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Abstract—Traffic state estimation is a challenging problem for
the transportation community due to the limited deployment of
sensing infrastructure. However, recent trends in the mobile
phone industry suggest that GPS equipped devices will become
standard in the next few years. Leveraging these GPS equipped
devices as traffic sensors will fundamentally change the type
and the quality of traffic data collected on large scales in the
near future. New traffic models and data assimilation algorithms
must be developed to efficiently transform this data into usable
traffic information.

In this work, we introduce a new partial differential equation
(PDE) based on the Lighthill-Whitham-Richards PDE, which
serves as a flow model for velocity. We formulate a Godunov
discretization scheme to cast the PDE into a Velocity Cell
Transmission Model (CTM-v), which is a nonlinear dynamical
system with a time varying observation matrix. The Ensemble
Kalman Filtering (EnKF) technique is applied to the CTM-
v to estimate the velocity field on the highway using data
obtained from GPS devices, and the method is illustrated
in microsimulation on a fully calibrated model of I880 in
California. Experimental validation is performed through the
unprecedented 100-vehicle Mobile Century experiment, which
used a novel privacy-preserving traffic monitoring system to
collect GPS cell phone data specifically for this research.

I. INTRODUCTION

A. Highway Traffic Monitoring at the Age GPS-Enabled
Mobile Devices

A common feature of the current highway traffic monitoring

infrastructure is the heavy investment required to develop,

deploy, and maintain it. In California, the two principle
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means of monitoring include inductive loop detectors (ILD)

used in the PeMS system [1], and in-vehicle transponders
(IVTs) such as FasTrak. Recently, cellular phone based

highway traffic monitoring has shown promise for obtaining

cheap, reliable real time traffic information, without the high

infrastructure and maintenance costs incurred by either the

State or the Federal Departments of Transportation. This

emergence began with the Wireless Communications and
Public Safety Act of 1999, which required US telephone

carriers to develop an Enhanced 911 service with the ability

to locate the position of the cellular phones. Since the mid

1990’s a significant amount of experimental research [2], [3],

[4], [5] has attempted to address the practicality of these

systems, with limited success for estimation of travel times

due to the poor quality position measurement accuracy of

the trilateration based methods. However, the convergence

of communication and multi-media platforms (Nokia N95,

iPhone, Android platform) has enabled a key new component

in monitoring: mobility monitoring via GPS. Business plans

of most major cellular phone manufacturers such as Nokia

include the embedding of GPS receivers in most cell phones

in the next few years, subsequently leading to a very high

penetration rate of GPS equipped travelers on freeways in

the near future.

B. A New Data Source for Inverse Models

The potential availability of high quality position and speed

data at a high penetration rate provides motivation for the de-

velopment of new inverse modeling techniques to reconstruct

highway traffic flows, densities and speeds from these mobile

measurements. Inverse modeling techniques use a flow model

and available measurements to provide an optimal estimate of

the state variables of the model based on the measurements.

This reconstruction of the state of a system using data is

also called data assimilation [6]. Unlike ILDs which produce

occupancy counts and limited quality speed measurements

for all vehicles at a single point on the highway, GPS

based cell phone sensing provides accurate position and

speed information from a population of equipped vehicles.

Because the density is not measured and cannot easily be

extrapolated from speed measurements, traditional highway

traffic theory such as the Lighthill-Whitham-Richards (LWR)

partial differential equation (PDE) [7], [8] and related density
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based algorithms such as [9] cannot be used as such for

data assimilation. The principle objective of this work is

to develop new inverse modeling techniques specifically

designed to use velocity measurements as inputs, incorporate

them into a flow model for velocity, and to produce an

optimal estimate of the velocity field on a highways.

C. Related Work

Kalman Filtering (KF) has been widely used for traffic

state estimation in earlier studies in its various forms. In [10],

[11], Mixture Kalman Filtering (MKF) was applied to the

Cell Transmission Model (CTM) to estimate traffic densities

for ramp metering. The nonlinear CTM was transformed into

a switching state space model, which enabled the use of a

set of linear equations to describe the state evolution for the

distinct flow regimes on the highway (e.g. highway is in free-

flow or congestion). In [12], a Kalman Filter was used to

incorporate Lagrangian velocity trajectories into a density

based CTM for highway traffic. A real time algorithm for

traffic estimation based on the Extended Kalman Filter (EKF)

using second order PDE as a flow model was used in [13].

Other treatments of traffic monitoring include adjoint based

data assimilation in [14], [15], Unscented Kalman Filtering
(UKF) in [16] and Particle Filtering (PF) in [16], [17], [18],

[19].

A common factor for the CTM based methods [10], [11],

[12] described above is that the evolution of traffic state

(typically density, not velocity) relies on a set of linearized

equations which are needed in order to use the KF or

EKF techniques. On the other hand, the fully nonlinear PF

technique is more accurate, but has a higher computational

cost. The approach proposed in this work employs Ensemble
Kalman Filtering (EnKF), which enables the use of fully

nonlinear evolution equations such as the discretization of

the new flow model proposed in this article, while exploiting

its linear observation equation. Unlike UKF, which uses a

deterministic sampling technique, EnKF uses Monte Carlo

integrations to maintain the nonlinear features of error statis-

tics. Furthermore, by employing a fully nonlinear velocity

evolution model, no highway-mode-selection-algorithms or

simplifications to the equations are needed in this work.

This work is organized as follows. In section II, we

propose a new velocity flow model for highways based on

the LWR PDE and discretize it using a Godunov scheme.

We detail the EnKF algorithm which enables us to maintain

the nonlinearities of the velocity CTM-v in section III.

Finally, in section IV, this new data assimilation algorithm

for highway velocity field reconstruction is implemented in

microsimulation, and as a real-time application through the

Mobile Century experiment which occurred on February 8,

2008.

II. HIGHWAY TRAFFIC FLOW MODEL

A. Speed Evolution Equation

To address the problem of reconstruction of the veloc-

ity field on the highway, we introduce a new first order

hyperbolic PDE similar to the LWR PDE, which models

the evolution of speed on the highway. This PDE can be

shown to be equivalent to the kinematic wave theory for the

Greenshields flux function. This PDE is referred to as LWR-v

PDE (“v” for velocity). Proper weak boundary conditions are

defined to formulate the well posedness of an initial boundary

value problem.

The seminal LWR equation proposed in [7] and [8] to

model traffic on highways reads:

∂ρ

∂t
+

∂q

∂x
= 0 (1)

where q(x, t) and ρ(x, t) respectively denote the flow of ve-

hicles and their density at location x and time t. Additionally

we denote v(x, t) the velocity field on the highway. Equation

(1) is derived from hydrodynamics theory and expresses the

conservation of mass for a fluid of density ρ and of flux q
and is considered relevant to model traffic on highway (see

[20], [21] for more background).

In order to express the flow q as a function of the

density ρ traffic theory uses an empirical relation called the

fundamental diagram:

q(x, t) = Q(ρ(x, t)) (2)

where Q is the flux function which is assumed to be

independent from time and space. One of the seminal flux

functions used is the Greenshields flux function [22] which

expresses a linear relation between ρ and v as:

v = vmax

(
1 − ρ

ρmax

)
(3)

where vmax and ρmax denote respectively the maximal ve-

locity and the maximal density allowed by the model.

When the flux function is a Greenshields flux function, it

is possible to invert the speed-density function and express

ρ as a function of v, namely ρ = ρmax

(
1 − v

vmax

)
. Thus

inserting this expression of ρ in (1), one can re-write the

LWR PDE on ρ as a LWR-v PDE:

∂v

∂t
+

∂

∂x
(R(v)) = 0 (4)

where R(v) = (v)2−vmax v, using the notation (v)2 := vv to

avoid confusion with discretization indices introduced later.

The simple variable change v = v − vmax
2 transforms

equation (4) into:

∂v

∂t
+

∂

∂x
(v)2 = 0 (5)

on the domain (x, t) ∈ ]a, b[ × ]0, T [, which is a Burgers

equation with a factor 1
2 omitted (see [23]).

The initial condition and boundary conditions of (4) in

weak form read:

∀x ∈ ]a, b[ v (x, 0) = v0(x) (6)
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and

v(a, t) = va(t) or
R′ (v(a, t)) ≤ 0 and R′ (va(t)) ≤ 0 or
R′ (v(a, t)) ≤ 0 and R′ (va(t)) ≥ 0 and R (v(a, t)) ≥ R (va(t))

(7)

and

v (b, t) = vb (t) or
R′ (v (b, t)) ≥ 0 and R′ (vb(t)) ≥ 0 or
R′ (v (b, t)) ≥ 0 and R′ (vb(t)) ≤ 0 and R (v (b, t)) ≥ R (vb(t))

(8)

where va(t) and vb(t) denote the boundary conditions that

are applied but which are not always active, as described

by the above equations. As demonstrated in [24], the PDE

(4) with the initial condition (6) and the weak boundary

conditions (7)-(8) admits a unique entropy solution in the

space BV (]a, b[×]0, T [).

Figure 1. Greenshields model. Left: Classical fundamental diagram
(parabolic). Center: Linear relation between speed and density. Right: Flux
function for the LWR-v PDE (4). The flux is parabolic with negative values.

The fundamental properties of the LWR PDE (1) are con-

served in the LWR-v PDE (4). First, the speed of a charac-

teristic, given for a state (ρ0, v0) by the derivative of the flux

function in (ρ0, v0) is the same for both PDEs. Indeed, for

the LWR PDE it is:

Q′(ρ0) = vmax − 2 ρ0
vmax

ρmax
(9)

whereas for the LWR-v PDE it is:

R′(v0) = 2 v0 − vmax (10)

and these two expressions are equivalent given relation (3).

Second, the Rankine-Hugoniot relation giving the speed of

shocks for conservation laws is also preserved. Indeed, the

speed of a shock between a state (ρ1, v1) and a state (ρ2, v2)
is given for the LWR PDE by:

Q(ρ1) − Q(ρ2)
ρ1 − ρ2

= vmax − vmax

ρmax
(ρ1 + ρ2) (11)

whereas for the LWR-v PDE it is given by:
R(v1) − R(v2)

v1 − v2
= (v1 + v2) − vmax (12)

Given the speed-density relation (3) expressed by the Green-

shields model, these two expressions can also be checked to

give the same speed for a shock.

B. Numerical Discretization

For practical implementation, the LWR-v PDE is discretized

using a Godunov numerical scheme to obtain a velocity cell
transmission model (CTM-v) [20], [21], [25]. In this section

we detail the use of the Godunov scheme (see [25], [26])

for equation (5). This scheme is known to be convergent for

convex and concave flux functions ([25], [26], [27]) such as

the Greenshields flux function.

Let N, M ∈ Z the set of integers, we discretize time and

space in N time steps Jn (0 ≤ n ≤ N ) of length Δt = T
N

and M space cells Ii (0 ≤ i ≤ M ) of length Δx = b−a
M . We

call vn
i the discrete value of v on Ii × Jn. According to the

Godunov scheme, at each time step vn+1
i is computed from

the previous time step by the following formula:

vn+1
i = vn

i − Δt

Δx

(
g

(
vn

i , vn
i+1

) − g
(
vn

i−1, v
n
i

))
(13)

where the numerical flow g is defined, as follows:

g (v1, v2) =

⎧⎪⎪⎨
⎪⎪⎩

R (v2) if v1 ≤ v2 ≤ vc

R (vc) if v1 ≤ vc ≤ v2

R (v1) if vc ≤ v1 ≤ v2

max (R (v1) , R (v2)) if v1 ≥ v2

(14)

with vc defined to be the minimum of the convex flux func-

tion from equation (4) (for example: vc = 0 for R(v) = v2,

and vc = vmax
2 for R(v) = (v)2−vmaxv). For stability of the

numerical discretization, the spatial and temporal step sizes

must obey the Courant-Friedrichs-Lewy (CFL) condition:∣∣∣∣ Δt

Δx
max (R′(v))

∣∣∣∣ ≤ 1 (15)

In order to implement the weak boundary conditions defined

in the previous section, we use ghost cells placed at each side

of the domain defined by the strong boundary conditions we

would like to be satisfied, namely:

vn
−1 =

1
Δt

∫
Jn

va (t) dt and vn
M+1 =

1
Δt

∫
Jn

vb (t) dt (16)

with Jn =
[
n T

N , (n + 1) T
N

]
. The choice of the Godunov

scheme to solve a first order scalar hyperbolic conservation

law such as (4) is standard in literature. Note that equations

(13)-(14)-(16) could also be viewed as a counterpart of the

cell transmission model for speed.

This model is thus a nonlinear dynamical system, in which

the state of the system vn = [vn
0 , vn

2 , · · · , vn
M ] is the vector

of velocities in all cells at time step n. Letting M represent

the nonlinear discrete time dynamical system model (13)-(14)

for the full state vector vn, and ηn the state noise, the state

dynamics of the system can be written as:

vn+1 = M[vn] + ηn (17)

Here the state noise ηn represents the modeling error intro-

duced by discretization and uncertain boundary conditions.
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For more information on modeling errors and state noise

covariance estimation, see for example [28], [29].

The observation equation can be written as follows:

yn = Hn[vn] + εn = Hnvn + εn (18)

where Hn ∈ {0, 1}pn×M encodes the pn discrete cells on the

highway for which the velocity is observed during discrete

time step n, and εn is the Gaussian observation noise with

covariance Rn associated with the observation. In the event

no equipped vehicles are in the spatial domain during a

particular timestep, Hn reduces to the zero matrix.

III. SPEED ESTIMATION

A. Ensemble Kalman Filter

A common approach to solving the inverse modeling problem

for linear time invariant (LTI) systems is to implement a KF

algorithm [30], which is particularly well suited for real-time

algorithms because of its recursive nature. Only the previous

state of the system is needed to optimally integrate new

measurements in the Minimum Mean Square Error (MMSE)

sense. Due to the nonlinearity of the CTM-v, the standard KF

can not be used. Furthermore, due to the nondifferentiability

in the flux function of CTM-v the EKF has limited applica-

bility. Hence, we extend this framework by implementing

an Ensemble Kalman Filter (EnKF) algorithm [31], first

introduced in [32], for the velocity data assimilation problem.

EnKF is a sequential data assimilation method, which uses

Monte Carlo or ensemble integrations. By integrating an

ensemble of model states forward in time, it is possible to

compute the mean and error covariances needed at analysis

times (measurement update) [33], [34]. The analysis scheme

in the EnKF uses traditional update equations of the KF,

except that the Kalman gain is computed using the error

covariances provided by the ensemble of model states.

The nonlinearities introduced by CTM-v equation are cap-

tured well by EnKF because of the sample based computation

of covariance matrices in contrast to tangent linear models

(Jacobian matrix) used in EKF.

The EnKF algorithm can be broken into three phases [33]:

1) First, we generate and ensemble of model states by

drawing K samples ξ0
k ∈ R

M+1, k = 1, . . . , K, from

a Gaussian prior distribution to initialize the algorithm.

These samples represent our prior knowledge of the

initial velocity field v0 on the highway. We assume that

the initial velocity profile on the highway is smooth,

without shocks. The construction of a smooth prior is

made using a framework proposed in [35]. With this

approach we can generate initial model states which

maintain the same correlation properties regardless of

the discretization level (number of cells) of the CTM-v

model.

2) Next, a prediction ξ̂n
k of ξn

k is made from the CTM-v

model:

ξ̂n
k = M[ξn−1

k ] + ηn−1
k (19)

We then compute the mean of the ensembles:

vn =
1
K

K∑
k=1

ξ̂n
k (20)

from which the covariance Pn of the predicted state

can be computed as:

Pn =
1

K − 1
En (En)T

(21)

where matrix En is defined as:

En = [ξ̂n
1 − vn, · · · , ξ̂n

K − vn] (22)

3) Next we compute the Kalman gain Gn:

Gn = Pn (Hn)T [HnPn (Hn)T + Rn]−1 (23)

Finally, the ensemble ξn
k is updated with new measure-

ments yn as follows:

ξn
k = ξ̂n

k + Gn[yn − Hnξ̂n
k + εn

k ] (24)

Note that since the state of the dynamical system (in this case,

velocity) is directly observed, the observation equation (18) is

linear. This feature enables the Kalman gain to be computed

explicitly in the EnKF algorithm, which circumvents the need

for more computationally expensive particle filters.

The presence of εn in (24) is important both from a

physical interpretation, as well as for the stability of the

convergence of the EnKF routine. When the state of the

highway is observed from GPS measurements, εn accounts

for the GPS position and speed error. During field testing with

the Nokia N95 mobile device, a mean velocity error of 3 mph

has been observed giving approximate lane level position

accuracy. From an algorithmic viewpoint, the random error is

shown in [36] to be necessary to maintain sufficient variance

in the ensemble and to prevent filter divergence.

IV. IMPLEMENTATION AND VALIDATION

We have implemented the EnKF on the LWR-v PDE

as a traffic estimation algorithm in a privacy-preserving

architecture described in detail in earlier work [37]. While the

EnKF algorithm can be used for assimilating velocity data

collected from a variety of sources, we test it using a special

sampling system which collects speed and position data of

vehicles which have GPS enabled mobile devices (such as a

cell phone) on-board. When the car passes prescribed points

along the highway known as Virtual Trip Lines (VTLs), the

mobile device records, encrypts, and transmits the data to a

proxy server for further scrubbing of personal information.

The virtual trip lines can be thought of as virtual ILDs, which

record the speed of selected vehicles, instead of density.

A second server unlocks the encrypted traffic information

before it is sent to the EnKF CTM-v model server for data

assimilation. Using this framework, we validate the EnKF

CTM-v algorithm both in simulation, and through a field

experiment.
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Figure 2. Paramics velocity contours. Top: Ground truth velocity contour
average across all vehicles. Bottom: Estimated velocity contour from the
EnKF CTM-v algorithm (19)-(24) at 5% penetration rate. X-axis: position
along highway in postmile; Y-axis: time of day.

A. Paramics Microsimulation

We analyze the performance of the EnKF CTM-v algo-

rithm using the Paramics Microscopic Traffic Simulation

software [38], calibrated for highway I880 south of Oakland,

CA. The 1880 calibrated model produces individual trajecto-

ries on the highway for each vehicle in the simulation, and it

has previously been used for bottleneck identification in [39].

For this experiment, a subset of the vehicles are randomly

selected as vehicles which are equipped with GPS phones.

The percentage of equipped vehicles relative to the total

traffic flow is known as the penetration rate. Ten VTLs are

placed evenly between Industrial Parkway (postmile 24.917)

and Tennyson Rd. (postmile 25.767) which cause equipped

northbound vehicles to report speeds and positions after

crossing the VTL.

The highway is discretized into ten spatial cells, and we

take a timestep of two seconds in order to maintain stability

in the Godunov numerical scheme (15). A maximum speed of

70 mph is assumed for the Greenshields equivalent velocity

flux function. The simulation is run for two hours, over which

time congestion increases and the speed of flow decreases.

Just after 3:30 pm in the simulation, the four lane averaged

speeds decrease from the 65-70 mph free flow speed to

speeds ranging between 20-40 mph. The congestion and

corresponding slowdown is captured in the ground truth

velocity contour shown at the top of Fig. 2.

In order to compare the performance of the EnKF CTM-

v algorithm, a simple averaging-based estimation scheme is

introduced. For this scheme, the velocity vn
i in the discrete

cell Ii×Jn is computed from the average of all measurements

observed
(
vobs

)n

i
in each discrete cell as:

vn
i =

{
vn−1

i if vobs = ∅
(vobs)

n
i otherwise

(25)

Figure 3. Error comparison of the EnKF CTM-v scheme (19)-(24) (solid)
and the averaging scheme (25) (dashed) using Paramics. Top: Relative error
computed from (26) as a function of penetration rate. Bottom: Absolute
error computed from (27) as a function of penetration rate.

The mean point-wise L1 relative error vre between the

estimated velocity vest and the ground truth velocity vgt is

computed by:

vre =
1

MN

M∑
i=0

N∑
n=0

∣∣∣(vest)
n
i −

(
vgt

)n

i

∣∣∣(
vgt

)n

i

(26)

and the mean point-wise L1 absolute error vae of the discrete

density field is computed as:

vae =
1

MN

M∑
i=0

N∑
n=0

∣∣∣(vest)
n
i −

(
vgt

)n

i

∣∣∣ (27)

In Fig. 2 the error plot of the estimate of the EnKF plot

relative to the ground truth shows that the main features of

the shock wave are captured, even with the relatively low

penetration rate of 5%. It is worth noting that the highway

exhibits lane shearing, where vehicles in each lane have

different mean speeds. The result is that vehicles sampled

from the same discrete space and time cell, but from different

lanes may have significant variance relative to the lane

averaged mean speed. As the penetration rate increases (see

Fig. 3), the sampled vehicles become more representative of

the the flows on each lane, and thus more accurately predict

the lane averaged mean speed.

The added value of the EnKF CTM-v algorithm is shown

in Fig. 3, relative to a simple averaging estimate based on
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tracking. For this comparison, the complete trajectories of the

equipped vehicles are observed and used in the simple aver-

aging scheme (25), representing a privacy intrusive method

in which the complete vehicle path is known. Alternatively,

the EnKF CTM-v algorithm only integrates the velocities

observed as a result of the equipped vehicle crossing the

VTL. Even by assimilating less data, the EnKF CTM-v

estimate has less error than the averaging scheme. At low

penetration rates, the EnKF CTM-v algorithm reduces the

relative error by 8% or three miles per hour, and as the

penetration rate increases, the simple averaging estimate

converges towards the EnKF CTM-v estimate. Although the

relative error remains large at low penetration rates, the error

occurs in the congested regime where the ground truth speed

is slower and absolute errors are magnified.

B. February 8, 2008: Large Scale Field Test

Nicknamed the Mobile Century experiment, on February 8,

2008, the new privacy-preserving data collection system was

built and used to estimate traffic conditions for a day on I-880

near San Francisco, CA. With the help of 165 UC Berkeley

students, 100 vehicles carrying Nokia N95 phones drove

repeated loops of six to ten miles in length continuously

for eight hours. These vehicles represented approximately

5% of the total volume of traffic on the highway during the

experiment.

This section of highway was selected specifically for its

complex traffic properties, which include alternating periods

of free-flowing, uncongested traffic, and slower moving traf-

fic during periods of heavy congestion. The section is also

covered with existing ILDs feeding into the PeMS system,

which will be used to further assess the quality of the EnKF

estimates in future work.

Qualitatively, the algorithm was validated around 10:30 am

when a multiple car accident created significant unanticipated

congestion on northbound traffic south of CA 92. The EnKF

algorithm, running in real-time during the experiment, de-

tected the accident’s resulting bottleneck and corresponding

shock wave. Fig. 4 shows the slowdown as estimated by the

EnKF CTM-v model and broadcast during the experiment,

compared to the live 511 traffic service [40] which includes

data from ILDs.

V. CONCLUSION AND FUTURE WORK

This work presents a method for assimilating GPS speed

and position data into a new velocity model derived from

the LWR PDE. By working directly with the velocity PDE,

conversions to density for data assimilation and back to

velocity for travel time computations are eliminated. At

low penetration rates, the method implemented using the

VTL framework outperforms trajectory averaging based on

tracking, despite using less data. Given that all data must be

transmitted across a cellular network, optimal data assimi-

lation methods will be increasingly important to efficiently

use limited data streams. Furthermore, the recursive structure

of the EnKF method is well suited for real-time applications

Figure 4. I880 traffic report, 10:52 am, Feb. 8, 2008. A multi-car accident on
the northbound lanes caused unexpected congestion. Foreground: 511 traffic
information system; Background: EnKF CTM-v algorithm output. Numbers
in circles correspond to speed in mph.

such as demonstrated during the February 8, 2008 Mobile
Century experiment.

In addition to improving estimates at low penetration rates,

the EnKF CTM-v algorithm has additional features which we

intend to highlight in future work. The framework can be run

forward in time to produce forecasts of the traffic state, in

addition the current state estimates presented here. This will

be important to compute dynamic travel times that account

for changes in the traffic state as the vehicle travels on the

highway.

Finally, as historic data is collected, the model accuracy

can be improved, by computing more accurate state noise

and observation noise covariance matrices used to model the

system dynamics. In a way similar to the accumulation of his-

torical data for the PeMS system, the availability of training

data will become large in the future as the penetration rates

of GPS-equipped cellular phones on the highway increases.

ACKNOWLEDGMENT

The authors wish to thank Dr. David Sutter, Dr. Murali

Annavaram, and Dr. Quinn Jacobson of Nokia Research

Center Palo Alto, Baik Hoh and Prof. Marco Gruteser

of Winlab at Rutgers University, and Ryan Herring, Juan

Carlos Herrera and Dr. Jeff Ban of UC Berkeley for their

invaluable contributions to develop, build, and deploy the

traffic monitoring system implemented as part of the Mobile

Century experiment. We thank the staff of the California

Center for Innovative Transportation for the Mobile Century

logistics planning and and successful implementation. The

authors thank Dr. Jeff Ban for assistance with the Paramics

simulations and for capturing in real time the images in Fig.

4 during the field test on Feb. 8, 2008. This research was

supported by Caltrans, Nokia, the Center for Information

Technology Research in the Interest of Society, the Finnish

Funding Agency for Technology and Innovation (Tekes),

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB18.6

5067



and the National Science Foundation under contract CNS-

0615299.

REFERENCES

[1] C. CHEN, P. VARAIYA, and J. KWON, “An empirical assessment of
traffic operations,” in International Symposium on Transportation and
Traffic Theory, College Park, MD, July 2005, pp. 19–21.

[2] UNIVERSITY OF MARYLAND TRANSPORTATION STUDIES CENTER,
Final evaluation report for the CAPITAL-ITS operational test and
demonstration program. Transportation Studies Center, University
of Maryland, 1997.

[3] J. YGNACE, C. DRANE, Y. YIM, and R. DE LACVIVIER, Travel time
estimation on the San Francisco Bay area network using cellular
phones as probes. California PATH Program, Institute of Trans-
portation Studies, University of California, Berkeley, CA, 2000, no.
UCB-ITS-PWP-2000-18.

[4] B. SMITH, H. ZHANG, M. FONTAINE, and M. GREEN, Cell phone
probes as an ATMS tool. Center for Transportation Studies, University
of Virginia, June 2003, no. UVACTS-15-5-79.

[5] Y. YIM and R. CAYFORD, Investigation of vehicles as probes using
global positioning system and cellular phone tracking: field opera-
tional test. California PATH Program, Institute of Transportation
Studies, University of California, Berkeley, CA, 2001, no. UCB-ITS-
PWP-2001-9.

[6] G. EVENSEN, Data Assimilation: The Ensemble Kalman Filter. Se-
caucus, NJ: Springer-Verlag, 2006.

[7] M. LIGHTHILL and G. WHITHAM, “On kinematic waves. II. A theory
of traffic flow on long crowded roads,” Proceedings of the Royal
Society of London. Series A, Mathematical and Physical Sciences, vol.
229, no. 1178, pp. 317–345, 1955.

[8] P. I. RICHARDS, “Shock waves on the highway,” Operations Research,
vol. 4, no. 1, pp. 42–51, 1956.

[9] H. HAJ-SALEM and J. LEBACQUE, “Reconstruction of false and miss-
ing data with first-order traffic flow model,” Transportation Research
Record, vol. 1802, pp. 155–165, 2002.

[10] X. SUN, L. MUNOZ, and R. HOROWITZ, “Highway traffic state
estimation using improved mixture Kalman filters for effective ramp
metering control,” in Proc. of the 42nd IEEE Conference on Decision
and Control, vol. 6, Maui, HI, 2003.

[11] ——, “Mixture Kalman filter based highway congestion mode and
vehicle density estimator and its application,” in Proc. of the American
Control Conference, vol. 3, Boston, MA, 2004, pp. 2098 – 2103.

[12] J. HERRERA and A. BAYEN, “Traffic flow reconstruction using mobile
sensors and loop detector data,” in 87th TRB Annual Meeting. Wash-
ington D.C.: Transportation Research Board, January 12-17 2008.

[13] Y. WANG and M. PAPAGEORGIOU, “Real-time freeway traffic state
estimation based on extended Kalman filter: a general approach,”
Transportation Research Part B, vol. 39, no. 2, pp. 141–167, 2005.

[14] D. JACQUET, C. CANUDAS DE WIT, and D. KOENIG, “Traffic control
and monitoring with a macroscopic model in the presence of strong
congestion waves,” in Proc. of the 44th IEEE Conference on Decision
and Control, and European Control Conference, Sevilla, Spain, 2005,
pp. 2164–2169.

[15] D. JACQUET, M. KRSTIC, and C. CANUDAS DE WIT, “Optimal control
of scalar one-dimensional conservation laws,” in Proc. of the 25th
American Control Conference, Minneapolis, MN, 2006, pp. 5213–
5218.

[16] R. BOEL. L. MIHAYLOVA and A. HEGYI, “Freeway traffic estimation
within recursive bayesian framework,” Automatica, vol. 43, no. 2, pp.
290–300, 2007.

[17] L. MIHAYLOVA and R. BOEL, “A particle filter for freeway traffic
estimation,” in Proc. of the 43rd IEEE Conference on Decision and
Control, vol. 2, 2004, pp. 2106–2111.

[18] J. SAU, N. EL FAOUZI, A. BEN ASSA, and O. DE MOUZON, “Particle
filter-based real-time estimation and prediction of traffic conditions,”
Applied Stochastic Models and Data Analysis, vol. 12, 2007.

[19] R. BOEL. Z. LENDEK. A. HEGYI, L. MIHAYLOVA, “Parallelized
particle filtering for freeway traffic state tracking,” in Proc. of the
European Control Conference, Kos, Greece, July 2007, pp. 2442–2449.

[20] C. DAGANZO, “The cell transmission model: a dynamic representation
of highway traffic consistent with the hydrodynamic theory,” Trans-
portation Research Part B, vol. 28, no. 4, pp. 269–287, 1994.

[21] ——, “The cell transmission model, part II: network traffic,” Trans-
portation Research Part B, vol. 29, no. 2, pp. 79–93, 1995.

[22] B. GREENSHIELDS, “A study of traffic capacity,” Highway Research
Board, vol. 14, pp. 448–477, 1935.

[23] L. EVANS, Partial Differential Equations. Providence, RI: American
Mathematical Society, 1998.

[24] C. BARDOS, A. Y. LEROUX, and J. C. NEDELEC, “First order
quasilinear equations with boundary conditions,” Communications in
partial differential equations, vol. 4, no. 9, pp. 1017–1034, 1979.

[25] S. GODUNOV, “A difference method for the numerical calculation
of discontinuous solutions of hydrodynamic equations,” Mathematics
Sbornik, vol. 47, no. 3, pp. 271–306, 1959.

[26] R. LEVEQUE, Numerical Methods for Conservation Laws. Basel,
Switzerland: Birkhäuser Verlag, 1992.

[27] I. STRUB and A. BAYEN, “Weak formulation of boundary conditions
for scalar conservation laws: An application to highway traffic mod-
elling,” Int. J. Robust Nonlinear Control, vol. 16, pp. 733–748, 2006.

[28] J. KAIPIO and E. SOMERSALO, Statistical and Computational Inverse
Problems. New York, NY: Springer, 2005.

[29] A. Seppänen, M. Vauhkonen, E. Somersalo, and J. Kaipio, “State
space models in process tomography – approximation of state noise
covariance,” Inverse Problems in Engineering, vol. 9, pp. 561–585,
2001.

[30] R. KALMAN, “A new approach to linear filtering and prediction
problems,” Transactions of the ASME Journal of Basic Engineering,
vol. 82, pp. 35–45, 1960.

[31] G. EVENSEN, “The ensemble kalman filter: theoretical formulation
and practical implementation,” Ocean Dynamics, vol. 53, no. 4, pp.
343–367, 2003.

[32] ——, “Sequential data assimilation with a nonlinear quasi-geostrophic
model using monte carlo methods to forecast error statistics,” Journal
of Geophysical Research, vol. 99, no. C5, pp. 10 143–10 162, 1994.

[33] A. HEEMINK, M. VERLAAN, and A. SEGERS, “Variance reduced
ensemble Kalman filtering,” Monthly Weather Review, vol. 129, pp.
1718–1728, 2001.

[34] G. BURGERS, P. VAN LEEUWEN, and G. EVENSEN, “Analysis scheme
in the ensemble Kalman filter,” Monthly Weather Review, vol. 126, pp.
1719–1724, 1998.

[35] J. KAIPIO and E. SOMERSALO, “Statistical inverse problems: Dis-
cretization, model reduction and inverse crimes,” Journal of Computa-
tional and Applied Mathematics, vol. 198, no. 2, pp. 493–504, 2007.

[36] G. BURGERS, P. JAN VAN LEEUWEN, and G. EVENSEN, “Analysis
scheme in the ensemble Kalman filter,” Monthly Weather Review, vol.
126, no. 6, pp. 1719–1724.

[37] B. HOH, M. GRUTESER, R. HERRING, J. BAN, D. WORK, J. HER-
RERA, A. M. BAYEN, M. ANNAVARAM, and Q. JACOBSON, “Virtual
trip lines for distributed privacy-preserving traffic monitoring,” to
appear, MobiSys 2008, Breckenridge, CO.

[38] QUADSTONE LIMITED, “PARAMICS Modeller Version 5.1 Reference
Manual,” 2004.

[39] X. BAN, L. CHU, and H. BENOUAR, “Bottleneck identification and cal-
ibration for corridor management planning,” Transportation Research
Record, vol. 1999, pp. 40–53, 2007.

[40] “511,” publically available as a service provided to Bay Area
commuters by the Metropolitan Transportation Commission,
http://www.511.org.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB18.6

5068


