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Abstract— This article presents a method to estimate flow
variables for an open channel network governed by the lin-
earized Saint-Venant equations and subject to periodic forcing.
The discharge at the upstream end of the system and the stage
at the downstream end of the system are defined as the model
input; the flow properties at selected internal locations, as well
as the other external boundary conditions, are defined as the
output. Both inputs and outputs are affected by noise and we
use the model to re-estimate this data. A spatially-dependent
transfer matrix in the frequency domain is constructed to relate
the model input and output using modal decomposition. A data
reconciliation technique is used to incorporate the error in the
measured data and results in a set of reconciliated external
boundary conditions; subsequently, the flow properties at any
location in the system can be accurately constructed from the
input measurements. The applicability and effectiveness of the
method is demonstrated with a case study of the river flow
subject to tidal forcing in the Sacramento-San Joaquin Delta in
California. We used existing USGS sensors placed in the Delta
as measurement points, and deploy our own sensors at selected
locations to produce data used for the validation. The proposed
method gives an accurate estimation of the flow properties at
intermediate locations within the channel network.

I. INTRODUCTION

In hydraulic systems, numerous factors could lead to

measurement errors; for example broken gauges, process

leaks, sensor drifts, improper use of measuring devices, and

other random sources [1]. Data reconciliation is an effective

method to tune-up the measurement data [2] [3] [4] [5] which

has been applied in several engineering fields [6] [7] [8].

The objective of the data reconciliation is to use information

redundancy to handle errors in real-time measurements.

In the field of process control, data reconciliation is a part

of the general state estimation or reconstruction process for

dynamical systems, using Kalman filtering [9]. However, in

certain cases, and for given time intervals, dynamic effects

can sometimes be neglected, leadin to simplified versions of

the general approach, applicable to static models.

This article presents theoretical results applicable to data

reconciliation for tidally forced network channels. Using the

modal decomposition techniques, we are able to transform

dynamic constraints into static constraints in the frequency

domain, and subsequently obtain a static data reconciliation

problem, which is easier to resolve and can lead to accurate

results. Generally, this static data reconciliation problem is to

minimize the measurement errors while satisfying the static

constraints of the proposed model.

The proposed linear network model is constructed on the

basis of analytical solutions to the Linearized Saint-Venant

equations (LSVE) in the frequency domain [10] [11] [12].

With the assumption of a backwater curve model [13], a

more realistic transfer matrix function has been introduced

[14], which is used in the present article. This article

extends the general transfer matrix function approach to

a channel network. A spatially-dependent transfer matrix

is constructed, relating a selected set of model inputs to

the output variables. The transfer matrix is a function of

channel width, channel length, bed slope, mean discharge,

mean stage and Manning coefficient. This set of parameters

needs to be chosen carefully to characterize the geometry

of the channels, as the uncertainty of the parameters would

contribute to the errors in the model output.

With this linear model in the frequency domain, the static

data reconciliation problem is shown to be equivalent to a

quadratic problem. The objective function used in the present

study is a weighted L2-norm of the difference between the

measured and reconciliated data. The linear network model

constructed serves as the constraints in the optimization prob-

lem. A closed-form optimal solution is obtained, resulting in

a set of reconciliated boundary data consistent with both the

linear network model and the statistical assumptions on mea-

surement errors. Subsequently, we apply the reconstructed

boundary conditions to the linear network model to obtain an

accurate forward simulation of the flow within of the network

domain.

This article is organized as follows: Section II introduces

the general framework of linear models, e.g., LSVE in the

frequency domain, the spatially-dependent transfer matrix.

A channel network model featuring one-dimensional non-

uniform flow is subsequently described, and the solution

of the data reconciliation problem in the static case is

addressed. Section III applies the linear model to a channel

network in the Sacramento - San Joaquin Delta in California.

Static data reconciliation is applied to handle the errors

in the measurements. The effectiveness of the method is

assessed by correlating the model estimations with field data

at three intermediate locations in the network, which serve

as validation points. Section IV summarizes the study and

presents the scope of our future work.
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II. PROPOSED METHOD

A. General Considerations

The general class of hydraulic system studied in the

present article is a distributed network of channels subject to

quasi-periodic tidal forcing. Sensing on this hydraulic system

is done using fixed Eulerian U.S. Geological Survey (USGS)

sensors, subject to measurement errors.

Variables are related to each other by a mathematical

model. Therefore, if the measurement data was error free,

it would satisfy the model. Because the number of points

at which the variables are measured is usually larger than

needed to fully prescribe the model, there is “information

redundancy” in the system. Once information redundancy

exists, data reconciliation can be implemented to account

for measurement error.

The ultimate goal of data reconciliation is to use such

information redundancy in a system to have the data self-

corrected using the model. An effective data reconciliation

method allows the detection of any inconsistent or biased

measurements, and furthermore provides corrected values

(namely estimated measurements).

It should be noted that any information redundancy is

model-specific. We therefore need to first construct a “good”

hydraulic model to characterize the flow system, as described

in the following section.

B. Linear Channel Network Model

1) Transfer Matrix Representation of Saint-Venant Model:

The Linearized Saint-Venant Equations (LSVE) have been

widely used in the open-channel hydraulic systems literature

[15], [16], [17], [18]. They describe the perturbed discharge

q(x, t) and stage y(x, t) with two coupled partial differential

equations (PDEs). For a rectangular cross-section, these

equations are given by:

T0
∂y

∂t
+

∂q

∂x
= 0 (1)

∂q

∂t
+ 2V0(x)

∂q

∂x
− β0(x)q + α0(x)

∂y

∂x
− γ0(x)y = 0 (2)

where α0(x), β0(x) and γ0(x) are given by:

α0 = (C2
0 − V

2
0 )T0 (3)

β0 = −
2g

V0

(

Sb −
dY0

dx

)

(4)

γ0 = gT0

[

(1 + κ0)Sb − (1 + κ0 − (κ0 − 2)F 2
0 )

dY0

dx

]

(5)

with κ0 = 7/3 − 8Y0/(3(2Y0 + T )); T0 is denoted as a

uniform width at the free surface, C0 =
√

gY0 is the wave

celerity, F0 = V0/C0 is the Froude number, V0 = Q0/A0

is the steady state velocity, Q0 is the average discharge

along the channel and Y0(X) is the average stage at the

downstream point of the channel, X is the river reach length

(m), Sb is the bed slope (m/m), Sf (x, t) is the friction slope

(m/m) modeled by Manning-Strickler’s formula (6), with n
is the Manning’s roughness coefficient (sm−1/3) [16].

Sf =
Q2n2(T + 2Y )4/3

(TY )10/3
(6)

The upstream and downstream boundary conditions are the

upstream discharge perturbation q(0, t) and the downstream

stage perturbation y(X, t), respectively. The initial conditions

are given by y(x, 0) = 0 and q(x, 0) = 0 for all x ∈ [0, X].
To facilitate the mathematical analysis, we rewrite the

linearized Saint-Venant equations as follows:

∂

∂t

(

q(x, t)
y(x, t)

)

=

(

A(x)
∂

∂x
+ B(x)

) (

q(x, t)
y(x, t)

)

(7)

(x, t) ∈ [0, X] × [0, +∞)

where,

A(x) =

(

−2V0 −α0

− 1
T0

0

)

B(x) =

(

β0 γ0

0 0

)

(8)

The application of Laplace transform to the linear PDE

system (8) leads to the following ordinary differential equa-

tions (ODEs) in the variable x, with a complex parameter

s.

d

dx

(

q(x, s)
y(x, s)

)

= A−1(x) [B(x) − sI2]

(

q(x, s)
y(x, s)

)

(9)

Following the method developed in [13], and further mod-
ified in [14], a transfer matrix G(x, X, s) = (gij(x, X, s))
for the non-uniform channel relates the boundary conditions
and intermediate flow variables, and is defined as:

(

q(x, s)
y(x, s)

)

= G(x, X, s)

(

q(0, s)
y(X, s)

)

(10)

G(x, X, s) is a function of channel length X , average

discharge Q0, average downstream depth YX , average width

T0, bed slope Sb, and Manning coefficient n of the channel.

The upstream and downstream boundary conditions are the

upstream discharge perturbation q(0, s) and the downstream

stage perturbation y(X, s), respectively. Because of the

distributed nature of the system, this transfer function

also depends on the coordinate x in the channel, since

it relates inputs q(0, s) and y(X, s) to the state of the

system q(x, s) and y(x, s) at any x in the channel. Please

refer to the appendix for the details about the transfer matrix.

2) Transfer Matrix Model for Channel Networks: The

model (10) can be readily applied to tidally driven channel

networks. The problem of interest can be stated as follows,

and is illustrated in Figure 1. Given a set of “external”

boundary conditions of a network, at which we have mea-

surements, reconstruct flow conditions at “internal” locations

(also referred to as boundary conditions). This type of

problem appears in our data assimilation work, in which we

need estimations of boundary conditions at locations where

fixed sensors are not available. The fundamental approach to

build a network model is as follows:

• Step 1: Decompose the channel network into individual

channel reaches, and apply the linear model (10) to each

branch. For each of the river reach indexed by i, the

flow variables qi(x, s), yi(x, s) denote the perturbed dis-

charge and stage in the frequency domain respectively.

Xi denote the length of the channel. The junction of

the river reach is defined as the node of the channel

network.
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Channel 3

Channel 1

Channel 2

1
2

3

Internal BC

External BC

External BC

External BC

Fig. 1. Representation the system of interest for estimating internal

boundary conditions (Internal BC) using data reconciliation on external

boundary conditions (External BC): data is given at the three external

conditions of channel 1, 2 and 3; the state of the system is computed at

three internal locations of the system labeled 1, 2 and 3.

• Step 2: Impose the internal boundary conditions at

every junction to ensure flow compatibility. Considering

a simple river junction illustrated in Figure 1: for

each channel i, we will have the upstream boundary

condition yi(0, s), qi(0, s), and downstream boundary

condition yi(Xi, s), qi(Xi, s). If these boundary condi-

tions are at the inside nodes of the channel network, they

are called internal boundary conditions, otherwise they

are labeled as external boundary conditions. The linear

relationships of hydraulic internal boundary conditions

at a junction are specified by equations of mass and

energy conservation. Assuming no change in storage

volume within the junction, the continuity equation can

be expressed by:

q1(X1, s) = q2(0, s) + q3(0, s) (11)

When the flows in all the branches meeting at a junction

are subcritical, the equation for energy conservation can

be approximated by a kinematic compatibility condition

as:

y1(X1, s) = y2(0, s) = y3(0, s) (12)

where Xi is the downstream point of each channel i,
and 0 is the upstream point of each channel i.

• Step 3: Assemble the equations for each individual

channel and interior junctions together to model the

entire network. The flow variables at the boundary of

each channel are represented by a linear relationship:

M(s)Z(s) = 0 (13)

where Z(s) is the concatenated vector of

all [qi(0, s), qi(Xi, s), yi(0, s), yi(Xi, s)]
T ,

(i = 1, · · · , N ); Z(s) is thus the vector comprising

the discharge and stage variables at the upstream

and downstream ends of all channels; M(s) is a

matrix of appropriate dimension encoding the previous

constraints.

• Step 4: Evaluate the unmeasured flow variables inside

the channel network.

a) Specify the interior boundaries.

In a channel network system, we define a subjective

subset of boundary conditions (ZgivenBC ⊂ Z), which

leads to a unique solution of model (13). This subset

should satisfy: dim(ZgivenBC) = dim(Z) − Rank(M).
All the other unknown boundary variables (interior and

external), denoted as ZotherBC = Z \ ZgivenBC , are

therefore estimated with model (13). Model (13) now

has the form:

ZotherBC = R(s)ZgivenBC (14)

where R(s) is a matrix of appropriate size. Given

Z =

(

ZgivenBC

ZotherBC

)

, M(s) =
[

R(s) |−I
]

.

b) Estimate the perturbed discharge and stage along
the channel i. It is achieved by a simple application
of transfer function analysis:
(

qi(x, s)
yi(x, s)

)

=

(

gi,11(x, Xi, s) gi,12(x, Xi, s)
gi,21(x, Xi, s) gi,22(x, Xi, s)

) (

qi(0, s)
yi(Xi, s)

)

(15)

where, Gi(x,Xi, s) = (gi,jk(x,Xi, s)) is the distributed

transfer matrix based on the information of channel i,
i = 1, · · · , N .

C. Data Reconciliation

In practice, the measured data called Ym is normally a

superset of the data required to uniquely define the system,

i.e., ZgivenBC ⊂ Ym ⊆ Z. When this is the case, we can use

the information redundancy and apply data reconciliation to

detect and handle the measurement errors. Data reconcilia-

tion requires a process model and statistical characteristics

of the measurements.

Using modal decomposition, we are able to convert the

dynamic model (8) to a “static” model, in which the mea-

surable variables are linked by an algebraic relationship in

the frequency domain:

P (s)Y (s) = 0 (16)

where Y (s) = [Y1, Y2, Y3, · · · ] ⊆ Z(s) is a vector of noise

free measurements, P (s) is a sub-matrix of M(s) with the

appropriate dimension.

It is assumed that the measurements are independent and

subject to an additive noise. The measured data Ym is

composed of the “ideal” measurements vector Y and a noise

vector ǫ :

Ym = Y + ǫ (17)

This noise vector ǫ is assumed to follow a Gaussian

distribution with zero mean and weight matrix W =
diag(σ2

1 , σ2
2 , · · · , σ2

n). Here σi is the noise standard deviation

for each measurement.

The objective of data reconciliation is to obtain estimated

values Ŷ close to the measurements Ym while satisfying

the “static” linear model (16). This can be formulated as

an optimization problem with linear constraints. The cost

function to minimize is the weighted quadratic error between

the measurements Ym and the reconciliated data Ŷ . The
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constraints are given by the model (16). The reconciliation

problem in the spectral domain now becomes a least square

problem with linear constraints. It reads:

min. f = (Ŷ − Ym)T W−1(Ŷ − Ym)

s.t. P Ŷ = 0 (18)

This quadratic program can be solved by a variety numerical

tools, in particular CPLEX, MATLAB, CVX etc [19]. We

hereby use the method suggested by [20] to solve the above

data reconciliation problem. The constrained optimization

problem is transformed into a corresponding unconstrained

problem [19], using the Lagrange multiplier vector ν . The

Lagrangian of the problem reads:

L(Ŷ , ν) = (Ŷ − Ym)T W−1(Ŷ − Ym) + 2νT PŶ (19)

In order to obtain the unknown variables, take partial deriva-

tives and set them to zero:

∂L

∂Ŷ
= 2(Ŷ − Ym)T W−1 + 2νT P = 0

∂L

∂ν
= 2 PŶ = 0 (20)

Rewrite the above equations as:
(

W−1 P T

P 0dim(ν)×dim(ν)

) (

Ŷ
ν

)

=

(

W−1Ym

0dim(ν)×1

)

(21)

Thus,

Ŷ =

(

Idim(Ym)

0dim(ν)×dim(Ym)

)T (

W−1 P T

P 0dim(ν)×dim(ν)

)

−1 (

W−1Ym

0dim(ν)×1

)

(22)

where, matrices I and 0 are Identity Matrix and Zero Matrix

of appropriate size.

The reconciliated measurements Ŷ , can then be used to ob-

tain the desired internal boundary conditions using equation

(13, 14, 15).

III. APPLICATION TO THE SACRAMENTO RIVER

A. Description of the system and assumption

The Sacramento-San Joaquin Delta in California is a

valuable resource and an integral part of California’s water

system. This complex network covers 738,000 acres inter-

laced with over 1,150 km of tidally-influenced channels

and sloughs. This network is monitored by a static sensor

infrastructure subject to usual problems of inaccuracy and

measurement errors for interested sensing systems. The area

of interest for our experiment is located around the junction

of the Sacramento River and the Georgiana Slough, as shown

in Figure 2. Most of the time, the direction of mean river

flow is from north to south, as indicated with arrows. During

the tidal inversion, the water flows in the opposite way. For

experimental purposes, we need the boundary conditions at

the three locations labeled A, B and C, but only get the

measurements at USGS stations, SDC, DLC, GSS, and GES.

The method described in the previous section enables us to

do that.

Four USGS stations, named SDC, DLC, GSS, and GES,

SDC

DLC

GSS

GES
GES

GSS

DLC

SDC

C
h
a
n
n
e
l 1

Channel 2

0

X1

0

0

0 0

X2

X3

X4

X5

Channel 3

C
h
a
n
n
el

5

Channel 4

A

B

C

Fig. 2. Test area in the Sacramento River and the Georgiana Slough.

are located at the external boundaries of this deployment

field. The stations are marked as squares in Figure 2. Both

discharge and stage are collected every 900 seconds at these

stations. The field data was collected between 10/23/2007

and 11/13/2007. The raw field data is noisy, and the mea-

surement errors are assumed to follow a normal Gaussian

distribution. In addition, the following simplifications for the

flow model have been made in this study:

• The flow can be represented by a one-dimensional

model;

• The channel geometry is fixed, as the effects of sed-

iment deposition and scour are negligible during the

experiment period.

• The channel geometry can be modeled by a rectangular

cross-section.

• The lateral and vertical accelerations are negligible.

• The pressure distribution is hydrostatic.

• There is no significant jump along the bathymetry of

the channel, and the bed slope is smooth and small.

• The water surface across any cross-section is horizontal.

These assumptions have been verified in practice during

experimental field deployments performed by our lab. The

model parameters are the average free surface width T0i, the

average bottom slope Sbi, the average Manning’s coefficient

n, the average discharge Qi, and the average downstream

stage YXi for each channel i (i = 1, · · · , 5). These parame-

ters are known to us experimentally. Based on measurements

available to us at the SDC, DLC, GSS, and GES, the field

data at three intermediate locations in the channel network

are chosen to assess the accuracy of the method (at locations

marked in triangles).

B. Modal Decomposition of the Measured Data

Since both the discharge and stage are measured at the four
USGS stations (SDC, DLC, GSS, and GES), the measured
flow variable vector Ym is:

Ym =[qm
1 (0, t), ym

1 (0, t), qm
2 (X2, t), y

m
2 (X2, t),

q
m
4 (X4, t), y

m
4 (X4, t), q

m
5 (X5, t), y

m
5 (X5, t)]

T
(23)

where notation m stands for measured. The fundamental idea
is to decompose the measured variables Ym into a finite sum
of N dominant oscillatory modes. In the case of a channel
network influenced by the ocean at the downstream end,
these modes are essentially the dominant modes produced by
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Fig. 4. Relative percent error between measurement data and modal repre-

sentions as a function of the number of modes chosen for the decomposition.

tidal forcing. The measured variables are therefore expressed
using modal decomposition:

Ym =

N
∑

k=0

[

Dke
jωkt + Dke

−jωkt
]

(24)

where,

Dk = [d
(1,1,0)
k , d

(1,2,0)
k , d

(2,1,X2)
k , d

(2,2,X2)
k ,

d
(4,1,X4)
k , d

(4,2,X4)
k , d

(5,1,X5)
k , d

(5,2,X5)
k ]T (25)

Dk = [d
(α,β,γ)
k ]T are the Fourier coefficients of the spectral

decomposition of Ym, where α, β, γ represent the channel

number, discharge/stage variable, location of each channel ,

respectively. ωk’s are the set of frequencies used for modal

decomposition.

Figure 3 shows the spectral analysis for the discharge data

at station SDC: There are three dominant tidal frequencies

in the system: ω1 = 2.31 × 10−5 s−1 (or period 12.4 hrs
tide, corresponding to the M2 tide generated by the moon),

ω2 = 1.16×10−5 s−1 (or period 24 hrs tide, corresponding

to the K1 tide generated by the sun) and a ω3 = 1.11 ×
10−5 s−1 (or period 25 hrs tide). The power spectrum is cut-

off at 70ft3/s2 to determine the 30 dominant frequencies.

The second plot in Figure 3 and Figure 4 indicate that 30
modes are sufficient to capture the signal. The amplitude at 0
Hz is essentially the nominal stage. Similar arguments hold

for the other measurements.

C. Hydraulic Model of Sacramento River and Georgiana

Slough

The open-channel network system in this study consists
of five individual channels, as shown in Figure 2. For each
channel, the discharge and stage at upstream and downstream
are related by a non-uniform transfer matrix:
(

qi(Xi, s)
yi(0, s)

)

=

(

gn
i,11(Xi, Xi, s) gn

i,12(Xi, Xi, s)

gn
i,21(0, Xi, s) gn

i,22(0, Xi, s)

) (

qi(0, s)
yi(Xi, s)

)

i = 1, · · · , 5. (26)

The linear relationships between internal boundary condi-
tions at the two junctions are:

y1(X1, s) = y2(0, s); y2(0, s) = y3(0, s);

q1(X1, s) = q2(0, s) + q3(0, s);

y3(X3, s) = y4(0, s); y4(0, s) = y5(0, s);

q3(X3, s) = q4(0, s) + q5(0, s) (27)

A total of twenty flow variables qi(x, s), yi(x, s) (for x =
0 or Xi, i = 1, 2, · · · , 5) are included in the system (26)
and (27). These flow variables are related in a linear model
M(s)Z(s) = 0 (Equation (13)), with

Z(s) =[q1(0, s), y1(0, s), q1(X1, s), y1(X1, s), q2(0, s), y2(0, s),

q2(X2, s), y2(X2, s), q3(0, s), y3(0, s), q3(X3, s), y3(X3, s),

q4(0, s), y4(0, s), q4(X4, s), y4(X4, s), q5(0, s), y5(0, s),

q5(X5, s), y5(X5, s)]T

Here, M(s) is a 16 by 20 matrix, which encodes the
16 equations comprised of (26) (five channels), and (27)
(internal boundary conditions).
Since rank (M(s)) = 16, given four boundary flow variables
ZgivenBC ⊂ Z, all the other sixteen boundary flow variables
ZotherBC = Z \ ZgivenBC can be uniquely determined by
the sixteen equations set (26) (27).
Let us assume that the four known external boundary condi-
tions of the network are: the discharge at SDC: q1(0, s), the
stage at DLC: y2(X2, s), the stage at GSS: y4(X4, s) and
the stage at GES: y5(X5, s). All the other boundary flow
variables can be solved by equation (14). More specifically,

ZgivenBC = [q1(0, s), y2(X2, s), y4(X4, s), y5(X5, s)]T

ZotherBC =[y1(0, s), q1(X1, s), y1(X1, s), q2(0, s), y2(0, s),

q2(X2, s), q3(0, s), y3(0, s), q3(X3, s), y3(X3, s), q4(0, s),

y4(0, s), q4(X4, s), q5(0, s), y5(0, s), q5(X5, s)]T

R(s) = R1(s)
−1

R2(s)
T

R1(s) =



















































0 1 − g1,12(s) 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 − g1,22(s) 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 − g2,11(s) 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 − g2,21(s) 1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 g3,11(s) 0 − 1 g3,12(s) 0 0 0 0 0 0
0 0 0 0 0 0 g3,21(s) 0 − 1 g3,22(s) 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 − g4,11(s) 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 − g4,21(s) 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 − g5,11(s) 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 − g5,21(s) 1 0

0 0 1 0 − 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 − 1 0 0 0 0 0 0 0 0 0
0 − 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 − 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 − 1 0

0 0 0 0 0 0 0 0 1 0 − 1 0 0 − 1 0 0


















































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R2(s) =







g1,11(s) g1,21(s) 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 g2,12(s) g2,22(s) 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 g4,12(s) g4,22(s) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 g5,12(s) g5,22(s) 0 0 0 0 0 0







The parameters of the model are listed in Table I. The mean

discharge (Q0i) of the channels 1, 2, 4, 5 are using the

measured discharge at SDC, DLC, GSS, GES, respectively.

It is clear that the measurement data are inconsistent, since

Q01 6= Q02 + Q04 + Q05. To partially compensate the

measurement error, the mean discharge at channel 3 is set to

be: Q03 = [(Q01 − Q02) + (Q04 + Q05)]/2.

TABLE I

PARAMETERS FOR THE SACRAMENTO RIVER AND GEORGIANA SLOUGH

Channel Q0i YXi T0i Sbi n Xi

i = 1 186.73m3s−1 5.61m 115m -0.00004 0.0323m−1/3s 2800m

i = 2 83.89m3s−1 4.04m 110m -0.00009 0.0323m−1/3s 2000m

i = 3 113.08m3s−1 7.74m 110m -0.00004 0.0323m−1/3s 1300m

i = 4 58.07m3s−1 4.02m 56m -0.00019 0.0323m−1/3s 600m

i = 5 65.24m3s−1 5.27m 89m -0.00004 0.0323m−1/3s 1600m

D. Data Reconciliation

Let us assume that the measured variables Ym are inde-

pendent and subject to a Gaussian distributed noise. Based

on the static model (14), the measurable variables are linked

by a static relationship of the following form:

P (s)Y (s) = 0 (28)

where,

P (s) =







R(s)1,1 R(s)1,2 R(s)1,3 R(s)1,4 − 1 0 0 0
R(s)6,1 R(s)6,2 R(s)6,3 R(s)6,4 0 − 1 0 0

R(s)13,1 R(s)13,2 R(s)13,3 R(s)13,4 0 0 − 1 0
R(s)16,1 R(s)16,2 R(s)16,3 R(s)16,4 0 0 0 − 1







given Y (s) \ ZgivenBC is the first, sixth, thirteenth and
sixteenth element of ZotherBC . Now, combining the solu-
tion of the data reconciliation problem (22) with the static

model (28), reconciliated measurements Ŷ can be calculated.
Assume that Ŷ is in the form:

Ŷ =

N
∑

k=0

[

Bke
jωkt + Bke

−jωkt
]

(29)

where Bk = [b
(α,β,γ)
k ]T is the Fourier coefficients vector of

the spectral decomposition of Ŷ , and α, β, γ represent the
channel number, discharge/stage variable, location of each
channel reach respectively:

Bk =[b
(1,1,0)
k , b

(1,2,0)
k , b

(2,1,X2)
k , b

(2,2,X2)
k ,

b
(4,1,X4)
k , b

(4,2,X4)
k , b

(5,1,X5)
k , b

(5,2,X5)
k ]T (30)

For specific dominant ωk, k = 1, · · · , N , the coefficient
vector Bk in the equation (29) is calculated by equation (22):

Bk =
(

I8,8 08,4

)

(

W−1 P (s)T

P (s) 04,4

)

−1 (

W−1Dk

04,1

)

(31)

The reconciliated boundary condition data is shown and

compared to measured data in Figures 5 and 6. For clarity,

the mean flow has been subtracted from the plots in the

interest of magnifying the display scale. From the figures,

the reconciliated data is very close to the measurements. The

difference betewen the reconciliated data and measurements

is further evaluated in the Table II. Three primary evaluation

measure are analyzed here:

• The maximum value is the maximum difference be-

tween the reconciliated and measured data at the same

time points.
• The coefficient of efficiency E [21] is defined as:

E = 1 −

[

∑N
i=1(ûi − ui)

2

∑N
i=1(ui − ui)2

]

(32)

where ui is the flow variable of interest, for example

qi or yi in this study. ûi is the reconciliated/modeled

flow variable, ui is the mean of ui, for i = 1 to N
measurement events. If the measured data is perfect,

E = 1. If E < 0, this measurement is not reasonable

and must be excluded from the modeling procedures.
• The last statistic evaluation of the analysis is the corre-

lation coefficient (ρ), given by:

ρ =

∑N
1 (ui − ui)(ûi − ûi)

√

∑N
1 (ui − ui)2

∑N
1 (ûi − ûi)2

(33)

where, ui and ûi represent the mean of measured and

reconciliated flow for i = 1 to N measurement times,

respectively.

TABLE II

Max-VALUE, ρ-VALUE AND E-VALUE FOR MODEL VALIDATION

Variable USGS Station Max-value E-value ρ-value

Discharge

SDC 23.6599 0.9930 0.9975
DLC 28.2284 0.9368 0.9883
GES 13.0004 0.9968 0.9985
GSS 18.4125 0.9368 0.8369

Stage

SDC 0.0539 0.9889 0.9947
DLC 0.1180 0.9504 0.9759
GES 0.0703 0.9847 0.9935
GSS 0.0455 0.9938 0.9989

E. Method Validation

We used existing USGS sensors in place in the Delta as

measurement points, and deploy our own sensors at selected

locations to produce data used for the validation. We validate

the method by using existing and deployable monitoring

infrastructure: USGS fixed sensor stations (see Figure 7) are

used as measurement points (see exact location in Figure 2);

deployable UC Berkeley sensors (see Figure 7) are placed at

locations A, B, C on the map of Figure 2. The measurements

were collected between 11/01/2007 and 11/12/2007, and

serve as a validation data set for this method. Location A

is downstream of the junction of Sacramento river and Delta

Cross channel; Location B is downstream of GSS branch;

Location C is downstream of Sacramento Branch. Without

loss of generality, the discharge at Location A, along with

the stage data at three locations, are used to test the model.

Following the steps described in the Section II, the flow

variables at the boundaries of each branch ZotherBC are cal-

culated with reconciliated boundary conditions. Furthermore,
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Fig. 5. Reconciliated boundary condition data v.s. measured data.

the flow variables along each branch are estimated using

the non-uniform transfer matrix. The simulation results are

shown in Figure 8.

Model calibration and validation are further evaluated

using E-value and ρ-value. û here is the modal estimated

flow variables.

If a model predicts observed variables perfectly, E = 1. If

E < 0, the model’s predictive power is worse than simply

taking the average of observed values.

Table III summarizes the values of ρ and E in the validation

sets of our channel flow model. Both ρ-values and E-values

TABLE III

ρ-VALUE AND E-VALUE FOR MODEL VALIDATION

Location A A B C

Variable discharge stage stage stage

E 0.9775 0.9643 0.9768 0.9612

ρ 0.9895 0.9876 0.9897 0.9875

are close to unity. The results in Table III and Figure 8

indicate that our model accurately simulates the channel flow.

IV. CONCLUSIONS

This article proposes a new method to estimate the flow

variables in a channel network system subject to periodic

forcing. A spatially-dependent channel network model is
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Fig. 6. Reconciliated boundary condition data v.s. measured data..

Fig. 7. Left: USGS Sensor station at GSS, used as a measurement

sensor. Right: Deployable ADCP sensor, used in Section 3.5 for gathering

the validation data (three of them were deployed between 11/01/2007 and

11/12/2007 in order to gather the data for this study).

constructed in the frequency domain using LSWE trans-

fer matrix for the non-uniform steady state case. Modal

decomposition allows the output response to be expressed

in terms of the spectral coefficients of the input variables

and the transfer matrix coefficients evaluated at appropriate

locations. Data reconciliation in this case is reduced to a

static least-square minimization problem in the frequency

domain, and enables an efficient reconstruction of noisy

boundary measurements. Subsequently, the flow properties

at any location in the system can be readily predicted.

The approach proposed in this study has been applied to a

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThA04.4

3909



0 2 4 6 8 10 12

-0.5

0

0.5

1
Fluctuation component of stage @ Upstream (Location A)

s
ta

g
e
(m

e
te

r)

Model Output

Measurement

0 2 4 6 8 10 12

-200

0

200

400
Fluctuation component of discharge @ Upstream (Location A)

d
is

c
h
a
rg

e
(m

e
te

r3
/s

)

Time (days)

Model Output

Measurement

0 2 4 6 8 10 12

-0.5

0

0.5

1
Fluctuation component of stage @ Downstream (Location C)

s
ta

g
e
(m

e
te

r)

Time (days)

Model Output

Measurement

0 2 4 6 8 10 12

-0.5

0

0.5

1
Fluctuation component of stage @ Downstream (Location B)

s
ta

g
e
(m

e
te

r)

Model Output

Measurement

Fig. 8. Validation of the model output with measurement.

channel network in the Sacramento-San Joaquin Delta, using

four USGS fixed sensors as measurement points. The flow

predictions are successfully validated at three intermediate

locations of the channel system, using deployed sensors from

UC Berkeley.

This method is now used for short term forecast of internal

condition in the Georgiana Slough and Sacramento River,

which we use for our experimental drifter and submarine

deployments. This information is particularly useful for

our ongoing data assimilation and inverse modeling studies

currently underway, using Lagrangian sensors.
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