
A State Predictor for Bilateral Teleoperation

with Communication Time Delay

Kouei Yoshida, Toru Namerikawa and Oliver Sawodny

Abstract— In this paper, the new state predictors are pro-
posed to improve the performance of the predictors in predictive
controller for teleoperation with time delay. The proposed state
predictors are designed based on solution trajectories of the
dynamics. The prediction errors of the proposed predictors
do not depend on past prediction errors. To achieve non-
delayed synchronization, proposed predictors are incorporated
to the predictive control structure. Using the Lyapunov stability
method, the proposed control structure is shown to be stable
even in the presence of time delay. Experimental results show
the effectiveness of our proposed teleoperation.

I. INTRODUCTION

Teleoperation system can extend a human’s reach to a

remote site and has been developed and motivated by large

variety of applications . It is well known that communication

delay may destabilize the system and degrade the closed loop

performance. Hence it is necessary to improve the closed

loop performance while preserving stability.

There are many control schemes proposed for dealing with

the time delay in teleoperation systems [1]. The passivity-

based approach [2], [3] guarantee stability by making the

communication channel a passive loss-less transmission line.

These schemes were extended to provide position tracking

performance improvement [4]-[6], stability in time varying

delay [7], [8] and stability in 4ch architecture framework

[9]. On the other hand, robustness of several controllers was

analyzed to deal with the time delay [10]-[12]. However,

these method can not avoid delayed position or force tracking

and the performance was degradad by the large time delay

bacause of low gain and high damping.

To achieve performance improvement or non-delayed po-

sition or force tracking, the predictive approach was proposed

in [13]-[17]. The control schemes in [13], [14] attempt reduc-

tion of the delay effect in master side by predicting informa-

tion in slave side. These schemes improve the performance

but position tracking is delayed bacause the state of master

was not predicted. In [15], [16], the predictive control was

proposed with master and slave state prediction to attempt

non-delayed position and force tracking or realization delay-

free system. These method can improve the performance

of overall system while preserving closed loop stability. In

these approach, the operator and environmental models are
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required for the control law. Practically, the dynamics of

operator and environment are very complicated and it is

difficult to obtain accurate model. In [17], the predictive PD

control was proposed based on [16]. This method do not

require the operator and environmental model. Furthermore,

if operator and environmental force change slowly during

delay, the prediction error is small and delay-free dynamics

is realized. However, the prediction errors in [16] [17] are

affected by past prediction errors. Thus, convergence of

prediction error to zero requires infinite time.

In this paper, the new state predictors are proposed to

improve the performance of predictors in [16] [17]. The

proposed state predictors are designed based on solution

trajectories of the dynamics. This prediction method is

similar to the method in [18], [19]. The prediction errors

of the proposed predictors do not depend on past prediction

errors. Furthermore, the prediction errors converge to zero

in finite time under certain condition. Proposed predictors

are incorporated to the control structure which is same as

[17]. By using the Lyapunov stability method, the proposed

control structure is shown to be stable even in the presence

of time delay. Experimental results show the effectiveness of

our proposed teleoperation.

II. PROBLEM FORMULATION

A. Dynamics of Teleoperation System

Assuming absence of friction and other disturbances and

compensation of gravity effect, the master and slave robot

dynamics with n-DOF are described as

Mm(qm)q̈m + Cm(qm, q̇m)q̇m = τm + τop (1)

Ms(qs)q̈s + Cs(qs, q̇s)q̇s = τs − τenv (2)

where the “m” and “s” denote the master and the slave

indexes respectively, qm, qs ∈ Rn×1 are the joint angle

vectors, τm, τs ∈ Rn×1 are the input torque vectors, τop ∈
Rn×1 is the operational torque vectors applied to the master

arm by human operator, τenv ∈ Rn×1 is the environmental

torque vectors applied to environment by the slave arm,

Mm(qm), Ms(qs) ∈ Rn×n are the symmetric and positive

definite inertia matrices, Cm(qm, q̇m)q̇m, Cs(qs, q̇s)q̇s ∈
Rn×1 are the centrifugal and Coriolis torque vectors. Since

matrices Mm, Ms, Cm, Cs are linear in terms of the pa-

rameters [15], we can rewrite

Mm(qm)q̈m + Cm(qm, q̇m1)q̇m2 = Ym(q̈m, q̇m1, q̇m2, qm)„m

Ms(qs)q̈s + Cs(qs, q̇s1)q̇s2 = Ys(q̈s, q̇s1, q̇s2, qs)„s

where Ym, Ys ∈ Rn×m are the regressor matrices,

θm, θs ∈ Rm×1 are the parameter vectors.
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In this paper, the time varying communication delays are

considered. It is assumed that the signal transmitted to the

slave(master) from master(slave) is delayed as Tm(t)(Ts(t)).
These delays are assumed to satisfy following assumption.

Assumption 1: The delays Tm(t), Ts(t) can be measured.

Remark 1: Delay estimation has been addressed in the

literature in various manners. One of then is the method

consists of using time-stamping of the transmitted variable.

If the master and slave computers have a synchronized time

basis, one-direction time delay can be measured by sending

a master/slave time signal t to the slave/master side.

In addition, we assume that the operational torque and

environmental torque satisfy the following assumption.
Assumption 2: Let τopj

, τenvj
be j-th element of

τop, τenv , then, there exist positive constant copj
, cenvj

(j = 1, . . . , n) such that

|τopj
(t)| ≤ copj

, |τenvj
(t)| ≤ cenvj

,∀t, (j = 1, . . . , n) (3)

Furthermore, it is assumed that there exist the positive
constants ρopj

, ρenvj
such that

sup
θ∈[−Tm(t),0]

|τopj
(t+θ)−τopj

(t)|≤ ρopj
,∀t, (j=1, . . . , n) (4)

sup
θ∈[−Ts(t),0]

|τenvj
(t+θ)−τenvj

(t)|≤ ρenvj
,∀t, (j=1, . . . , n) (5)

B. Control Objectives

The controller will be designed to achieve following

objectives.

Control Objective:

1) (Stability) The position errors and the velocity errors are

bounded under the communication delay

2) (Non-Delayed Synchronization) If τop = τenv = 0, the

non-delayed synchronization is achieved as follows

lim
t→∞

qm(t) − qs(t) = 0, lim
t→∞

q̇m(t) − q̇s(t) = 0. (6)

3) (Static Force Reflection) If q̈m = q̈s = q̇m = q̇s = 0,

the contact force in slave side are accurately transmitted to

the human operator in the master side as τop = τenv.

If the control objective 2) is achieved, the position tracking

performance degradation due to the delay is alleviated. Note

that the control objective 3) means achievement of minimal

requirement of transparency [5].

III. CONTROLLER DESIGN

This section present the predictor-based control schemes

designed to achieve the control objectives. In this paper,

a new proposed predictors are incorporated to the control

structure which is same as [17]. The control structure is

shown in Fig. 1. The proposed controllers consist of three

parts, “Predictor”, “Trajectory generator” and “Adaptive con-

troller”. The blocks of “Trajectory generator” and “Adaptive

controller” perform impedance shaping and synchronized

control by using the adaptive impedance control framework.

The block of “Predictor” predict the master and slave current

state in the slave and master side to avoid the use of the

delayed information.

A. Impedance Shaping by Adaptive Impedance Control

To transform the control problem of nonlinear dynamics

(1)(2) into a control problem of linear systems, we address

a linearization by the adaptive impedance control. In the

adaptive impedance control framework [20], the reference

trajectory is generated based on the target impedance and the

adaptive controller drives the robot to follow the generated

reference trajectory in order to realize the target impedance.

According to the adaptive impedance control framework,

following input torque is given to master and slave.

fim =−fiop + Ym(q̈mr , q̇m, q̇mr , qm)„m − Kmrm (7)

fis = fienv + Ys(q̈sr , q̇s, q̇sr, qs)„s − Ksrs (8)

˙
„i =−ΓiY T

i (q̈ir , q̇i, q̇ir , qi)ri, (i = m, s) (9)

where ei = qi − qid, q̇ir = q̇id − Λiei, ri = ėi +
Λiei(i = m, s). Λm,Λs, Km, Ks ∈ Rn×n, Γm,Γs ∈
Rm×m are positive definite matrices, θ ∈ Rm×1 are the
estimated parameter vectors. qmd, q̇md, q̈md, qsd, q̇sd, q̈sd

are the trajectories computed according to following linear
equations

M mq̈md = fimd + fiop, M sq̈sd = fisd − fienv (10)

q̇id(0) = q̇i(0), qid(0) = qi(0) (i = m, s)

where Mm = diag{Mm1
, . . . ,Mmn

}, Ms =
diag{Ms1

, . . . ,Msn
} ∈ Rn×n are diagonal positive definite

matrices, τmd, τsd ∈ Rn are the new input torque. The

computation of qmd, q̇md, q̈md, qsd, q̇sd, q̈sd are carried

out by calculation of q̈md, q̈md from τmd+τop, τsd+τenv

at each sampling time and integration of q̈md, q̈sd. Using

this control law, the signals em, ėm, es, ės converge to zero

as following lemma.

Lemma 1: [20] Consider the system (1)(2) and control

law (7)(8) with the parameter adaptation law (9). Assuming

qid,q̇id,q̈id(i = m, s) are bounded, then, the origin of

em, ėm, es, ės are asymptotically stable.

From this lemma, the master and slave track to trajectories

qmd, qsd even in the presence of the parametric uncer-

tainties. Thus, the control problem of nonlinear dynamics

(1)(2) have been transformed into a control problem of linear

systems (10).

B. Synchronized Control Law with Predicted Value

To achieve the non-delayed synchronization, we consider
the synchronized control law with predicted value as follows

fimd = −M mΛq̇md + K(r̂sd − rmd) (11)

fisd = −M sΛq̇sd + K(r̂md − rsd) (12)

where, K = diag{K1, . . . , Kn},Λ = diag{λ1, . . . , λn} ∈
Rn×n are diagonal positive definite matrices, and rmd, rsd

are defined as rmd = q̇md + Λqmd, rsd = q̇sd + Λqsd.

r̂md, r̂sd are predicted value of rmd, rsd, output of predic-

tors mentioned in next section. This control law is similar

to [4], but including predicted value. Combining the control

law (11)(12) with (10) yields

Mmṙmd = K(r̂sd − rmd) + fiop (13)

Msṙsd = K(r̂md − rsd) − fienv (14)

If r̂md = rmd and r̂sd = rsd, these equations (13)(14) are

equivalent to the dynamics of a teleoperation system in [4]

with no delay.
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Fig. 1. Control structure of teleoperation

IV. PREDICTOR DESIGN

In this section, we introduce the proposed predictors and

compare the performance of proposed predictors with the

performance of conventional predictors.

A. Solution Trajectories

A goal of the predictor design is to generate r̂sd(t) at the
master side and r̂md(t) at the slave side. The predictions
of rmd(t), rsd(t) are carried out based on the solution
trajectories of (13)(14). Solving the equations (13)(14), the
solution trajectories can be given as follows

rmd = e−M
−1

m
KTm(t)rmd(t − Tm(t))

+

Z t

t−Tm(t)
e−M

−1

m
K(t−t′)M

−1
m Kr̂sd(t′)dt′

+

Z t

t−Tm(t)
e−M

−1

m
K(t−t′)M

−1
m fiop(t′)dt′ (15)

rsd = e−M
−1

s
KTs(t)rsd(t − Ts(t))

+

Z t

t−Ts(t)
e−M

−1

s
K(t−t′)M

−1
s Kr̂md(t′)dt′

−

Z t

t−Ts(t)
e−M

−1

s
K(t−t′)M

−1
s fienv(t′)dt′. (16)

We design the predictors by using this solution trajectories.

If all terms in right hand of (15)(16) are computable, it is

possible to compute rmd(t), rsd(t) at current time.

B. Proposed Predictor

At first, we consider the prediction of rsd(t) in the master

side. The first term in right hand of (16) is computable in

the master side because rsd(t − Ts(t)) can be obtained in

the master side. And the second term in right hand of (16)

is computable in the master side if r̂md is also calculated in

the master side. However, the third term in right hand of (16)

can not be computable because this computation require the

signal τenv at interval [t − Ts(t), t]. Therefore, we use the

delayed signal τenv(t − Ts(t)) instead of the signal τenv

at interval [t − Ts(t), t]. This idea yields predicted value as

follows

r̂sd = e−M
−1

s
KTs(t)rsd(t − Ts(t))

+

Z t

t−Ts(t)
e−M

−1

s
K(t−t′)M

−1
s Kr̂md(t′)dt′

+

Z t

t−Ts(t)
e−M

−1

s
K(t−t′)M

−1
s fienv(t − Ts(t))dt′ . (17)

Furthermore, based on same idea, the prediction of rmd is
given as

r̂md = e−M
−1

m
KTm(t)rmd(t − Tm(t))

+

Z t

t−Tm(t)
e−M

−1

m
K(t−t′)M

−1
m Kr̂sd(t′)dt′

+

Z t

t−Tm(t)
e−M

−1

m
K(t−t′)M

−1
m fiop(t − Tm(t))dt′ . (18)

From this equations, it is obvious that the prediction error

converge to zero in finite time if operator and environmental

force do not change during the delay time.

C. Boundedness of Prediction Error

The prediction errors r̃md = rmd−r̂md, r̃sd = rsd−r̂sd
are obtained by subtracting (18)(17) from (15)(16).

r̃md =

Z t

t−Tm(t)
e−M

−1

m
K(t−t′)M

−1
m {fiop(t′) − fiop(t − Tm(t))}dt′

r̃sd =

Z t

t−Ts(t)
e−M

−1

s
K(t−t′)M

−1
s {fienv(t − Ts(t)) − fienv(t′)}dt′

(19)

From these equations, it is clear that the prediction errors are

caused by variation of τop, τenv at interval [t−Ts(t), t], [t−
Tm(t), t]. the prediction errors are bounded as following

lemma.

Lemma 2: The prediction errors are bounded as

‖ r̃md(t) ‖≤

v

u

u

t

n
X

j=1

c2mj
,

„

cmj
= ρopj

1 − e
−M

−1

mj
KjTm(t)

Kj

«

(20)

‖ r̃sd(t) ‖≤

v

u

u

t

n
X

j=1

c2sj
,

„

csj
= ρenvj

1 − e
−M

−1

sj
KjTs(t)

Kj

«

(21)

where ‖ · ‖ is the Euclidean norm. cmj
(t), csj

(t) are the

bounds of j-th element of r̃md, r̃sd.

Proof: From the equations (19), the j-th element of
r̃md = [r̃md1

, . . . , r̃mdn
]T is given as follows

r̃mdj
=

Z t

t−Tm(t)
e
−M

−1

mj
Kj(t−t′)

M
−1
mj

{τopj
(t′)−τopj

(t−Tm(t))}dt′ .

(22)

It is easy to show that the absolute value of (22) satisfies
following equation

|r̃mdj
| ≤

Z t

t−Tm(t)
e
−M

−1

mj
Kj(t−t′)

M
−1
mj

˛

˛

˛τopj
(t′)−τopj

(t−Tm(t))
˛

˛

˛dt′.
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Furthermore, Assumption 2 yield

|r̃mdj
| ≤ ρopj

Z t

t−Tm(t)
e
−M

−1

mj
Kj (t−t′)

M
−1
mj

dt′ = cmj
.

From this inequality, (20) is obtained easily. Similarly,

boundedness of r̃sd can be proven.

D. Comparison with Conventional Predictor

If the predictors in [16][17] are used, the prediction errors
r̃md is given as follows

r̃md =

Z t

t−Tm(t)
e−M

−1

m
K(t−t′)M

−1
m {fiop(t′) − fiop(t′ − Tm(t))}dt′

+e−M
−1

m
KTm(t)r̃md(t − Tm(t))

+

Z t

t−Tm(t)
e−M

−1

m
K(t−t′)Emr̃m(t′ − Tm(t))dt′ . (23)

where, Em, Es ∈ Rn×n are gain matrices designed accord-

ing to procedure given in [16]. The first terms in right hand of

(23) are similar to (19). The first terms depend on variation of

τop, τenv . In addition, the second and third terms in right

hand of (23) represent the effect of past prediction errors.

From these equations, the convergence of prediction errors

require long time even if the first terms become zero. On the

other hand, the proposed predictors make prediction errors

become zero immediately if the first terms are zero. Same

results is given for slave state prediction error.

V. STABILITY ANALYSIS

In this section, we analyze the master slave position
error, velocity error and force reflection. To facilitate the
stability analysis, we introduce the error system dynamics.
Subtracting (14) from (13), and defining rsyn = rmd−rsd,
we have following error system

ṙsyn =−(M
−1
m + M

−1
s )Krsyn + M

−1
m fiop + M

−1
s fienv

+M
−1
m Kr̃sd − M

−1
s Kr̃md. (24)

This system (24) is interpreted as stable system affected by

the operator and environmental force and prediction errors.

The following lemma describes the stability of the system

and achievement of the non-delayed synchronization.

Lemma 3: Consider the teleoperation system controlled

by proposed controller with Assumption 1,2. The following

two facts are given.

1) (stability) The position errors and velocity errors are

bounded. Furthermore, if rsyn(0) = 0, the bounds of

position errors and velocity errors in steady state (t → ∞)

are estimated as follows

‖ qm − qs ‖ ≤

v

u

u

t

n
X

j=1

Cj

Λ2
j

, ‖ q̇m − q̇s ‖≤

v

u

u

t

n
X

j=1

4Cj (25)

where Cj = γ2
opj

c2
opj

+ γ2
envj

c2
envj

+ γ2
mj

c2
mj

+ γ2
sj

c2
sj

.
copj

, cenvj
,cmj

, csj
are positive constant defined in Assump-

tion 2 and Lemma 2. γopj
, γenvj

, γmj
, γsj

(j = 1, . . . , n) are
positive constant such that there exist solution pj > 0 (j =
1, . . . , n) of following LMI given γopj

, γenvj
, γmj

, γsj

2

6

6

6

6

6

6

6

6

6

4

−2Kj(M
−1

mj
+M

−1

sj
)pj+1 pjM

−1

mj
pjM

−1

sj
pjM

−1

mj
Kj pjM

−1

sj
Kj

pjM
−1

mj
−γ2

opj
0 0 0

pjM
−1

sj
0 −γ2

envj
0 0

pjM
−1

mj
Kj 0 0 −γ2

mj
0

pjM
−1

sj
Kj 0 0 0 −γ2

sj

3

7

7

7

7

7

7

7

7

7

5

<0

2) (Non-delayed synchronization) If τop, τenv =
0, rsyn(0) �= 0, the non-delayed synchronization is

achieved as limt→∞ ‖ qm − qs ‖, ‖ q̇m − q̇s ‖= 0.
Proof: The proof is shown in appendix A.

To achieve the Control Objective 3), i.e. force reflection, it

is required that the certain condition is satisfied as shown in

following lemma.

Lemma 4: If q̈md = q̈sd = q̇md = q̇sd = 0 and

r̃md, r̃sd = 0 are satisfied, the force reflection τop =
K(qmd − qsd) = τenv is achieved.

Proof: This lemma is proven by substituting q̈md =
q̈sd = q̇md = q̇sd = 0, r̃md, r̃sd = 0 for (13)(14).

By Lemma 1, q̈md = q̈sd = q̇md = q̇sd = 0 imply that

q̈m = q̈s = q̇m = q̇s = 0 in steady state. Thus, Control

Objective 3) is achieved if the accelerations and velocities

of the robots are zero and prediction errors are zero.

From these lemmas, the achievement of control objectives

are concluded as the following theorem.

Theorem 1: Consider the teleoperation system controlled

by proposed controller with Assumption 1,2. Then, The

following three facts are given.

1. The Control Objective 1) is achieved.

2. The Control Objective 2) is achieved if τop, τenv = 0.

3. The Control Objective 3) is achieved in steady state if

q̈md = q̈sd = q̇md = q̇sd = 0, r̃md, r̃sd = 0.

Proof: This theorem can be proven easily from Lemma

1-4.

Remark 2: In this paper we assume only the boundedness

of change of force during delay time for environmental

force. Practically, The environmental force depend on slave

state. If environmental force depend on slave state, the

prediction error depend on slave state. In this case, another

analysis is required. It is future work that analysis with this

environmental model. The stability for slave hard contact is

experimentally evaluated in this paper.

Remark 3: If time delay is large, the operator and envi-

ronment force change during the delay time may be large

and prediction error also increase and tracking error may

be very large. Thus, in the large delay case, performance

of the controller without prediction may be better than this

predictive control.

VI. SIMULATION

In this section, the performance of the proposed predictors
is evaluated by simulation. The proposed predictors are
compared with the conventional predictor. we use the model
of 2-DOF arm (Fig. 2) for simulation. The design parameters
are selected as follows

Mi = diag(2, 1.5), Λ = diag(2, 1.5), K = diag(7, 4) (26)

Γi = diag(1, 1, 1), Ki = diag(8, 5), Λi = diag(5, 3), (i = m, s).

The gains Em, Es = diag(−0.2112,−0.2773) for con-

ventional predictor are designed according to the procedure

in [16]. The delays are Tm = Ts = 0.5[s]. The operator

torque is shown in Fig. 3 and the environmental torque is

zero (τenv = 0). By the definition of τop, we have
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Fig. 6. ‖ q̇m − q̇s ‖

ρop1
= 0.7654, ρop2

= 0.3827, ρenv1
= ρenv2

= 0, cop1
=

1, cop2
= 0.5, cenv1

= cenv2
= 0. From these value and

Lemma 2 and Lemma 3, the estimated bounds are given as

‖ r̃md ‖≤ 0.1146, ‖ qm − qs ‖≤ 0.0874, ‖ q̇m − q̇s ‖≤ 0.3043.

Figs. 4, 5 and 6 show the prediction error ‖ r̃md ‖,

the position error ‖ qm − qs ‖ and the velocity error ‖
q̇m−q̇s ‖ respectively. As shown these results, the prediction

errors, position errors and velocity errors are smaller than

the estimated bounds when proposed predictors are used.

These errors converge to zero after operator torque become

zero. Note that prediction error in proposed predictor case

converge to zero quickly because the proposed predictor is

independent of past prediction errors. By the equation (19),

it is guaranteed that ‖ r̃md ‖= 0 after 5.5[s]. However,

when the conventional predictors are used, the convergence

of prediction error requires long time.

VII. EXPERIMENTAL EVALUATION

In this section, position tracking performance and the per-

formance of the force reflection are evaluated experimentally.

The experiments were carried out on a pair of identical

2 degree of freedom robots as shown in Fig. 2. We use

DS1104(dSPACE Inc.) as a real-time calculating machine

and 1[ms] sampling rate is obtained. All experiments have

been done with an artificial time delay as Tm(t) = Ts(t) =
0.5[s]. The controller parameters are same as (26). We use

the environment of an aluminum wall covered by rubber as

shown in Fig. 2. Two cases of experiments are carried out.

• Case 1: The slave moves without any contact

• Case 2: The slave contacts with the environment
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Fig. 7. Experimental results in free motion (Case 1)
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Fig. 8. Experimental results in constrained motion (Case 2)

Figs. 7(a), (b) and (c) show the joint angles, operator

and environmental torques and prediction errors in Case 1

respectively. As shown in these results, the position error is

bounded. Furthermore, if τop = τenv = 0, non-delayed syn-

chronization is achieved. Compared with the control scheme

without prediction [4], the predictive controller attempt non-

delayed tracking. The comparison between predictive and

non-predictive controller is shown in [17]. Figs. 8(a), (b)

and (c) show the results in Case 2. As shown in these

results, when slave robot is pushing the environment and the

conditions in Lemma 4 (r̃md, r̃sd = 0, q̇s = q̇m = q̈s =
q̈m = 0) are satisfied(10[s]-20[s]), the environmental force

on contact is accurately transmitted to the operator, i.e., force

reflection is achieved.

VIII. CONCLUSION

In this paper, the new state predictors were proposed

to improve the performance of predictors in [16][17]. The

prediction errors of the proposed predictors do not depend on

past prediction errors. Proposed predictors were incorporated

to the control structure which is same as [17] Using the

Lyapunov stability method, the proposed control structure

was shown to be stable. Simulation and Experimental results

showed the effectiveness of our proposed teleoperation.
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APPENDIX

A. Proof of Lemma 3

Proof: (proof of 1)) Let qmj
, qsj

be j-th element of the
vector qm, qs. Considering following equation

|qmj
− qsj

| = |qmj
− qmdj

+ qmdj
− qsdj

+ qsdj
− qsj

|

≤ |qmj
− qmdj

| + |qmdj
− qsdj

| + |qsdj
− qsj

|,

|q̇mj
− q̇sj

| = |q̇mj
− q̇mdj

+ q̇mdj
− q̇sdj

+ q̇sdj
− q̇sj

|

≤ |q̇mj
− q̇mdj

| + |q̇mdj
− q̇sdj

| + |q̇sdj
− q̇sj

|.

The first and third terms in right hand of above equations are
converge to zero in steady state from Lemma 1. Therefore we
consider the second terms in right hand of above equations.

Using the fact that Mm, Ms, K are diagonal, the j-th
element of equation (24) is given as follows

ṙsynj
=−(M

−1
mj

+ M
−1
sj

)Kjrsynj
+ M

−1
mj

τopj
+ M

−1
sj

τenvj

+M
−1
mj

Kj r̃sdj − M
−1
sj

Kj r̃mdj (27)

where rsynj
is defined as j-th element of rsyn. Define the

Lyapunov candidate Vj = rsynj
pjrsynj

. The derivative of
Vj along the solution of the error system gives

V̇j = −rsynj
{2Kj(M

−1
mj

+ M
−1
sj

)pj}rsynj

+2τopj
M

−1
mj

pjrsynj
+ 2τenvj

M
−1
sj

pjrsynj

+2r̃sdjKjM
−1
mj

pjrsynj
+ 2r̃mdjKjM

−1
sj

pjrsynj
.

Using the property that 2ǫ1ǫ2 ≤ γ2ǫ21 + γ−2ǫ22 where γ >
0, we have

V̇j ≤ −rsynj
Nrsynj

− rsynj
rsynj

(28)

+γ2
opj

|τopj
|2 + γ2

envj
|τenvj

|2 + γ2
mj

|r̃mdj
|2 + γ2

sj
|r̃sdj

|2

where, N is defined as follows

N = 2Kj(M
−1
mj

+ M
−1
sj

)pj − γ−2
opj

p2
jM

−2
mj

− γ−2
envj

p2
jM

−2
sj

−γ−2
mj

p2
jM

−2
mj

K2
j − γ−2

sj
p2

jM
−2
sj

K2
j − 1. (29)

If the LMI (26) holds, then N > 0. Using Assumption
2, Lemma 2 and the fact that r2

synj
= Vj/pj , following

differential inequality is obtained

V̇j ≤−
Vj

pj

+ γ2
opj

c2
opj

+ γ2
envj

c2
envj

+ γ2
mj

c2
mj

+ γ2
sj

c2
sj

.

The solution of this differential inequality is given as follows

Vj(t) ≤ Vj(0)e
−

t
pj + pjCj{1 − e

−
t

pj } (30)

where Cj = γ2
opj

c2
opj

+ γ2
envj

c2
envj

+ γ2
mj

c2
mj

+ γ2
sj

c2
sj

.

Using the assumption that rsyn(0) = 0, we have Vj ≤ pjCj .

Therefore, |rsynj
| ≤

√

Cj is obtained. Let qmdj
, qsdj

be j-

th element of the vector qmd, qsd, then, we have following

equation from definition of rsynj

rsynj
= q̇mdj

− q̇sdj
+λj(qmdj

− qsdj
).

From this equation, qmdj
− qsdj

can be expressed as

qmdj
− qsdj

=e−λjt{qmdj
(0)−qsdj

(0)}+

Z t

0
e−λj(t−t′)rsynj

dt′.

This equation and the fact that |rsynj
| ≤

√

Cj give

|qmdj
− qsdj

|≤|e−λjt{qmdj
(0)−qsdj

(0)}|+
p

Cj

Z t

0
e−λj(t−t′)dt′.

Hence, we have

lim
t→∞

|qmdj
− qsdj

| =
p

Cj/λj . (31)

Furthermore, definition of rsyn gives following inequality

|q̇mdj
− q̇sdj

| ≤ λj |qmdj
− qsdj

| + |rsynj
|.

Therefore, we have

lim
t→∞

|q̇mdj
− q̇sdj

| ≤ 2
p

Cj . (32)

Using the equations (27)(31)(32), we obtain

lim
t→∞

|qmj
− qsj

| ≤
p

Cj/λj , lim
t→∞

|q̇mj
− q̇sj

| ≤ 2
p

Cj .

(proof of 2)):If τop, τenv = 0, prediction errors are also

zero. Therefore, error system dynamics become ṙsyn =

−(M
−1
m + M

−1
s )Krsyn. It is easy to prove the lemma by

using the fact that this system is asymptotically stable.
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