0) be the set of page indices that have reached

good estimates at time k0 as

C(k0) :=
{
i ∈ V : |yi(k0) − yi(k0 − l)| ≤ δyi(k0),

l = 1, 2, . . . , Ns

}
.

The cardinality of this set is denoted by n1. Also, let N be

the set of indices not in C(k0) as N (k0) := V \ C(k0).
Following the notation in the previous subsection, for the

state x(k), we introduce a coordinate change based on these

sets and then partition it as x(k) =
[
xC(k)T xN (k)T

]T
.

Next, the distributed link matrices Aη in (9) and the average

link matrix A in (10) are partitioned accordingly as

Aη =

[
Aη,CC Aη,CN

Aη,NC Aη,NN

]
, A =

[
ACC ACN

ANC ANN

]
, (19)

where we write Aη for Aη1,...,ηn
, ηi ∈ {0, 1}, i ∈ V .

Now, since the time average yC(k) has converged suffi-

ciently by time k0, the proposed approach employs the value

yC(k0) as xC(k) for all k ≥ k0. Hence, the value at time k0

is reset as x(k0) =
[
yC(k0)

T xN (k0)
T
]T

. The updates are

carried out through the distributed algorithm given by

x(k + 1) = Ãη(k)x(k) +
m̂

n
s̃, k ≥ k0, (20)

where

Ãη(k) =

[
I 0

Ãη(k),NC Ãη(k),NN

]
, s̃ :=

[
0
s

]
, (21)

with Ãη(k),NC := (1 − m̂)Aη(k),NC , Ãη(k),NN := (1 − m̂)
Aη(k),NN , and 1 ∈ R

n−n1 . We remark that the link matrices

Ãη are not stochastic.

The time average y(k) is also modified by fixing the

entries for i ∈ C(k0) as

y(k) =

[
yC(k0)
yN (k)

]
, k ≥ k0,

where yN (k) is determined through the original formula (8).

For the approximate update scheme (20), its average state

x(k) := E[x(k)] follows the recursion

x(k + 1) = Â x(k) +
m̂

n
s̃, k ≥ k0, (22)

where the average link matrix Â := E[Ãη(k)] is given by

Â =

[
I 0

ÂNC ÂNN

]
(23)

with ÂNC := (1−m̂)ANC and ÂNN := (1−m̂)ANN . This

matrix is not stochastic and in fact has the eigenvalue 1 with

multiplicity greater than or equal to 1.

Regarding the average link matrix, the following result

will be useful in the subsequent development.

Lemma 4.2: The submatrix ÂNN of the average link

matrix Â as given in (23) satisfies the following:

(i) ρ(ÂNN) ∈ [0, 1 − m̂] and ÂNN is a stable matrix.

(ii) (I − ÂNN)−1 ≥ 0.

As in the centralized case discussed in the previous sub-

section, we focus on two equilibria of this average system:

The true x∗ and the approximate values x̃(k0) given by

x̃(k0) =

[
x̃C(k0)
x̃N (k0)

]

:=

[
yC(k0)(

I − ÂNN

)−1(
ÂNCyC(k0) + m̂

n
s
)
]

. (24)

This vector always exists due to the lemma above.

The average system in (22) has the following properties.

Lemma 4.3: Consider the distributed update scheme (20)

with the two equilibria x∗ and x̃(k0), respectively, given by

(16) and (24). Then, the following statements hold.

(i) The average state x(k) converges to x̃(k0) and, in

particular, xN (k) → x̃N (k0) as k → ∞.

(ii) If |x̃C(k0) − x∗
C | ≤ δx∗

C , then |x̃N (k0) − x∗
N | ≤ δx∗

N .

The following is the main convergence result.

Theorem 4.4: Consider the distributed scheme in (20),

where n1 pages have terminated their updates at time k0. The

time average yN (k) converges to the equilibrium x̃N (k0) in

the mean square sense as

E
[∥∥yN (k) − x̃N (k0)

∥∥2
]
→ 0, k → ∞.

C. Distributed algorithm with update termination

We now present the distributed algorithm with update

termination based on the results outlined in this section.

Algorithm 4.5: For i ∈ V , page i executes the following.

0) Initialize the parameters n, α, xi(0), Ns, and δ. Set

k = 0, C(0) := ∅, and n1 = 0.

1) At time k, generate ηi(k) ∈ {0, 1} under the proba-

bility α. If ηi(k) = 1, then send the value xi(k) to

pages j /∈ C(k) that it is linked to. Also request pages

j /∈ C(k) that have links to it for their values.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC12.2

3533

0 1000 2000 3000 4000 5000
0

0.01

0.02

0.03

0.04

 y
i(k

)

Time k

Fig. 1. Sample paths of yi(k) (solid lines) with the time updates stopped
(marked by © for each page) and the PageRank values x∗

i
(dashed lines)

for i = 1, 2, . . . , 10.

2) Update the value xi(k) and its time average by

xi(k + 1) =
n∑

j=1

(
Ãη(k)

)
ij

xj(k) +
m̂

n
,

yi(k) =
1

k + 1

k∑

ℓ=0

xi(ℓ),

where Ãη(k) is constructed by (21) using C(k).
3) Check whether yi(k) has sufficiently converged based

on (18). If so, then (i) add i to the set C(k), (ii) send

yi(k) to the pages having direct links to page i, and

(iii) fix xi(ℓ) = yi(ℓ) = yi(k) for ℓ ≥ k.

4) If C(k) = V , then terminate. Otherwise, set C(k+1) =
C(k) and k = k + 1, and then go to Step 1. ▽

We remark that, in this scheme, the choice of the param-

eters Ns and δ affects the accuracy in the values when the

pages terminate their updates as well as the time when the

pages decide to do so. Taking Ns larger and/or δ smaller

will improve the value estimates, but will require longer

time before the updates terminate; this in turn will keep the

communication and computation load higher.

V. NUMERICAL EXAMPLE

We present an example using the web with 50 pages from

[8]. The links among the pages were randomly generated

and, for each page, there were between 2 and 13 links. The

parameter m of the link matrices M in (3) and Mη in (13)

was taken as m = 0.15. Simulations were carried out using

Algorithm 4.5. The parameters were taken as α = 0.1, Ns =
800, and δ = 0.01. We chose them so that the characteristics

of this scheme are visible in the plots.
We computed a sample path of the state x(k). The

initial state x(0) was taken as a probability vector that was

randomly chosen. The time averages yi(k) of the states for

pages i = 1, . . . , 10 are shown in Fig. 1. We observe that

they become close to the true values indicated by the dashed

lines. The times when the corresponding pages terminated

their updates are marked by ©. All 50 pages stopped by

time k = 4349 and on average by about 2160.
In Fig. 2, the final values of yi(k) at k = 5000 are

plotted together with the acceptable range of error, that is,

0 10 20 30 40 50
0

0.01

0.02

0.03

0.04

P
ag

eR
an

k

Page index

Fig. 2. The range of approximate values ((1− δ)x∗
i
, (1 + δ)x∗

i
) (marked

by two lines) and yi(k), i = 1, . . . , 5, at k = 5000 (marked as ©)

[(1− δ)x∗
i , (1 + δ)x∗

i] by two lines connected in the middle.

Overall, the errors are fairly small. As we have mentioned,

the time average vector y(k) is no longer normalized. How-

ever, we had ‖y(5000)‖1 = 0.999, which is close to 1.

VI. CONCLUSION

We have extended the distributed randomized approach for

the PageRank computation in [8] to enhance flexibility. The

first scheme incorporates simultaneous updates by multiple

pages while the second one is equipped with a criterion

to terminate updates to obtain approximate values. Future

research will study the effects of communication delays.

REFERENCES

[1] K. Avrachenkov, N. Litvak, D. Nemirovsky, and N. Osipova. Monte
Carlo methods in PageRank computation: When one iteration is
sufficient. SIAM J. Numer. Anal., 45:890–904, 2007.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web
search engine. Comp. Networks & ISDN Systems, 30:107–117, 1998.

[3] K. Bryan and T. Leise. The $25,000,000,000 eigenvector: The linear
algebra behind Google. SIAM Rev., 48:569–581, 2006.

[4] D. V. de Jager and J. T. Bradley. Asynchronous iterative solution for
state-based performance metrics. In Proc. ACM SIGMETRICS, pages
373–374, 2007.

[5] Y. Hatano and M. Mesbahi. Agreement over random networks. IEEE

Trans. Autom. Control, 50:1867–72, 2005.
[6] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge Univ.

Press, 1985.
[7] R. A. Horn and C. R. Johnson. Topics in Matrix Analysis. Cambridge

Univ. Press, 1991.
[8] H. Ishii and R. Tempo. A distributed randomized approach for the

PageRank computation: Part 1. In Proc. 47th IEEE Conf. on Decision

and Control, 2008.
[9] S. Kamvar, T. Haveliwala, and G. Golub. Adaptive methods for the

computation of PageRank. Linear Algebra Appl., 386:51–65, 2004.
[10] A. N. Langville and C. D. Meyer. Google’s PageRank and Beyond:

The Science of Search Engine Rankings. Princeton Univ. Press, 2006.
[11] A. Tahbaz-Salehi and A. Jadbabaie. A necessary and sufficient

condition for consensus over random networks. IEEE Trans. Autom.

Control, 53:791–795, 2008.
[12] R. Tempo, G. Calafiore, and F. Dabbene. Randomized Algorithms for

Analysis and Control of Uncertain Systems. Springer, London, 2005.
[13] R. Tempo and H. Ishii. Monte Carlo and Las Vegas randomized

algorithms for systems and control: An introduction. European J.

Control, 13:189–203, 2007.
[14] C. W. Wu. Synchronization and convergence of linear dynamics in

random directed networks. IEEE Trans. Autom. Control, 51:1207–
1210, 2006.

[15] Y. Zhu, S. Ye, and X. Li. Distributed PageRank computation based
on iterative aggregation-disaggregation methods. In Proc. 14th ACM

Conf. Info. and Knowledge Management, pages 578–585, 2005.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC12.2

3534

