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Abstract— This paper proposes a decentralized model predic-
tive control method based on a dual decomposition technique.
A model predictive control problem for a system with multiple
subsystems is formulated as a convex optimization problem. In
particular, we deal with the case where the control outputs of
the subsystems have coupling constraints represented by linear
equalities. A dual decomposition technique is applied to this
problem in order to derive the dual problem with decoupled
equality constraints. A projected subgradient method is used
to solve the dual problem, which leads to a decentralized
algorithm. In the algorithm, a small-scale problem is solved
at each subsystem, and information exchange is performed in
each group consisting of some subsystems. Also, it is shown that
the computational complexity in the decentralized algorithm is
reduced if the dynamics of the subsystems are all the same.
Numerical examples are given to show the effectiveness of the
proposed method.

I. INTRODUCTION

Research on control, estimation, and consensus under dis-

tributed and networked computing environments has received

significant attention in recent years [3], [4], [5], [7], [8]. The

common concept of such research is that an overall system

achieves a goal while multiple subsystems interact with one

another.

Keviczky et al. [4] have proposed a decentralized receding

horizon control method and studied its stability conditions.

Receding horizon control is a basic idea for model predictive

control (MPC), and is based on optimization for control

systems at each sampling time. The MPC was applied to

systems with slow dynamics such as chemical plants. Nowa-

days, however, it is applicable to systems with fast dynamics

such as mechanical systems because of performance progress

of computers.

On the other hand, Samar et al. [8] have proposed a

distributed estimation method via dual decomposition. The

dual decomposition is a method for breaking a large-scale

optimization problem into multiple small-scale optimization

subproblems. Although information exchange among the

subproblems is needed to solve the original problem, the

decomposition method is useful for computational efficiency

under distributed computing environments. The dual de-

composition method has been also applied to trajectory

optimization [6] and communication systems [9].

In this paper, we propose a decentralized MPC method

based on the dual decomposition technique. We formulate an

original MPC problem for a system with multiple subsystems

as a convex optimization problem. In particular, we deal with
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the case where the control outputs of the subsystems have a

coupling constraint represented by linear equalities. For in-

stance, such an output constraint corresponds to formation of

multiple vehicles. We next derive the dual problem associated

with the original problem by applying a dual decomposition

technique. We use a projected subgradient method to solve

the dual problem, which leads to a decentralized algorithm.

This paper is organized as follows. In Section II, we

formulate an MPC problem, and in Section III, we present a

decentralized MPC algorithm derived from the dual decom-

position technique. In Section IV, we discuss some cases of

problem structures. Section V provides numerical examples

to show the effectiveness of the proposed method.

II. PROBLEM FORMULATIOM

A. Model Predictive Control

We consider a system consisting of N subsystems repre-

sented by an SISO discrete-time linear time-invariant model:

x
(i)
k+1 = A(i)x

(i)
k + B(i)u

(i)
k

y
(i)
k = C(i)x

(i)
k (1)

where u
(i)
k ∈ ℜ, x

(i)
k ∈ ℜn(i)

x , and y
(i)
k ∈ ℜ are the control

input, the state variable, and the control output, respectively,

of subsystem S(i), i = 1, . . . , N , and A(i), B(i), and C(i)

are the coefficient matrices.

For subsystem S(i), i = 1, . . . , N , we define the following

performance index at time k:

J
(i)
k =

m
∑

j=1

(

y
(i)
k+j

)2

+ w(i)
m−1
∑

j=0

(

u
(i)
k+j

)2

where w(i) > 0 is a weight, and m is the prediction horizon.

Our control problem is now represented by the following

optimization problem:

minimize
u

(i)

k+j
,i=1,...,N,j=0,...,m−1

N
∑

i=1

J
(i)
k (2)

subject to y
(1)
k+j + p

(1)
k+j = · · · = y

(N)
k+j + p

(N)
k+j ,

j = 1, . . . ,m

u
(i)
k+j ∈ U (i)

k+j , i = 1, . . . , N,

j = 0, . . . ,m − 1

where U (i)
k+j is a convex set, and p

(i)
k+j specifies a relative

difference to the outputs of the other subsystems. We assume

that p
(i)
k+j is smaller than y

(i)
k+j to avoid contradiction between

the objective and the constraint. For instance, the output

constraint can represent a formation constraint of vehicles.
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Fig. 1. An example of formation control of N subsystems.

The problem (2) is a convex optimization problem since

the objective function is quadratic and convex, and the

constraints are convex.

In an MPC scheme, the optimization problem (2) is solved

at each sampling time. Then the first control input u
(i)∗
k from

the optimal control input sequence u
(i)∗
k+j , j = 0, . . . ,m−1 is

implemented. This procedure is repeated at time k + 1. The

goal represented by the problem (2) is that the inputs and

outputs of the overall system go to zero while the specified

output formation constraint and the control input constraint

are satisfied. Fig. 1 shows an example of formation control

of N subsystems S(1), . . . , S(N).

B. Reformulation by Vector and Matrix Representation

For convenience, we express system (1) in terms of vectors

and matrices. From system (1), we obtain








y
(i)
k+1
...

y
(i)
k+m









=







C(i)A(i)

...

C(i)(A(i))m






x

(i)
k

+













C(i)B(i) 0 · · · 0

C(i)A(i)B(i) C(i)B(i) 0
...

... · · · . . . 0
C(i)(A(i))m−1B(i) · · · · · · C(i)B(i)













·









u
(i)
k
...

u
(i)
k+m−1









. (3)

By denoting

ŷ
(i)
k =









y
(i)
k+1
...

y
(i)
k+m









, F (i) =







C(i)A(i)

...

C(i)(A(i))m







H(i) =













C(i)B(i) 0 · · · 0

C(i)A(i)B(i) C(i)B(i) 0
...

... · · · . . . 0
C(i)(A(i))m−1B(i) · · · · · · C(i)B(i)













û
(i)
k =









u
(i)
k
...

u
(i)
k+m−1









, p̂
(i)
k =









p
(i)
k+1
...

p
(i)
k+m









,

(3) is written as follows:

ŷ
(i)
k = F (i)x

(i)
k + H(i)û

(i)
k . (4)

Therefore, we express the performance index J
(i)
k as

J
(i)
k = ‖ŷ(i)

k ‖2 + w(i)‖û(i)
k ‖2

where ‖ · ‖ denotes the Euclidean norm. As a concequence,

we obtain a more compact form of the optimization problem

(2):

minimize
û

(i)

k
,i=1,...,N

N
∑

i=1

J
(i)
k (5)

subject to ŷ
(1)
k + p̂

(1)
k = · · · = ŷ

(N)
k + p̂

(N)
k ,

û
(i)
k ∈ Û (i)

k , i = 1, . . . , N

where Û (i)
k = U (i)

k × · · · × U (i)
k+m−1. Although the objective

function in (5) is decomposed into the individual perfor-

mance index for each subsystem, the optimization problem

(5) is not solved individually for each subsystem because

of the coupling equality constraint on the control outputs.

Therefore, the optimization problem (5) must be solved at

one computer by gathering information on all subsystems,

which implies that (5) must be solved in a manner of

centralized control.

III. DECENTRALIZED CONTROL VIA DUAL

DECOMPOSITION

In this section, we present a decentralized algorithm

for solving the optimization problem (5) by using a dual

decomposition technique.

A. Dual Problem

We consider the case where the subsystems communicate

with their neighbors as shown in Fig. 2. More concretely,

subsystem S(i) performs information exchange with subsys-

tem S(i−1) and S(i+1). We refer to such a pair as a group

for information exchange. This system has a chain structure.

Corresponding to the N − 1 groups, we express the

equality constraint in (5) as the following equivalent equality

constraints:

ŷ
(1)
k + p̂

(1)
k = ŷ

(2)
k + p̂

(2)
k (6)

ŷ
(2)
k + p̂

(2)
k = ŷ

(3)
k + p̂

(3)
k

...

ŷ
(N−1)
k + p̂

(N−1)
k = ŷ

(N)
k + p̂

(N)
k .

S(1) S(N)S(2) S(3)

Information exchange

Group 1 Group 2 Group N-1

…

Fig. 2. Groups for information exchange.
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Here we introduce variables z
(i)
k for these equalities, and

express them as follows:
[

ŷ
(i)
k + p̂

(i)
k

ŷ
(i+1)
k + p̂

(i+1)
k

]

=

[

I
I

]

z
(i)
k , i = 1, . . . , N − 1. (7)

We assume that C(i)B(i) 6= 0. Since H(i) is nonsingular, we

obtain from (4) and (7),
[

û
(i)
k

û
(i+1)
k

]

=

[

(H(i))−1

(H(i+1))−1

]

z
(i)
k −

[

r
(i)
k

r
(i+1)
k

]

,

where r
(i)
k = (H(i))−1(F (i)x

(i)
k + p̂

(i)
k ).

Next, we form the partial Lagrangian, by introducing La-

grange multipliers only for the coupling equality constraints

L(ûk, zk, νk)

=

N
∑

i=1

J
(i)
k −

N−1
∑

i=1

[(ν
(i,1)
k )T (ν

(i,2)
k )T ]

([

û
(i)
k

û
(i+1)
k

]

−
[

(H(i))−1

(H(i+1))−1

]

z
(i)
k +

[

r
(i)
k

r
(i+1)
k

])

(8)

where

ûk =









û
(1)
k
...

û
(N)
k









, zk =









z
(1)
k
...

z
(N−1)
k









,

ν
(i)
k =

[

ν
(i,1)
k

ν
(i,2)
k

]

, νk =









ν
(1)
k
...

ν
(N−1)
k









.

Notice that the Lagrange multiplier ν
(i)
k is associated with

the ith group, and the decomposition of the problem will be

possible by this treatment of the equality constraints.

We let q(νk) denote the dual function:

q(νk) = inf
ûk∈Ûk,zk

L(ûk, zk, νk)

where Ûk = Û (1)
k ×· · ·×Û (N)

k . Suppose that û′
k is a feasible

solution of (5). Then there exists z
(i)′
k satisfying (7), and

[

û
(i)′
k

û
(i+1)′
k

]

−
[

(H(i))−1

(H(i+1))−1

]

z
(i)′
k +

[

r
(i)
k

r
(i+1)
k

]

= 0

holds. Therefore, denoting the objective function of (5) by

f(ûk) =
∑N

i=1 J
(i)
k , we obtain the following relationship:

q(νk) = inf
ûk∈Ûk,zk

L(ûk, zk, νk) ≤ L(û′
k, z′k, νk) = f(û′

k).

(9)

This inequality implies the weak duality [2].

To find the condition for the dual function to be finite, we

first minimize the Lagrangian L(ûk, zk, νk) over zk, which

results in the condition

[(ν
(i,1)
k )T (ν

(i,2)
k )T ]

[

(H(i))−1

(H(i+1))−1

]

= 0,

i = 1, . . . , N − 1 (10)

for q(νk) > −∞.

Under the condition (10), the dual function can be decom-

posed into the sum of the following functions for subsystem

S(i):

q(1)(ν
(1,1)
k )

= min
û

(1)

k
∈Û

(1)

k

{J (1)
k − (ν

(1,1)
k )T (û

(1)
k + r

(1)
k )} (11)

q(i)(ν
(i−1,2)
k , ν

(i,1)
k )

= min
û

(i)

k
∈Û

(i)

k

{J (i)
k − (ν

(i−1,2)
k + ν

(i,1)
k )T (û

(i)
k + r

(i)
k )},

i = 2, . . . , N − 1 (12)

q(N)(ν
(N−1,2)
k )

= min
û

(N)

k
∈Û

(N)

k

{J (N)
k − (ν

(N−1,2)
k )T (û

(N)
k + r

(N)
k )}.(13)

These functions are concave and nondifferentiable because

they are the pointwise infimum of linear functions [2].

To sum up, the dual problem of (5) is

maximize
νk

q(νk) =
N

∑

i=1

q(i) (14)

subject to [(ν
(i,1)
k )T (ν

(i,2)
k )T ]

[

(H(i))−1

(H(i+1))−1

]

= 0,

i = 1, . . . , N − 1.

Notice that the constraints are imposed for each group.

Although inequality (9) implies the weak duality, the strong

duality holds, i.e., the duality gap reduces to zero if the

Slater’s constraint qualification is satisfied [2]. We assume

the strong duality holds. This implies that the primal problem

(2) can be equivalently solved by solving the dual problem

(14).

When there is no constraint on the control input û
(i)
k ,

we can analytically calculate the optimal solutions û
(i)∗
k

providing the function values of (11)–(13). Noting that the

functions to be minimized in (11)–(13) are quadratic and

convex, we obtain these solutions as follows:

û
(1)∗
k =

1

2

(

(H(1))T H(1) + w(1)I
)−1

·
(

ν
(1,1)
k − 2(H(1))T F (1)x

(1)
k

)

û
(i)∗
k =

1

2

(

(H(i))T H(i) + w(i)I
)−1

·
(

ν
(i−1,2)
k + ν

(i,1)
k − 2(H(i))T F (i)x

(i)
k

)

,

i = 2, . . . , N − 1

û
(N)∗
k =

1

2

(

(H(N))T H(N) + w(N)I
)−1

·
(

ν
(N−1,2)
k − 2(H(N))T F (N)x

(N)
k

)

.

B. Subgradient Method

The objective function of the dual problem (14) is nondif-

ferentiable, and therefore, we use a subgradient method to

solve it. Also, because the dual variables, i.e., the Lagrange

multipliers must satisfy the linear equality constraints (10),

we update a candidate of the optimal solution by using
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projection of the subgradient to the hyperplane associated

with the equality constraint. This kind of solution method

is called a projected subgradient method [8]. We develop

a simple decentralized algorithm to solve the dual problem

(14) by applying the projected subgradient method.

The subgradient of a concave function is defined as

follows.

Definition 1: Suppose that φ : ℜn → ℜ is concave, and

x ∈ ℜn. Then g is a subgradient of φ at x if there exists a

g ∈ ℜn such that

φ(ξ) ≤ φ(x) + gT (ξ − x)

holds for any ξ ∈ ℜn.

The basic subgradient method for maximizing the objec-

tive functions (11)–(13) uses the iterations

ν
(1,1)
k,j+1 = ν

(1,1)
k,j + αjg

(1,1)
k,j

[

ν
(i−1,2)
k,j+1

ν
(i,1)
k,j+1

]

=

[

ν
(i−1,2)
k,j

ν
(i,1)
k,j

]

+ αj

[

g
(i−1,2)
k,j

g
(i,1)
k,j

]

,

i = 2, . . . , N − 1

ν
(N−1,2)
k,j+1 = ν

(N−1,2)
k,j + αjg

(N−1,2)
k,j

where j is the number of iterations, g
(i,l)
k,j are any subgradi-

ents of the objective functions q(i), and αj > 0 is the jth

step size. At each iteration of the subgradient method, we

take a step in the direction of positive subgradient.

Subgradients of the dual objective functions (11)–(13) are

given as follows.

Theorem 1: For the dual objective functions (11)–(13), let

û
(i)∗
k , i = 1, . . . , N denote the optimal solutions providing

their function values. Then

g
(1,1)
k = −û

(1)∗
k − r

(1)
k (15)

{

g
(i−1,2)
k = −û

(i)∗
k − r

(i)
k

g
(i,1)
k = −û

(i)∗
k − r

(i)
k

, i = 2, . . . , N − 1(16)

g
(N−1,2)
k = −û

(N)∗
k − r

(N)
k (17)

are subgradients of q(1)(ν
(1,1)
k ), q(i)(ν

(i−1,2)
k , ν

(i,1)
k ), i =

2, . . . , N − 1, and q(N)(ν
(N−1,2)
k ), respectively.

Proof: Let J
(1)∗
k denote the optimal value of J

(1)
k corre-

sponding to the optimal solution û
(1)∗
k . Then, the following

relationship for (15) holds for any ξ ∈ ℜm:

q(1)(ν
(1,1)
k ) + (g

(1,1)
k )T (ξ − ν

(1,1)
k )

= min
û

(1)

k
∈U(1)

{J (1)
k − (ν

(1,1)
k )T (û

(1)
k + r

(1)
k )}

+ (g
(1,1)
k )T (ξ − ν

(1,1)
k )

= J
(1)∗
k − (ν

(1,1)
k )T (û

(1)∗
k + r

(1)
k )

+ (g
(1,1)
k )T (ξ − ν

(1,1)
k )

= J
(1)∗
k − ξT (û

(1)∗
k + r

(1)
k )

≥ min
û

(1)

k
∈U(1)

{J (1)
k − ξT (û

(1)
k + r

(1)
k )}

= q(1)(ξ).

From the definition of a subgradient, we see that g
(1,1)
k =

−û
(1)∗
k −r

(1)
k is a subgradient of q(1)(ν

(1,1)
k ) at ν

(1,1)
k . In the

same manner, we can prove that (16) and (17) are subgra-

dients of the other dual functions q(i)(ν
(i−1,2)
k , ν

(i,1)
k ), i =

2, . . . , N − 1, q(N)(ν
(N,2)
k ).

The dual variables νk must be updated by using the above

subgradients so that the equality constraints (10) are satisfied.

To this end, denoting

E(i) :=

[

(H(i))−1

(H(i+1))−1

]

,

we project the subgradients onto the hyperplanes {ζ ∈
ℜ2m|(E(i))T ζ = 0}, and then update as usual. From the

assumption C(i)B(i) 6= 0, (E(i))T is fat and full rank, and

therefore, the projection operator is given by

P (v) = v − E(i)((E(i))T E(i))−1(E(i))T v.

Thus, the projected subgradient method is given by
[

ν
(i,1)
k,j+1

ν
(i,2)
k,j+1

]

=

[

ν
(i,1)
k,j

ν
(i,2)
k,j

]

+ α
(i)
j (I

−E(i)((E(i))T E(i))−1(E(i))T )

[

g
(i,1)
k,j

g
(i,2)
k,j

]

,

i = 1, . . . , N − 1. (18)

Notice that this update rule is performed in each group for

information exchange.

We can summarize a decentralized MPC algorithm to

solve (2) by using dual decomposition as follows:

Decentralized MPC algorithm via dual decomposition

For the current state x
(i)
k , the following steps are performed

and then implement u
(i)∗
k .

Step 1. Given initial vectors ν
(i)
k,0 = [(ν

(i,1)
k,0 )T (ν

(i,2)
k,0 )T ]T ,i =

1, . . . , N − 1 satisfying

(E(i))T

[

ν
(i,1)
k,0

ν
(i,2)
k,0

]

= 0 (19)

(e.g., zero vectors). Set j = 1.

Step 2. Solve the minimization problems in the functions

(11)–(13) to obtain the optimal solutions û
(i)∗
k,j , i = 1, . . . , N .

Step 3. Calculate the subgradients g
(i,1)
k,j , g

(i,2)
k,j , i = 1, . . . , N

according to (15)–(17).

Step 4. Communicate the subgradients among each group,

and update the dual variables by (18).

Step 5. If a stopping criterion is satisfied, stop. Otherwise,

set j = j + 1, and go to Step 2.

As a stopping criterion of the above algorithm, we can

use the number of iterations, the convergence tolerance of

the dual variables, the norm of the subgradients, and so on.

We expect that the optimal dual variables are not so

different between the current and the next sampling time in

the MPC scheme. Therefore, we can use the dual variables
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computed at the current time as initial variables at the next

time.

Notice that when a new subsystem is added to the overall

system, the algorithm at the group with the new subsystem is

only modified. This is one of the advantages of the proposed

decentralized MPC algorithm.

IV. REMARKS ON SOME SPECIAL AND GENERAL

CASES

In this section, we first consider a special case where

all subsystems have the same dynamics, and present that

the computation becomes simple. Next we discuss a case

where a subsystem belongs to more than two groups while

a subsystem belongs to at most two groups in the previous

sections.

A. Case of subsystems with a unique dynamics

When all subsystems have the same dynamics, we can

represent the coefficient matrices in the model (1) by A =
A(i), B = B(i), C = C(i), i = 1, . . . , N . Since the following

matrices are all the same as denoted by H = H(i) and

E := E(i) =

[

H−1

H−1

]

,

we obtain

E(ET E)−1ET =
1

2

[

I I
I I

]

.

This implies

E(ET E)−1ET

[

g
(i,1)
k

g
(i,2)
k

]

=
1

2

[

g
(i,1)
k + g

(i,2)
k

g
(i,1)
k + g

(i,2)
k

]

at the update rule of Step. 4 in the proposed algorithm. There-

fore, it is not necessary to use E at the update rule (18). We

compute nothing but the average of the subgradients g
(i,1)
k

and g
(i,2)
k at each group. As shown above, the computation

at the update rule becomes simple when the dynamics of the

subsystems are the same.

B. Case of a subsystem belonging to more than two groups

We now consider the case where a subsystem belongs to

three groups as shown in Fig. 3, and present the dual problem

briefly.

Taking into account infomation exchange, we regard the

equality constraint corresponding to (6) as

ŷ
(1)
k + p̂

(1)
k = ŷ

(2)
k + p̂

(2)
k

ŷ
(2)
k + p̂

(2)
k = ŷ

(3)
k + p̂

(3)
k

ŷ
(2)
k + p̂

(2)
k = ŷ

(4)
k + p̂

(4)
k ,

and derive the dual problem as in the previous section. The

dual funcion for subsystem S(2) is shown by

q(2)(ν
(1,2)
k , ν

(2,1)
k , ν

(3,1)
k )

= min
û

(2)

k
∈Û

(2)

k

{J (2)
k − (ν

(1,2)
k + ν

(2,1)
k + ν

(3,1)
k )T

·(û(2)
k + r

(2)
k )},

S(1)

S(4)

S(2)
S(3)

y(1) y(2) y(3) y(4)
y

0

Information exchange

Group 1 Group 2

Group 3

Fig. 3. Case of a subsystem belonging to three groups.

and the equality constraints on the groups are shown by

[(ν
(1,1)
k )T (ν

(1,2)
k )T ]

[

(H(1))−1

(H(2))−1

]

= 0

[(ν
(2,1)
k )T (ν

(2,2)
k )T ]

[

(H(2))−1

(H(3))−1

]

= 0

[(ν
(3,1)
k )T (ν

(3,2)
k )T ]

[

(H(2))−1

(H(4))−1

]

= 0.

We can solve the optimization problem (5) by performing

the proposed algorithm for the above dual function and

constraints.

As shown above, we can extend the decentralized MPC al-

gorithm to the case where the group of information exchange

does not have a chain structure.

V. NUMERICAL EXAMPLES

In this section, we show two examples of the proposed

method. We first consider a simple example for a system

with the chain structure shown in Fig. 2. Let the number of

subsystems be N = 3, and we deal with the discrete-time

system of a double integrator 1/s2 discretized with sampling

time 0.5 (s). As a simple output constraint, we impose y
(1)
k =

y
(2)
k = y

(3)
k , k = 1, 2, . . ., while there is no constraint on

the control input. We set the time interval for performance

evaluation and the control horizon by m = 5, and the weight

in the performance index by w(i) = 0.01, i = 1, 2, 3. Let the

initial outputs be y
(1)
0 = 5, y

(2)
0 = 6, y

(3)
0 = 7.

We solve the problem using the decentralized MPC algo-

rithm. We use a diminishing step size α
(i)
j = 0.02/

√
j, i =

1, 2, 3 in (18). Let the stopping criterion of the algorithm be

the maximum number of iterations (M = 5). Fig. 4 shows

the control outputs and inputs of the subsystems. It is seen

from the figure that the output constraint is almost satisfied.

Fig. 5 shows the duality gap for the problem at k = 0 The

duality gap converges to zero and is relatively small after 5
iterations.

Next, we show an example of 15 subsystems. The settings

are almost the same as the above example. Let the output

constraint be y
(1)
k = · · · = y

(15)
k , and initial outputs be y

(1)
0 =

5, y
(2)
0 = 6, . . . , y

(15)
0 = 19 (y

(i)
0 = i + 4, i = 1, . . . , 15).
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(a) Control output.
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Fig. 4. A simple example of 3 subsystems.

Under these settings, the control outputs of the subsystems

are shown in Fig. 6. As seen from the figure, the output

constraint is satisfied after 10 iterations.

VI. CONCLUSION

In this paper, we have proposed a decentralized MPC

method based on the dual decomposition method. When

the proposed algorithm is iterated sufficiently, the original

MPC problem is solved exactly in a decentralized manner.

The numerical examples have shown that the proposed MPC

scheme converges even for the case where the number of

iteration in the algorithm is not so large.
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