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Abstract— This paper presents functional differential inclu-
sion based approach to investigate the stabilization of discontin-
uous nonlinear systems with time delay. First, the conception
of Filippov solution for ordinary differential equations with
discontinuous right-hand side is extended to discontinuous
systems with time delay, which is a solution of functional
differential inclusions determined by the Filippov set-valued
functional. With this conception and the strong stability, it is
shown that the Lyapunov stability framework can be easily
extended to discontinuous systems with time delay. Then, the
feedback stabilization problem for a class of discontinuous
nonlinear systems with time delay is investigated with the
proposed functional differential inclusion-based framework. It
is shown that for the systems, a stabilization controller can be
provided by a by means of a system-related function satisfying
HJI inequality. Finally, to demonstrate the design process of the
proposed approach, an application example with automotive
system background is addressed.

I. INTRODUCTION
The investigations on discontinuous dynamical systems

have been a concerned subject for several decades (see the
early contributions of Clark [1], Filippov [2], and others
[3]-[7]). The dynamics of such systems is determined by
discontinuous vector fields, for which the existence of a con-
tinuous differentiable solution is not guaranteed. Thus, a lot
of challenges have been encountered to provide analysis and
synthesis tools in the control theory community, especially
on studying of nonlinear systems. To study the Lyapunov
stability, the classical Lyapunov theory for systems described
by continuous differential equations can not be applied
directly to discontinuous dynamical systems. Consequently,
there have been efforts made on establishing generalized
framework. Some results can be seen in [3], [4] that are
suitable for qualitative analysis of a class of special discon-
tinuous systems, and in [5], [6], differential inclusion-based
approaches have been discussed with nonsmooth Lyapunov
conditions.

On the other hand, time-delay phenomena also always
arise in system dynamics [8]. Since time delay has significant
impact on the performance of control systems, there is
continuous interest on investigating systems with time delay,
such as the attentions focused on stabilizing nonlinear time-
delay systems [9], [10]. Moreover, it is noticed that the
Lyapunov stability results of [3] have been extended in [11],
[12] to discuss discontinuous dynamical systems with time
delay. However, to the best known of our knowledge, there is
not any report on providing a general framework to analyze
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and synthesize discontinuous nonlinear systems with time
delay.

As well known, the framework of differential inclusions,
such as Filippov [2], is an useful tool to interpret discon-
tinuous differential equations. With the notion of differen-
tial inclusion, new definition of solution for discontinuous
differential equations is given, the corresponding properties
are studied for existence, uniqueness and continuity, and the
generalized Lyapunov theories are also developed [5], [6].
Meanwhile, it is known that systems with time delay are usu-
ally described by functional differential equations (FDEs),
and it is noticed that functional differential inclusion (FDI),
which can be discussed with respect to FDEs is actually a
general type of differential inclusions. A systematic study
for solution properties of FDIs has been shown in [13], the
existence results have been offered in [14] for convex FDIs,
and a few arguments for stability analysis have been given
in [15].

The mentioned previous works provide the basic moti-
vations to pay attention to FDIs for control and analysis
of dynamical systems. The objective of this paper is to
establish Lyapunov stability results from the viewpoint of
FDIs, which are applied to address the feedback stabilization
problem of a class of discontinuous nonlinear systems with
time delay. First, the Filippov framework is extended to
FDI that provides a new definition of the solution. Then,
as a trivial extension of the Lyapunov-Krasovskii theorem
[16] for FDEs, the corresponding theorem is also presented
to evaluate the behavior of FDIs. With these preliminaries,
a feedback design approach is shown that guarantees the
strong asymptotic stability of the closed-loop control sys-
tems. Finally, the speed control problem of spark ignition (SI)
engines is used as an application example of the proposed
techniques, where both the intake-to-power delay and the
disturbances due to the transitions among different operation
modes are taken into account.

Notations: Rn denotes the n-dimensional Euclidean space
with the norm of x in Rn denoted by ‖ x ‖. Rn×m denotes
n×m-dimensional matrix. Let r be a given positive number.
Cr = {φ | φ : [0,r]→ Rn} and the norm of an element φ in Cr
is designated by ‖ φ ‖c:= sup0≤τ≤r ‖ φ(τ) ‖. x is a function
taking [−r,∞) into Rn where x(t) denotes the value of x at
t. xt denotes an element of Cr defined by xt(τ) = x(t− τ),
τ ∈ [0,r] where xt(τ) denotes the value of xt at τ . Without the
confusion, we use symbol x denoting the variable x(t). Here,
we recall that a continuous function Wi(·) : [0,a)→ [0,∞) is
said to belong to class K if it is strictly increasing and
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Wi(0) = 0. L fV = ∂V
∂x f denotes the Lie derivative of V (x)

with respect to f (x).

II. MATHEMATICAL FRAMEWORK
It is known that for the systems described by differential

equations with discontinuous right-hand side, the Filippov
framework is well developed to analyze the behavior of the
dynamical systems. For discontinuous systems with time de-
lay, the dynamics is represented by FDEs with discontinuous
right-hand side. A feasible way to analyze the behavior of
discontinuous FDEs is to extend the Filippov framework.
Based on the extension, the generalized Lyapunov stability
criteria can be developed.

A. Definitions

Consider the following FDE

ẋ(t) = f (xt) (1)

where ẋ(t) is the right-hand derivative of x(t) and f (xt) :
Cr → Rn is locally bounded. Suppose that f (xt) is discontin-
uous at a given surface S f defined by

S f = {xt | S(xt(0)) = 0} (2)

where S(xt(0)) is a smooth function.

Definition 1. With an initial time t0, a function x(·) : [−r+
t0, t1]→ Rn (t1 > t0) is called a Filippov solution of (1), if
x(·) is absolutely continuous on [−r + t0, t1] and

ẋ(t) ∈K[ f ](xt) (3)

holds for almost every t ∈ [t0, t1], where K[ f ](xt): Cr →Ω⊂
B(Rn) denotes the set-valued map defined by

K[ f ](xt) =
⋂

δ>0

⋂

µ(S)=0

co{ f (B(xt ,δ )/S)} (4)

where
⋂

µ(S)=0 denotes the intersection over all sets S of
Lebesgue measure zero and

B(xt ,δ ) := {xt ′ ∈Cr | ‖ xt ′ − xt ‖c< δ}

From Definition 1, it is clear that the Filippov solution of
(1) is the solution of FDI (3). In the following, we denote the
solution of the FDI (3) with an initial function x0(τ) := φ(τ)
as xt(φ), where τ ∈ [0,r], φ ∈Cr.

Remark 1. It is clear that the set-valued map defined
by (4) is a trivial extension of the Filippov set-valued map,
which is originally presented by Filippov for discontinuous
differential equations [2], however, it should be noticed that
K[ f ](xt) is a set-valued functional.

Remark 2. If we consider piecewise continuous FDEs,
and notice that an equivalent definition for the Filippov
set-valued map has been given in [17], then an equivalent
definition of (4) can also be given by

K[ f ](xt) = co{lim
i→∞

f (xi
t) | xi

t → xt ,xi
t /∈ S f } (5)

where S f denotes the set of points where f is nondifferen-
tiable, and is measure zero.

Example 1: Consider the following system

ẋ(t) =−ax(t)+bsign(x(t))x(t− τ) (6)

with τ ∈ [0,r]. Using the notation

f (xt) =−axt(0)+bsign(xt(0))xt(τ)

it is clear that functional f (xt) is discontinuous at the surface

S f = {xt | S(xt(0)) = xt(0) = 0} (7)

According to Definition 1 and Remark 2, the associated set-
valued map is calculated as follows

K[ f ](xt) =



{−axt(0)+bxt(τ)}, xt(0) > 0
{−axt(0)+λ ·bxt(τ) | λ ∈ [−1,1]}, xt(0) = 0
{−axt(0)−bxt(τ)}, xt(0) < 0

(8)

In this paper, we investigate the Lyapunov stability of
system (1) with FDI (3). Here we discuss the strong stability
with respect to all the solutions, since in general the solution
of a FDI is not unique. Without loss of generality, we suppose
that 0 ∈K[ f ](0).

Definition 2. [6] The solution x = 0 of (3) is said to be
strongly stable if for any ε > 0, there exists a δ (ε) > 0 such
that all the solutions ‖xt(φ)‖c ≤ ε , t ≥ t0 for any initial
condition φ satisfying ‖φ‖c ≤ δ . Furthermore, the solution
x = 0 is said to be strongly asymptotically stable if it is
strongly stable and all xt(φ)→ 0 as t → ∞.

As well known, the right upper Dini’s derivative is used in
time-delay systems for evaluating the non-increasing prop-
erty of a functional along the solution of the system as shown
in the following definition.

Definition 3. [16] If V (xt) :Cr →R is continuous and xt(φ)
is a solution of (3) starting from φ , the directional derivative
of V along xt(φ) is defined by

V̇ (xt(φ)) := limsup
h→0+

V (xt+h(φ))−V (xt(φ))
h

(9)

B. Stability condition

For a given solution of FDI (3), the boundedness and
convergence can be evaluated by investigating the non-
increasing property of a Lyapunov-Krasovskii functional on
t along the solution. In fact, note that the solution of FDI is
absolutely continuous, then the function on t determined by
the Lyapunov-Krasovskii functional with respect to system
states will be an absolutely continuous function, if we
suppose the functional is absolutely continuous on xt [18].
Hence, the Lyapunov-Krasovskii functional is differentiable
on t almost everywhere. Furthermore, if the time derivative
of the functional is nonpositive almost everywhere along all
the solutions, then the strong stability of the system can be
guaranteed [19]. As mentioned in [20], this time derivative
is equivalent to the Dini’s derivative almost everywhere.
As a conclusion, we can investigate the strong stability of
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FDIs (3) by evaluating the derivative of Lyapunov-Krasovskii
functional along all the solutions, which is summarized as
follows.

Theorem 1. Suppose f (xt): Cr → Rn is bounded. If there
exists an absolutely continuous functional V (xt): Cr →R and
W1(·),W2(·) ∈K such that

W1(|xt(0)|)≤V (xt(φ))≤W2(‖ xt(φ) ‖c) (10)

V̇ (xt(φ))≤ 0 (11)

hold for all xt(φ), then x = 0 is a strongly stable solution of
(3). In addition, if there exists a function W3(·) ∈K such
that

V̇ (xt(φ))≤−W3(|xt(0)|) (12)

then, the solution x = 0 of (3) is strongly asymptotically
stable.

Remark 3. It should be noted that the time derivative
requested in Theorem 1 is difficult to calculate when the
solution is not given. For evaluating a time derivative of a
nonsmooth function along a solution of differential inclusion,
the generalized time derivative, which is a set-valued map
and includes the time derivative almost everywhere, is intro-
duced in [5], [6] with Clark’s generalized gradient [1]. In the
next section, for the FDI-based control design, we will also
introduce a set-valued map denoted by ˙̂V , which contains
the time derivative of the Lyapunov-Krasovskii functional
candidate almost everywhere.

C. Special case of Lyapunov-Krasovskii functional

In many cases, a Lyapunov-Krasovskii functional candi-
date is constructed as follows [16]

V (xt) = V1(xt(0))+V2(xt) (13)

where V1 : Rn →R is a differentiable function and V2 : Cr →R
is a functional with the integral form

V2(xt) =
∫ t

t−τ
Q(x(s))ds

where τ ∈ [0,r] and Q(s) > 0,∀s 6= 0,Q(0) = 0. Due to the
set-valued property of FDI, the following derivative (14) of
V (xt) should be discussed when judge the stability of the
system with Theorem 1.

V̇ (xt) = ∇V1
(
xt(0)

)
ξ (t)+Q

(
x(t)

)−Q
(
x(t− τ)

)
,

∀ξ (t) ∈K[ f ](xt)
(14)

Corollary 1. Consider system (3) and an absolutely con-
tinuous Lyapunov-Krasovskii functional candidate V (xt) with
the form

V (xt) = V1(xt(0))+
∫ t

t−τ
Q(x(s))ds

If there exists a class K function W (·) such that

∇V1(xt(0)) ξ +Q(x(t))−Q(x(t− τ))≤−W (|xt(0)|)
holds ∀ξ ∈K[ f ](xt), then the solution x = 0 of (3) is strongly
asymptotically stable.

Example 2: Recall example 1 and suppose b≤ b̄. Construct
a Lyapunov-Krasovskii functional for system (6)

V (xt) =
1
2

x2
t (0)+

∫ t

t−τ
x2(s)ds (15)

Along the Filippov solution of system (6), the time derivative
of V (xt) is

V̇ (xt) = x ·ξ + x2− x2(t− τ)

where ξ (t) belongs to the set-valued map (8). Since

x ·ξ =−ax2 +b|x|x(t− τ)

and substituting it into (II-C), we have

V̇ (xt)≤−(a−1)x2 + |b||x|‖x(t− τ)‖c− x2
t

by Corollary 1, the trivial solution of system (6) is strongly
asymptotically stable if a > (b̄2 +1)/4.

III. STABILIZATION DESIGN

In this section we investigate the stabilization design
problem for a class of discontinuous nonlinear time-delay
system described by the form

ẋ(t) = f (x,xt)+h(xt)δ (xt)+g(xt)u (16)

where x ∈ Rn represents the system state, u ∈ Rm is the
control input, f (·) : Cr → Rn is a nonlinear functional with
f (0,0) = 0, δ (·) : Cr → Rp denotes a piecewise continuous
functional that is discontinuous on the surface Sδ (xt) =
{xt | S(xt(0)) = 0}, and h(·) : Cr → Rn×p, g(·) : Cr → Rn×m

with h(0) = 0, g(0) = 0 are known continuous functionals
which are assumed to satisfy the matching condition

h(xt) = g(xt)η(xt) (17)

where functional η(·) : Cr → Rm×p is continuous differential.

Theorem 2. For system (16), suppose that the following
conditions are satisfied
H1: Functional f (x,xt) is continuous and can be represented

by
f (x,xt) = f0(x)+ f1(x)e(xt) (18)

where f0(·) : Rn → Rn is a known continuous function,
e(·) : Cr → Rq is a known continuous functional and
f1(·) : Rn → Rn×q is a known matrix whose entries are
continuous functions.

H2: There exists a C1 nonnegative function V1(xt(0)) : Rn →
R with V1(0) = 0 and a positive-definite function Q(x)
such that

L f0V1 +
1
2
‖LT

f1V1‖2 +
1
2
‖e(x)‖2 ≤−Q(x) (19)

Then, system (16) is strongly asymptotically stabilized by the
feedback control law

u = α(xt) =−sign(LgV1) |η(xt)|γ∗t (φ) (20)

with
γ∗t (φ) = max

γt (φ)∈K[δ ](xt )
{|γt(φ)|} (21)
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Proof: Let F(xt) = f (x,xt)+ h(xt)δ (xt)+ g(xt)u,then,
according to definition 1, the Filippov solution of the closed
loop system (16) consisting with (20) is the solution of the
following FDI

ẋ ∈K[F ](xt)⊂ f (x,xt)+h(xt)K[δ ](xt)+g(xt)K[α](xt)
(22)

Choose a candidate of Lyapunov-Krasovskii functional in the
form of (13) as follows

V (xt) = V1(xt(0))+
1
2

∫ t

t−τ
‖e(x(s))‖2ds (23)

and define a set for the time derivative of V1 with respect to
(22) by

˙̂V 1(xt(φ)) =
{

λt(φ) | λt(φ) = L fV1 +LhV1 · γt(φ)+

LgV1 ·νt(φ),∀γt(φ) ∈K[δ ](xt),∀νt(φ) ∈K[α](xt)
} (24)

Then, along any solution xt(φ) of FDI (22), there exists a
λt(φ) ∈ ˙̂V (xt(φ)) such that

V̇ (xt(φ)) = λt(φ)+
1
2
‖e(x)‖2− 1

2
‖e(xt)‖2 (25)

and from the assumptions H1-H2, it is easy to deduce that

V̇ (xt(φ))

= L f0V1 +L f1V1 · e(xt)+LgV1 ·η(xt)γt(φ)+LgV1 ·νt(φ)

≤−Q(x)− 1
2‖LT

f1V1− e(xt)‖2−‖e(xt)‖2

(26)
Hence, by Theorem 1, the solution x = 0 of the system (16)
connecting with (20) is strongly asymptotically stable.

Corollary 2. Suppose that the functional f (x,xt) satisfies
the decomposition of (19) but f0 : Rn → Rn is piecewise
continuous, and the following condition

∂V1

∂x
γ ′t (φ)+ 1

2‖LT
f1V1‖2 + 1

2‖e(x)‖2 ≤−Q(x),

∀γ ′t (φ) ∈K[ f0](x)
(27)

holds with a C1 positive-definite function V1(xt(0)) and a
positive-definite function Q(x). Then, system (16) is strongly
asymptotically stable under the feedback control law (20).

Remark 4. Theorem 2 shows that the nonlinear dis-
continuous time-delay system (16) can be stabilized by a
discontinuous delay-dependent feedback controller, however,
it should be noted that due to the assumptions H1 and H2,
the system under consideration is a special case of (16).
Then, we will show that the proposed design method can
be extended and applied to more general systems. First,
we consider the case when system (16) can be rendered
by a state feedback compensation to satisfy the condition
(19), then the whole control law can be obtained by the
combination of the compensation and the controller given by
Theorem 2. Furthermore, note that a smooth function f (x,xt)
with respect to x and xt can be always decomposed by [21]

f (x,xt) = f0(x)+ f1(x,xt) (28)

and for a given V1(x) ∈C1, the Lie derivative L f1V1(x,xt) is
a continuous function which satisfies [22]

|L f1V1(x,xt)| ≤ va(x)vb(xt) (29)

where va(x) > 1 and vb(xt) > 1 are smooth. According to
these properties, if suppose that f (x,xt) in system (16) is
smooth, then an argument similar to Theorem 2 obtains
the stabilizing controller with a new Lyapunov-Krasovskii
functional candidate.

Theorem 3. Suppose that condition H1 holds, and if there
exists a C1 positive-definite function V1(xt(0)) such that

L f0V1 +
1
2

(‖LT
f1V1‖2−‖LT

g V1‖2)+
1
2
‖e(x)‖2 < 0 (30)

then, system (16) is strongly asymptotically stable under the
feedback controller given by

u = β (x)− sign(LgV1) |η(xt)|γ∗t (φ) (31)

with
β (x) =−1

2
LT

g V1 (32)

Proof: First, consider a subsystem of (16)

ẋ = f (x,xt)+g(xt)β (x) (33)

Then, by taking the conditions (18) and (30) into account,
we get the time derivative of V1 along any solution of (33)
satisfying

V̇1 = L f0V1 +L f1V1 · e(xt)+LgV1 ·β (x)

< − 1
2‖LT

f1V1‖2− 1
2‖e(x)‖2 +L f1V1 · e(xt)

(34)

with β (x) being given by (32). In this case, it is clear that
the remainder of the proof is straightforward from the proof
of Theorem 2.

Theorem 4. For system (16), suppose f (x,xt) is smooth
and the following condition is satisfied
H3: There exists a C1 positive-definitive function V1(xt(0))

and a positive-definite function Q(x) such that

L f0V1 +
1
2

v2
a(x)+

1
2

v2
b(x)≤−Q(x) (35)

Then, the closed-loop system (16) with (20) is strongly
asymptotically stable.

Proof: First, note that by using the relations (28) and
(29), the time derivative of V1 along the trajectory of system
ẋ = f (x,xt) satisfies

V̇1 = L f0V1 +L f1V1

≤ L f0V1 + va(x)vb(xt)

≤ L f0V1 + 1
2 v2

a(x)+ 1
2 v2

b(xt)

(36)

and by the assumption H3, it yields

V̇1 ≤−Q(x)− 1
2

v2
b(x)+

1
2

v2
b(xt) (37)
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Then, choose a candidate Lyapunov-Krasovskii functional as
follows

V (xt) = V1(xt(0))+
1
2

∫ t

t−τ
v2

b(x(s))ds (38)

and compute its time derivative along any Filippov solution
of the closed-loop system of (16) with (20). It is straightfor-
ward to get

V̇ (xt)≤−Q(x) (39)

Therefore, the strong asymptotic stability of the closed-loop
system follows by Theorem 1.

IV. DESIGN EXAMPLE OF ENGINE SYSTEM

For the speed control of SI engines, it is well known that
the intake-to-power delay is one of the main difficulties in the
phases of control design and evaluating, moreover, rejecting
load disturbance effectively is also an significant issue (refer
to [23], [24]). In order to improve control precision, we pay
attention to several typical disturbance torques which are
usually known but possess switching properties according
to engine speed or its acceleration direction, such as the
engagement of automatic transmission and the electrical
load due to the operation mode switching in hybrid electric
vehicles.

In practical engineering, the mean value engine model de-
veloped in [24] is used widely, which includes the crankshaft
rotational dynamics and the intake air dynamics. With a few
minor extensions, it is described as follows

ω̇(t) = c1 pm(t− td)−Dω(t)−Tl(t) (40)
ṗm(t) = c2ut(t)− c3 pm(t)ω(t) (41)

where td denotes the intake-to-power delay and Tl represents
the load torque which is assumed to be modeled by

Tl = Tl0 +Tl1sign(ω−ω∗) (42)

where Tl0 > 0 denotes a fixed torque value and Tl1 > 0
denotes the torque variation under the speed command signal
ω∗. The other definitions of the parameters in the model
and the expressions of the parameterized coefficients ci (i =
1−3) are shown in the appendix.

The design objective for engine speed acceleration con-
trol is as follows. Consider the case ωd > ω∗. For any
given desired speed ωd , design a feedback controller ut =
α(ω,ωd , pm) for throttle opening such that ω →ωd as t →∞
with any switching setting values ω∗. For simplicity, we
suppose that all the system parameters and the torque values
Tl0, Tl1 are known and both the states ω and pm can be
measured.

Usually, the tracking control problem is solved by render-
ing the error between the desired trajectory and the actual
output to be 0. By this motivation, we introduce the following
feedback compensations first,

pmd = 1
c1

(Dω +Tl0 +Tl1− kω eω), and

ut = u+ 1
c2

[
c3 pmω− D−kω

c1
(−kω eω +Tl1)− kpep

] (43)

where kω , kp are given control parameters and u is the new
control input signal, then the error dynamic system can be
deduced as follows




ėω = −kω eω + c1ep(t− td)+Tl1−Tl1 sign(eω +σ)

ėp = c2u− kpep− (D− kω)ep(t− td)+
D−kω

c1
Tl1 sign(eω +σ)

(44)
where σ = ωd−ω∗. Let x = [eω ep]T , then, system (44) can

be rewritten by

ẋ = f0(x)+ f1(x)ep(t− td)+h(xt)δ (xt)+g(xt)u (45)

where δ (xt) = sign(eω +σ) and

f0(·) =
[ −kω eω +Tl1−Tl1 sign(eω +σ)

−kpep

]
,

f1(·) =
[

c1
−(D− kω)

]
, h(·) =

[
0

(D−kω )Tl1
c1

]
,

g(·) =
[

0
c2

]

Choose a C1 positive-definite function V1(xt(0)) as follows

V1 =
1
2
(e2

ω + e2
p) (46)

then, it is easy to see that the condition (27) is satisfied with

kω >
c2

1
2

and kp > 1− 1
2
(D− kω)2

Therefore, by Corollary 2, the desired feedback controller
for system (44) is

u =−sign(c2ep)
|D− kω |Tl1

c1c2
(47)

The effectiveness of the proposed engine speed controller
has been tested by simulation, where the initial speed value
is set at ω(0) = 1000[rpm], and ωd , ω∗ are set at 3000[rpm]
and 2000[rpm], respectively. With the control parameters
kω = 0.2, kp = 15, we get the response results shown in Fig.1
that demonstrate the asymptotic stability of the closed-loop
control system.

V. CONCLUSIONS
Filippov framework for describing the behavior of the

solution of differential equations is not new in the com-
munity of mathematics, and recently, the framework has
been introduced to analyze and synthesize discontinuous
systems [2], [5], [6]. The basic idea is to use the solution
of differential inclusion determined by Filippov set-valued
map. In this paper, we have shown that by introducing a
Filippov set-valued functional for FDEs, the conception of
Filippov solution with the stability analysis framework can
be also extended to discontinuous systems with time delay.
It should be noted that the proposed design approach is a
kind of domination-based control, which is motivated by
robust design principle, more exactly, the presented controller
uniformly ensures the stability for all possible Filippov solu-
tions, and it is fortunately benefited by the smooth Lyapunov
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function. The presented example of engine control shows the
feasibility of the proposed control approach.
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Fig. 1. Simulation results of the engine speed control problem

APPENDIX I

Parameter definitions of engine model:

c1 = aρaTaVcη
4πTm pa

, c2 = RTms0 fp(pm)
Vm

, c3 = Vcη
4πVm

,

D = D0
J , Tl0 = τl0

J , Tl1 = τl1
J , u = 1− cosφ

ω Engine speed ([rad · s−1])
J Crankshaft inertia (0.1[kg ·m2])
D0 Damping coefficient (0.034[Nm · s · rad−1])
s0 Throttle area (3.5×10−3[m2])
φ Throttle opening ([rad])
Vc Engine volume (3.0×10−6[m3])
pm Manifold pressure ([Pa])
Tm Manifold temperature (298.15[K])
Vm Manifold volume (6.0×10−3[m3])
R Gas constant (287)
pa Atmospheric pressure (1.01×105[Pa])
Ta Atmospheric Temperature (298.15[K])
ρa Atmospheric density (1.1837[g ·m−3])
τl Load torque ([Nm])
η Volumetric efficiency (1[−])
a Maximum torque capacity (6.25×105[−])
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and discontinuous Carathèodory systems”, Automatica vol.42, 2006,
pp.453-458.

[20] P. Pepe, “On Liapunov-krasovskii functional under Carathèodory
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