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Abstract— In the search engine of Google, the PageRank
algorithm plays a crucial role in ranking the obtained results.
The algorithm quantifies the importance of each web page
based on the link structure of the web. In this two-part paper,
we first provide an overview of the original problem setup.
Then, we propose several distributed randomized schemes for
the computation of the PageRank, where the pages can locally
update their values by communicating to those connected by
links. A detailed discussion on the close relations to the multi-
agent consensus problems is also given.

Index Terms— Distributed computation, Multi-agent consen-
sus, PageRank algorithm, Randomization, Stochastic matrices

I. INTRODUCTION

In the last decade, search engines have become widely

used indispensable tools for searching the web. For such

engines, it is essential that the search results not only consist

of web pages related to the query terms, but also rank the

pages properly so that the users quickly have access to the

desired information. The PageRank algorithm at Google is

one of the successful algorithms that quantify and rank the

importance of each web page. This algorithm was initially

proposed in [8], and an overview can be found in, e.g., [9],

[20], [21]

One of the main features of the PageRank algorithm is that

it is based solely on the link structure of the web. The under-

lying key idea is that links from important pages make a page

more important. More concretely, each page is considered to

be voting the pages to which it is linked. Then, in the ranking

of a page, the total number of votes as well as the importance

of the voters are reflected. This problem is mathematically

formulated as finding the eigenvector corresponding to the

largest eigenvalue of a certain stochastic matrix associated

with the web structure.

For the PageRank computation, a critical aspect is the

size of the web. The web is said to be composed of over

8 billion pages, and its size is still growing. Currently, the

computation is performed centrally at Google, where the

data on the whole web structure is collected by crawlers

automatically browsing the web. In practice, the class of

algorithms that can be applied is limited. In fact, the basic

power method is employed, but it is reported that this
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computation takes about a week. This clearly necessitates

more efficient computational methods.

In this regard, several approaches have recently been pro-

posed. In [18], an adaptive computation method is developed,

which classifies web pages into groups based on the speed

of convergence to the PageRank values and allocates com-

putational resources accordingly. Another line of research is

based on distributed approaches, where the computation is

performed on multiple servers communicating to each other.

For example, Monte Carlo methods are examined in [3],

while the work in [29] exploits the block structure of the web

to apply techniques from the Markov chain literature. In [13],

methods using asynchronous iterations [11] are discussed.

In this two-part paper with [16], we follow a distributed

approach and, in particular, we develop several randomized

algorithms for the PageRank computation; for recent ad-

vances on probabilistic approaches in systems and control,

see [25]. These schemes are fully distributed and have three

main features as follows: First, in principle, each page can

compute its own PageRank value locally by communicating

with the pages that are connected by direct links. That is,

each page exchanges its value with the pages that it is

linked to and those linked to it. Second, the pages make

the decision to initiate this communication at random times

which are independent from page to page. This means that, in

its implementation, there is neither a fixed order among the

pages nor a centralized agent in the web that determines the

pages to update their values. Third, the computation required

for each page is very mild. In this first part, we give a simple

scheme and show its convergence properties. In the second

part [16], this scheme is extended to improve its applicability.

We emphasize that the approach proposed here is par-

ticularly motivated by the recent research on multi-agent

consensus, agreement, and formation problems [5], [7], [10],

[14], [17], [19], [24], [26]–[28]. For additional details, we

refer to [1], [2], [4] and also to the paper [6] which gives

a summary of recent development of such problems along

with some new results. Among such problems, the PageRank

is especially related to the consensus where multiple agents

exchange their values with neighboring agents so that all

agents have the same value. The objective is clearly different

from that for the PageRank problem, which is to find a

specific eigenvector of a stochastic matrix via the power

method. However, the recursion appearing in the consensus

algorithm is exactly of the same form as that for the
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PageRank computation except that the class of stochastic

matrices is slightly different. We will make a comparison of

the two problems in some detail.

The paper is organized as follows: In Section II, we pro-

vide an overview of the PageRank algorithm. The distributed

approach is introduced in Section III. The proposed scheme

is given and analyzed in Section IV; this is followed by a

discussion on consensus problems in Section V. A numerical

example is provided in Section VI to show the effectiveness

of the scheme. We conclude the paper in Section VII.

Notation: For vectors and matrices, inequalities are used

to denote entry-wise inequalities: For X,Y ∈ R
n×m, X ≤

Y implies xij ≤ yij for i = 1, . . . , n and j = 1, . . . , m;

in particular, we say that the matrix X is nonnegative if

X ≥ 0 and positive if X > 0. A probability vector is a

nonnegative vector v ∈ R
n such that

∑n

i=1 vi = 1. Unless

otherwise specified, by a stochastic matrix, we refer to a

column-stochastic matrix, i.e., a nonnegative matrix X ∈
R

n×n with the property that
∑n

i=1 xij = 1 for j = 1, . . . , n.

Let 1 ∈ R
n be the vector with all entries equal to 1 as

1 := [1 · · · 1]T . Similarly, S ∈ R
n×n is the matrix with all

entries being 1. For x ∈ R
n, we denote by |x| the vector

containing the absolute values of the corresponding entries

of x. The norm ‖·‖ for vectors is the Euclidean norm. The

spectral radius of the matrix X ∈ R
n×n is denoted by ρ(X).

II. THE PAGERANK PROBLEM

We provide a brief introduction of the PageRank problem;

this material can be found in, e.g., [8], [9], [20], [21].

Consider a network of n web pages indexed by integers

from 1 to n. This network is represented by the directed

graph G = (V, E). Here, V := {1, 2, . . . , n} is the set of

vertices corresponding to the web page indices while E ⊂
V × V is the set of edges representing the links among the

pages. The vertex i is connected to the vertex j by an edge,

i.e., (i, j) ∈ E , if page i has an outgoing link to page j, or

equivalently, page j has an incoming link from page i. To

simplify the discussion, we assume n ≥ 3.

The objective of the PageRank algorithm is to provide

some measure of importance to each web page based on the

link structure of the web. The PageRank value, or simply the

value, of page i ∈ V is a real number in [0, 1]; we denote

this by x∗
i . The values are ordered such that x∗

i > x∗
j implies

that page i is more important than page j.

The basic idea in ranking the pages by the values is that

a page having links from important pages is also important.

This is realized by determining the value of a page as the

sum of the contributions from all pages having links to it. In

particular, the value x∗
i of page i is defined as

x∗
i =

∑

j∈Li

x∗
j

nj

,

where Li := {j : (j, i) ∈ E}, i.e., this is the set of page

indices that are linked to page i, and nj is the number of

outgoing links of page j. It is customary to normalize the

total of all values so that
∑n

i=1 x∗
i = 1.

Let the values be in the vector form as x∗ ∈ [0, 1]n. Then,

the PageRank problem can be restated as

x∗ = Ax∗, x∗ ∈ [0, 1]n,
n

∑

i=1

x∗
i = 1, (1)

where the matrix A = (aij) ∈ R
n×n, called the link matrix,

is given by

aij :=

{

1
nj

if j ∈ Li,

0 otherwise.
(2)

Note that the value vector x∗ is a nonnegative unit eigen-

vector corresponding to the eigenvalue 1 of the link matrix

A. In general, however, for this eigenvector to exist and then

to be unique, it is sufficient that the following conditions

hold: (i) The so-called dangling nodes, which are pages

having no links to others, do not exist, and (ii) the web as

a graph is strongly connected1, or equivalently the matrix A
is irreducible2.

In the real web, actually, dangling nodes are abundant.

Such pages can be found, e.g., in the form of PDF docu-

ment files having no outgoing links. Note that these pages

introduce zero columns into the link matrix. To simplify

the discussion, we redefine the graph (and the matrix A)

by bringing in artificial links for all dangling nodes. As a

result, the link matrix A becomes a stochastic matrix, that

is,
∑n

i=1 aij = 1 for all j. This implies that it has at least

one eigenvalue equal to 1.

The web is also known not to be strongly connected in

general. To avoid this problem, a modified version of the

values has been introduced in [8] as follows: Let m be a

parameter such that m ∈ (0, 1), and let the modified link

matrix M ∈ R
n×n be defined by

M := (1 − m)A +
m

n
S. (3)

Notice that M is a positive stochastic matrix, which makes

it an irreducible matrix. By the Perron-Frobenius Theorem

[15], there exists a unique positive eigenvector for the

eigenvalue 1. Hence, we redefine the value vector x∗ by

using M in place of A in (1) as

x∗ = Mx∗, x∗ ∈ [0, 1]n,
n

∑

i=1

x∗
i = 1. (4)

Due to the large dimension of the link matrix M , the com-

putation of the eigenvector corresponding to the eigenvalue 1

is difficult. The solution that has been employed in practice

1A directed graph is said to be strongly connected if for any two vertices
i, j ∈ V , there is a sequence of edges which connects i to j.

2An irreducible matrix is a matrix that is not reducible. A matrix X ∈
R

n×n is said to be reducible if either (i) n = 1 and X = 0 or (ii) n ≥ 2
and there exist a permutation matrix P ∈ R

n×n and an integer r with
1 ≤ r ≤ n − 1 such that

P T XP =

»

B C
0 D

–

,

where B ∈ R
r×r , C ∈ R

r×(n−r), and D ∈ R
(n−r)×(n−r).
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Fig. 1. A web with four pages

is based on the power method. That is, the value vector x∗

is computed through the recursion

x(k + 1) = Mx(k), (5)

where x(k) ∈ R
n and the initial condition x(0) ∈ R

n is a

probability vector. Using this method, we can asymptotically

find the value vector as shown below; see, e.g., [15].

Lemma 2.1: For any initial condition x(0), in the update

scheme (5) using the modified link matrix M , it holds that

x(k) → x∗ as k → ∞.

We next provide a simple example for illustration.

Example 2.2: Consider the web with four pages shown

in Fig. 1. As a graph, this web is strongly connected, and

there are no dangling nodes. The link matrix A can easily

be constructed by (2) as

A =









0 0 0 1
3

1 0 1
2

1
3

0 1
2 0 1

3
0 1

2
1
2 0









. (6)

For the modified link matrix M , we use m = 0.15, which

is the value reported in the original algorithm [8]. Thus,

M =









0.0375 0.0375 0.0375 0.3208
0.8875 0.0375 0.4625 0.3208
0.0375 0.4625 0.0375 0.3208
0.0375 0.4625 0.4625 0.0375









.

Then, the value vector x∗ can be computed as

x∗ =
[

0.119 0.331 0.260 0.289
]T

.

Notice that page 2 has the largest value since it is linked

from three pages while page 1, which has only one link to

it, has the smallest value. On the other hand, pages 3 and 4

have the same number of incoming links, but page 4 has a

larger value. This is because page 4 has more outgoing links,

and thus it receives more contribution from page 3 than what

it gives back. ▽

III. A DISTRIBUTED RANDOMIZED APPROACH

In this section, we propose a distributed approach to

compute the value vector x∗.

Consider the web from the previous section. The basic

protocol of the scheme is as follows: At time k, page i
initiates its PageRank value update (i) by sending its value

to the pages that it is linked to and (ii) by requesting the

pages that link to it for their values. All pages involved in

this process renew their values based on the latest available

information.

To implement the scheme in a distributed manner, we

assume that the pages taking the update action are determined

in a random manner. This is specified by the random process

θ(k) ∈ V , k ∈ Z+. If at time k, θ(k) = i, then page i initiates

an update action by communicating and exchanging the

values with the pages connected by incoming and outgoing

links. Specifically, θ(k) is assumed to be i.i.d., and its

probability distribution is given by

Prob{θ(k) = i} =
1

n
, ∀k ∈ Z+. (7)

This means that each page takes the update action under

equal probability. In principle, this scheme may be imple-

mented without requiring a centralized decision maker or

any fixed order among the pages.

We now consider the distributed update scheme in the

following form:

x(k + 1) = Aθ(k)x(k), (8)

where x(k) ∈ R
n is the state whose initial condition x(0)

is a probability vector; θ(k) ∈ {1, . . . , n} is the mode of

the system, and Ai ∈ R
n×n, i = 1, . . . , n, are called the

distributed link matrices.

The objective here is to design the distributed update

scheme (8) so that the PageRank values are computed

through the time average of x. For this purpose, let y(k)
be the time average of the sample path x(0), . . . , x(k) given

by

y(k) :=
1

k + 1

k
∑

ℓ=0

x(ℓ). (9)

We say that, for the distributed update scheme, the PageRank

value x∗ is obtained through the time average y if, for each

initial condition x(0), y(k) converges to x∗ in the mean-

square sense as

E
[

∥

∥y(k) − x∗
∥

∥

2
]

→ 0, k → ∞. (10)

This type of convergence is called ergodicity for stochastic

processes [22]. In the next section, we specify the Ai

matrices. We note that these are related to the original link

matrix A rather than its modified version M . This approach

allows us to simplify the discussion.

The problem is closely related to fixed point computations,

where distributed methods known as asynchronous iterations

have been developed [4], [13]. As we will see, the difference

is that our approach is motivated by consensus problems and

the use of randomization.

IV. PROPOSED SCHEME AND ITS ANALYSIS

A. Distributed link matrices

We now introduce the distributed link matrices Ai. For

i = 1, . . . , n, the matrix Ai ∈ R
n×n is obtained as follows:

(i) The ith row and column coincide with those of A; (ii) the

remaining diagonal entries are equal to 1−aiℓ, ℓ = 1, . . . , n,
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ℓ �= i; and (iii) all the remaining entries are equal to zero.

More formally, we have

(Ai)jℓ :=











ajℓ if j = i or ℓ = i,

1 − aiℓ if j = ℓ �= i,

0 otherwise,

i = 1, . . . , n. (11)

It follows that these matrices are stochastic because the

original link matrix A possesses this property. As we shall

see later, this property indeed becomes critical for the con-

vergence of the scheme.

Example 4.1: We continue with the 4-page web of Exam-

ple 2.2. The link matrices Ai can be found to be

A1 =









0 0 0 1
3

1 1 0 0
0 0 1 0
0 0 0 2

3









, A2 =









0 0 0 0
1 0 1

2
1
3

0 1
2

1
2 0

0 1
2 0 2

3









,

A3 =









1 0 0 0
0 1

2
1
2 0

0 1
2 0 1

3
0 0 1

2
2
3









, A4 =









1 0 0 1
3

0 1
2 0 1

3
0 0 1

2
1
3

0 1
2

1
2 0









.

To see why we employ the particular structure for the

Ai matrices in (11), we may consider another set of these

matrices. For example, let Ai be constructed by simply using

the ith row of the original matrix A and 1 in the diagonal

entries of other rows as follows:

A1 =









0 0 0 1
3

0 1 0 0
0 0 1 0
0 0 0 1









, A2 =









1 0 0 0
0 0 1

2
1
3

0 0 1 0
0 0 0 1









,

A3 =









1 0 0 0
0 1 0 0
0 1

2 0 1
3

0 0 0 1









, A4 =









1 0 0 0
0 1 0 0
0 0 1 0
0 1

2
1
2 0









.

This scheme can be realized in a distributed way. However, it

will not lead us to the true values. In fact, each time an update

takes place, one of the values is completely lost because each

Ai contains a column with all zeros. ▽

B. The average link matrix

To clarify the properties of the distributed link matrices

Ai, we consider the distributed update scheme in (8) and,

in particular, its average dynamics. For this purpose, let A
be the average matrix given by A := E[Aθ(k)], where E[ · ]
is the expectation with respect to the random variable θ(k).
Due to the probability distribution of θ(k) in (7), we have

A =
1

n

n
∑

i=1

Ai. (12)

This matrix A is stochastic since all Ai are so.

The following lemma shows some properties of the matrix

A that are useful in subsequent developments.

Lemma 4.2: For the average matrix A given in (12), we

have the following:

(i) A = 2
n
A + n−2

n
I .

(ii) There exists z0 ∈ R
n
+ which is an eigenvector corre-

sponding to the eigenvalue 1 for both A and A.

The lemma above provides some justification for the

proposed distributed approach. That is, even though the

matrices A and A have different structures, they share an

eigenvector for the eigenvalue 1.

C. A modified distributed update scheme

As in the case with the original link matrix A, for the

average matrix A, the eigenvector corresponding to the

eigenvalue 1 may not be unique. We follow an argument

similar to that in Section II and introduce the modified

version of the distributed link matrices.

To this end, we first consider the modified distributed

update scheme given by

x(k + 1) = Mθ(k)x(k), (13)

where x(k) ∈ R
n, the initial condition x(0) is a probability

vector, and the mode θ(k) ∈ V is specified in (7).

The problem at this stage is as follows: Find the modified

link matrices Mi such that their average and the link matrix

M from (3) share an eigenvector for the eigenvalue 1. Since

such an eigenvector is unique for M , it is necessarily equal

to the value vector x∗ (see (4)).

Let x(k) := E[x(k)] be the mean of the state x(k) of

the system (13), where the expectation is with respect to

θ(0), . . . , θ(k − 1). Its dynamics is then expressed as

x(k + 1) = Mx(k), (14)

where x(0) = x(0) and the average matrix M is given by

M := E[Mθ(k)] =
1

n

n
∑

i=1

Mi. (15)

A simple way of defining Mi would be, as in the case

with M , via the relation Mi = (1−m)Ai + m
n

S. However,

in this case, it can be shown that there is no clear relation

between the original matrix M and the average matrix M
such as that between A and A as seen in Lemma 4.2.

Therefore, we introduce an additional parameter m̂ ∈
(0, 1), and let the matrices Mi be defined as

Mi := (1 − m̂)Ai +
m̂

n
S, i = 1, . . . , n. (16)

Note that Mi and hence M in (15) are positive stochastic

matrices. Specifically, let the parameter m̂ be given by

m̂ =
2m

n − m(n − 2)
. (17)

For this choice of m̂, the following result holds.

Lemma 4.3: For the scalar m̂ given in (17) and the

average matrix M in (15), we have the following:

(i) m̂ ∈ (0, 1) and m̂ < m.

(ii) M = m̂
m

M +
(

1 − m̂
m

)

I .

(iii) The value vector x∗ is the unique eigenvector of the

average matrix M corresponding to the eigenvalue 1.
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From the lemma, the value vector x∗ can be obtained by

the power method, i.e., by the average system in (14) as

x(k) → x∗, k → ∞. (18)

Hence, in an average sense, the distributed update scheme

asymptotically provides the correct values. It is interesting

to observe that this can be achieved though the original link

matrix A does not explicitly appear in the scheme. In fact, an

eigenvector of the matrix M is computed through randomly

switching among the multiple matrices Mi.

However, this property turns out not to be sufficient to

guarantee convergence of x(k) to the true value x∗. From

an argument based on weak ergodicity [23], we can show

that for any sequence {θ(k)}, there exists a sequence of

probability vectors {v(k)} such that, for any x(0), x(k) −
v(k)sT x(0) = x(k) − v(k) → 0 as k → ∞. The vectors

v(k) in general do not converge. Therefore, in the distributed

approach, we resort to computing the time average y(k) of

the states.

The following theorem is the main result of the paper. It

shows that the time average indeed converges to the value

vector in the mean-square sense.

Theorem 4.4: In the distributed update scheme in (13), the

PageRank value x∗ is obtained through the time average y

in (9) as E
[∥

∥y(k) − x∗
∥

∥

2]
→ 0, k → ∞.

The theorem shows that the proposed distributed update

scheme has an ergodic property. This theorem can be shown

by general Markov process results in, e.g., [12]. We also note

that the convergence is of order 1/k.

We have several remarks. In practice, each page needs to

communicate with the pages that are directly connected by

incoming or outgoing links. In this regard, it is important to

note that the recursion in (13) can be expressed as

x(k + 1) = (1 − m̂)Aθ(k)x(k) +
m̂

n
1. (19)

This is because for any k, x(k) is a probability vector,

and thus Sx(k) = 1. Hence, at time k, communication is

required only among the pages corresponding to the nonzero

entries in the distributed link matrix Aθ(k) (and not those in

Mθ(k)). As can be seen in (19), each page then performs

weighted addition of its own value, the values just received,

and the extra term m̂/n. Hence, we observe that the amount

of computation required at each page is limited at any time.

V. RELATION TO CONSENSUS PROBLEMS

In this section, we discuss the relation between the two

problems of PageRank and consensus. First, we describe a

stochastic version of the consensus problem. Such problems

have been studied in, e.g., [14], [24], [27]; see also [26].

Consider a set V = {1, 2, . . . , n} of agents having scalar

values. The network of agents is represented by the directed

graph G = (V, E). The vertex i is connected to the vertex j
by an edge (i, j) ∈ E if agent i can communicate its value

to agent j. Assume that the graph is strongly connected.

The objective is that all agents reach a common value by

communicating to each other. In particular, the pattern in the

communication among the agents is randomly determined at

each time. Let the value of agent i held at time k be xi(k),
and let its vector form be x(k) := [x1(k) · · ·xn(k)]T ∈ R

n.

The update in the values is performed via the recursion

x(k + 1) = Aθ(k)x(k), (20)

where θ(k) ∈ {1, . . . , d} is the mode specifying the com-

munication pattern among the agents and d is the number

of such patterns. The communication patterns are given as

follows: Each i ∈ {1, . . . , d} corresponds to the subset

Ei ⊂ E of the edge set. Then, the matrix Ai has (Ai)jℓ > 0
if and only if (ℓ, j) ∈ Ei. We assume that (i) (j, j) ∈ Ei

for all j, (ii)
⋃d

i=1 Ei = E , and (iii) the matrix Ai is a row-

stochastic matrix. The communication pattern is random, and

in particular, θ(k) is an i.i.d. random process. Its probability

distribution is given by Prob{θ(k) = i} = 1/d for i ∈
{1, . . . , d}, k ∈ Z+.

We say that consensus is obtained if for any initial

condition x(0), it holds that

|xi(k) − xj(k)| → 0, k → ∞ (21)

with probability one for all i, j ∈ V .

A well-known approach is to update the value of each

agent by taking the average of the values received at that

time. In this case, the matrix Ai is constructed as

(Ai)jℓ :=

{

1
nij

if ℓ ∈ Lij ,

0 otherwise,

where Lij := {ℓ : (ℓ, j) ∈ Ei} is the set of agents that

transmit their values to agent j and nij is its cardinality.

Lemma 5.1: Under the scheme of (20), consensus is ob-

tained in the sense of (21).

In comparison with the distributed PageRank problem, the

consensus problem above has the following features:

(i) The graph is assumed to be strongly connected.

(ii) The goal is that all values xi(k) become equal. The

values need not converge to a constant (according to

(21)), and moreover there is no restriction on its size.

(iii) Convergence with probability one can be attained for

the values xi(k) directly; there is no need to consider

their time average.

(iv) The matrices Ai are row stochastic. The consensus

problem can be restated in terms of infinite product of

stochastic matrices. Hence, the coefficient of ergodicity

is useful; see, e.g., [24].

It is clear that many similarities exist between the al-

gorithms for consensus and PageRank. We emphasize that

the distributed PageRank approach in this paper has been

particularly motivated by the recent advances in the consen-

sus literature. We highlight two points that provide helpful

insights into the PageRank problem as follows:

(1) At the conceptual level, it is natural to view the web as

a network of agents that can make its own computation

as well as communication with neighboring agents.

(2) At the technical level, it is especially important to

impose stochasticity on the distributed link matrices.
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For the distributed PageRank computation, very few works

exploit such viewpoints.

VI. NUMERICAL EXAMPLE

We present an example with 50 web pages (n = 50). The

links among the pages were randomly generated, and for

each page, there were between 2 and 13 links. The parameter

m of the matrices M in (3) and Mi in (16) was taken as

m = 0.15. Note that the probability of a page to update at

time k is 1/n = 0.02.

We computed a sample path of the state x(k) of the

distributed scheme (13). The initial state x(0) was taken as a

probability vector that was randomly generated. In Fig. 2, the

time average y(k) is shown for the ten pages i = 1, . . . , 10.

We observe their convergence to the PageRank values, which

are shown in dashed lines. In Fig. 3, the PageRank values

are marked as × and the values of yi(k) at time k = 5, 000
are plotted as ©. We see that the errors are fairly small.

VII. CONCLUSION

In this paper, we have first given an overview of the

PageRank problem which is critical in making accurate

search results at Google. The main result is the distributed

computation approach based on randomization at each page.

We also clarified its relations to the consensus type problems.

Further extensions of this approach are presented in [16].
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