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Abstract— This paper addresses passivity-based output syn-
chronization and a collision avoidance problem of rigid bodies
in the Special Euclidean group SE(3) under the assumption
that the rigid bodies exchange information over weighted
digraphs. We first develop a passivity-based distributed velocity
input law to achieve output synchronization. Using the notion of
algebraic connectivity, we then establish a connection between
the speed of convergence and the structure of the interconnec-
tion graph in SE(3). We also prove output synchronization
in the presence of temporary communication failures. We next
develop a flocking algorithm by modifying the present velocity
input so that it embodies cohesion, separation and alignment
rules introduced by Reynolds. Finally, we demonstrate the ef-
fectiveness of the present input through numerical simulations.

I. INTRODUCTION

Cooperative control and motion coordination are received

a lot of attention recently [1], [2] with numerous practical

applications such as sensor networks, robot networks, coor-

dinated control of satellites and formation control of aircraft

[3–5]. In addition, motion coordination is also motivated by

scientific interest in cooperative behavior in nature such as

flocking of birds and schooling of fishes [6]. More recently,

passivity and passivity-based control have proven useful for

the problem of motion coordination of multi-agent systems

[7–9]. In [7] passivity-based control laws are presented for

output synchronization of networks of passive nonlinear

systems. Output synchronization is proved by employing

the sum of storage functions of each agent as a Lyapunov

function candidate.

Attitude synchronization is gaining increasing interest

[8–11]. The reference [8–10] consider multiple rigid bodies

with attitude dynamics represented by Euler-Lagrange equa-

tions, while in [11] with kinematics. The control laws which

attain almost global convergence are proposed in [10]. The

passivity-based control laws also are presented in [8], [9],

[11]. The proposed control law in [8], [11] relies only on rel-

ative attitude information with respect to neightbors. In [11]

we also establish a connection between the graph structure

and the speed of convergence and prove the convergence in

the case of the communication failures. In [12], we generalize

the results in [11] in the following respects. We propose

a control input achieving output synchronization in SE(3),
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Fig. 1. Rigid Body Motion in SE(3)

which requires the convergence of not only orientations

but also positions. We show the convergence in strongly

connected digraphs in contrast to balanced digraphs in [11].

However analyses of connectivity and switching topology

remain open problems in the case of output synchronization.

On the other hand, flocking has been also studied by

many researchers e.g. [13–19]. In [18], Reynolds introduced

three rules to achieve flocking, which are cohesion, sep-

aration(collision avoidance) and alignment rules. In [19],

Vicsek et al. claimed that a discrete model of n agents in

the plane with the same speed but with different headings

achieves flocking and its theoretical proof was presented by

Jadbabaie et al. [13]. In [14], [15], [17], the flocking problem

was studied in continuous model of n agents. However, the

references [15], [17] mainly focused on an alignment rule

and did not take into account other rules (separation and

cohesion) explicitly. On the other hand Olfati-Saber [16]

proposed the input with all of the three rules.

In this paper, we address the output synchronization with

collision avoidance in SE(3) based on some techniques

developed in [7], [11], [12], [20], [21]. We consider a

group of rigid bodies in SE(3) whose interconnection is

represented by weighted digraphs. First, we present output

synchronization base of the fact that the kinematics of a

rigid body in SE(3) has a passivity-like property. Then,

we propose a velocity control scheme only requires error

of outputs with respect to neighbors defined by the digraph.

We show that output synchronization is achieved using

the proposed velocity input under milder assumptions than

in [11], [12]. We also introduce the notion of algebraic

connectivity in order to clarify a relationship between the

speed of convergence and the graph structure in SE(3). The

speed of convergence is a useful metric for the design of

the information graph as well as for the analysis of the

performance of cooperative control for a given network.

We also address the practically important case of temporary

communication failures using brief connectivity.

We next address the flocking problem in SE(3), which

requires aforementioned three rules. From this point of view,
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the above law achieving synchronization does not include

the separation rule. Thus the velocity input is modified to

incorporate this rule based on the avoidance control approach

[20]. We show the modified velocity input embodies all three

rules introduced by Reynolds.

This paper is organized as follows. Section II formulates

rigid-body motion in SE(3) and graph structure consid-

ered in this paper. We show that the rigid-body motion in

SE(3) has a passivity-like property and introduce the output

synchronization problem. In Section III, a body velocity

control law is proposed based passivity-like property and

achievement of output synchronization is proven. Moreover

we analyzes the connectivity and possibility of communica-

tion losses. In Section IV we develop the flocking algorithm

in SE(3). We demonstrate our results through numerical

simulations in Section V and present conclusions in Section

VI.

II. PROBLEM STATEMENT

A. System Description

Throughout this paper, we consider the motion of a group

of n rigid bodies in 3-dimensional space (see Fig. 1). Let

Σw be an inertial coordinate frame and Σi, i ∈ {1, · · · , n}
a body-fixed coordinate frame whose origin is located at the

center of mass of body i. Assume that all the coordinate

frames are right-handed and Cartesian. We denote by pi ∈
R3 the position of the rigid body i ∈ {1, · · · , n} in a fixed

inertial coordinate frame Σw. We will use eξ̂iθi ∈ R3×3

to represent the rotation matrix of a body-fixed frame Σi

relative to an inertial coordinate frame Σw. Here, ξi ∈
R3, ξT

i ξi = 1 and θi ∈ R specify the direction of rotation

and the angle of rotation, respectively. The notation ’∧’

(wedge) is the skew-symmetric operator such that âb = a×b
for the vector cross-product × and any vector a, b ∈ R3.

The notation ‘∨’ (vee) denotes the inverse operator to ‘∧’.

The transformation eξ̂iθi is orthogonal with unit determinant

i.e. an element of the Special Orthogonal group SO(3). A

configuration consists of the pair (pi, e
ξ̂iθi) and hence the

configuration space of the rigid-body motion is the Special

Euclidean group SE(3), which is the product space of R3

with SO(3). We use the 4 × 4 matrix

gi =

[

eξ̂iθi pi

0 1

]

, i ∈ {1, · · · , n}

as the homogeneous representation of (pi, e
ξ̂iθi) ∈ SE(3).

Let us now introduce the velocity of each rigid body to

represent the rigid-body motion of the frame Σi relative to

Σw. Define the body velocity V b
i := (vi, ωi) and

V̂ b
i =

[

ω̂i vi

0 0

]

, i ∈ {1, · · · , n},

where vi ∈ R3 and ωi ∈ R3 are the linear and angular

velocities of body i relative to Σi respectively. Then, each

rigid-body motion is represented by the kinematic model

ġi = giV̂
b
i ,

yi =

[

eξ̂iθi pi + di

0 1

]

, i ∈ {1, · · · , n}. (1)

where yi ∈ R3 is a controlled output and di ∈ R3 is a bias

of body i. If di = 0 then yi = gi, which is the same as

the controlled output in [12]. We need the bias di in order to

address the collision avoidance problem discussed in Section

IV. For more details on the rigid-body motion in SE(3),
refer to [22], [23].

The interconnection of a network of rigid bodies is rep-

resented by a weighted digraph GO = (V, EO,W), where

V := {1, · · · , n} is the node set, EO ⊂ V×V is the edge set

containing pairs of nodes that represent communication and

W is the weight set. The neighbors of body i are defined as

NOi := {j ∈ V | (j, i) ∈ EO} [2]. NOi means that agent i
receives information from agent j if j ∈ NOi. We moreover

define the weighted graph Laplacian matrix of the digraph

GO

Lw := [Lwij ] =











∑

k∈NOi
wik if j = i,

−wij if j ∈ NOi,

0 if j /∈ NOi,

which plays an important role in this paper.

B. Passivity-like Property in SE(3)

We show that the kinematic model (1) possesses a

passivity-like property. This property is used to develop

output feedback law for output synchronization which will

be defined in the subsequent subsection.

We first define the total energy of translation and rotation

ψ(yi) := ‖(I4 − yi)J‖
2
F , J :=

[ 1
2I3 0
0 1√

2

]

=
1

2
‖qi‖

2 + φ(eξ̂iθi), φ(eξ̂iθi) :=
1

2
tr(I3 − eξ̂iθi)

where qi := pi + di, In is the n × n identity matrix, ‖ · ‖F

represents the Frobenius matrix norm (‖A‖F = tr(AT A)1/2)

and ‖ · ‖ the Euclidean vector norm. By the definition,

ψ(yi) = 0 if and only if yi = I4.

Lemma 1: The time derivative of ψ(yi) along the trajec-

tories of (1) satisfies

ψ̇(yi) = (V b
i )T Πi, V b

i =

[

vi

ωi

]

, Πi :=

[

e−ξ̂iθiqi

sk(eξ̂iθi)∨

]

,

where sk(eξ̂iθi) is a skew-symmetric part of the matrix eξ̂iθi ,

i.e. sk(eξ̂iθi) := 1
2 (eξ̂iθi − e−ξ̂iθi).

Proof: Immediate from ( [24, pp. 42 Lemma 1]).

If we now consider the velocity V b
i as an input and the vector

form of the rigid-body motion Πi as an output, Lemma 1 says

that the rigid-body motion in SE(3) (1) is passive from the

input V b
i to the output Πi (This property is called a passivity-

like property throughout this paper) in the sense defined in

[25].

C. Output Synchronization in SE(3)

In the next section, we will investigate the output synchro-

nization defined as follows.

Definition 1 (Output Synchronization): A group of n rigid

bodies is said to achieve output synchronization, if

lim
t→∞

ψ(y−1
i yj) = 0 ∀i, j ∈ {1, · · · , n}. (2)
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By the definition of the function ψ, equation (2) implies

the outputs of all the rigid bodies converge to a common

value. From the definition of the output, it means that relative

positions between rigid bodies converge to desired ones di−
dj ∀i, j, while orientations converge to a common value (Fig.

2). The convergence of only the orientations is called attitude

synchronization and investigated in [8–11].

III. CONVERGENCE AND CONNECTIVITY ANALYSIS

A. Velocity Control Law and Convergence

The goal of this section is to design a body velocity

input V b
i so that the group of rigid bodies achieves output

synchronization.

We propose the body velocity input

V b
i =−Ki

∑

j∈NOi

(

wij

[

e−ξ̂iθi 0
0 I

] [

qi − qj

sk(e−ξ̂jθj eξ̂iθi)∨

])

+

[

e−ξ̂iθi 0

0 e−ξ̂iθi

]

[

vd

eξ̂dθdωd

]

, i ∈ {1, · · · , n} (3)

where Ki =

[

kpiI3 0
0 keiI3

]

, kpi > 0, kei > 0 and the

vectors vd and ωd :=
(

e−ξ̂dθd d
dte

ξ̂dθd

)∨
represent desired

linear and angular velocities, respectively. The input (3)

consists of two parts. The first term assures the output syn-

chronization. The second term specifies a common desired

velocity after the output synchronizes. Thus, the functions

vd and ωd should be common among all the rigid bodies.

Theorem 1: Consider the n rigid bodies represented by

(1) and suppose that vd and ωd represent desired group

trajectories. Then, under the assumption that there exists

eξ̂αθα such that e
ˆ̄ξiθ̄i := e−ξ̂dθde−ξ̂αθαeξ̂iθi ∀i are positive

definite 1 and the interconnection digraph GO is fixed and

strongly connected, the velocity input (3) achieves output

synchronization in the sense of (2).

Proof: It is easy to prove this theorem using the follow-

ing potential function and similar calculation in [12]

UO :=

n
∑

i=1

γi

(

1

2kpi
‖q̄i‖

2 +
1

kei
φ(e

ˆ̄ξiθ̄i)

)

,

where q̄i := qi −
∫ t

0
vddτ and γi is an element of vectors

satisfying

γT Lw = 0 γT = [γ1, · · · , γn], γi > 0 ∀i. (4)

1Throughout this paper, we refer to a real matrix Q which is not
necessarily symmetric, as a positive definite matrix if and only if xT Qx > 0
for any nonzero vector x.
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Fig. 3. Coordinate transform of the world frame

From the assumption of strongly connected, there exists

vectors satisfying (4) [12, Lemma 2].

In the proof of Theorem 1, the potential function UO is

defined as a weighted sum of the energy functions ψ(yi)
based on the passivity-like property (Lemma 1).

If eξ̂dθd = I3, i.e. e
ˆ̄ξiθ̄i = e−ξ̂αθαeξ̂iθi ∀i, then existence of

eξ̂αθα satisfying the condition of Theorem 1 means that there

is a coordinate transformation of the world frame such that

all rigid bodies orientation matrices become positive definite

(Fig. 3). Clearly, this condition is milder than the assumption

in [11], [12] that all rigid bodies’ orientation matrices are

positive definite.

In the following, we make a physical interpretation of the

proposed velocity input (3). The first term can be rewritten

as

−Ki

[

e−ξ̂iθi 0
0 I

]

(

∑

j∈NOi

wij

)

[

qi − 〈qi〉

sk(〈e−ξ̂iθi〉eξ̂iθi)∨

]

∀i,

where 〈qi〉 and 〈eξ̂jθj 〉 are weighted average position

and orientation of neighbors of rigid body i, i.e.,

〈qi〉 := (
∑

j∈NOi
wijqj)/(

∑

j∈NOi
wij) and 〈e−ξ̂iθi〉 :=

(
∑

j∈NOi
wije

−ξ̂jθj )/(
∑

j∈NOi
wij), respectively. Hence

each rigid body moves and rotates toward the weighted

center of outputs with respect to the neightbors. This means

the first term of the body velocity input (3) embodies the

cohesion rule introduced by Reynolds. Moreover, the second

term incorporates the alignment rule. In fact, if output

synchronization is achieved, then the body velocity input

(3) of each rigid body becomes

V b
i =

[

e−ξ̂iθi 0

0 e−ξ̂iθi

]

[

vd

eξ̂dθdωd

]

∀i. (5)

Thus all rigid bodies have the same linear and angular

velocity because output synchronization implies e−ξ̂iθi =

e−ξ̂jθj ∀i, j. This property is called flocking in [14], [16],

[17]. However it is somewhat different from the original def-

inition of flocking by Reynolds [18] as pointed out by Olfati-

Saber [16]. From the viewpoint of flocking by Reynolds, the

velocity input (3) does not embody the separation rule which

is introduced section IV.

Remark 1: The result can be extend to the case of time

delays in communication in the same way as [12].

B. Algebraic Connectivity and Switching Topology

In [11] we analyze a relation between the graph structure

GO and the speed of convergence of the network to its

final configuration and possibility of communication losses in

attitude synchronization case. However these have not been
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investigated in output synchronization case yet. The purpose

of this section is to study these issues in output synchroniza-

tion case based on the same ideas in [11]. We first introduce

an index Uexp evaluating the speed of convergence. In order

to measure the speed, Uexp should satisfy the following two

conditions:

1) output synchronization is achieved if and only if

limt→∞ Uexp = 0 holds.

2) Uexp(0) is independent of the graph.

Functions of the output errors between rigid bodies also

satisfy the condition 1), and such a function can be easily

constructed by using the graph Laplacian Lw. However, the

use of Lw is prohibited due to the condition 2). For the above

the reason, we define the function

Uexp(t) := Q(t)T(M⊗I3)Q(t)+tr
(

(eξ̂θ(t))T(M⊗I3)e
ξ̂θ(t)

)

≥ 0

to evaluate the speed of convergence, where M denotes the

graph Laplacian of the nonweighted complete graph (i.e.

wij = 1 ∀i, j), namely

M := nIn − 11
T ,

where 1 := [1, · · · , 1]T , Q := [qT
1 , · · · , qT

n ]T and eξ̂θ(t) :=

[e−ξ̂1θ1(t), · · · , e−ξ̂nθn(t)]T . This function evaluates the rel-

ative outputs for all rigid bodies regardless of the actual

connectivity, and satisfies both of the above conditions.

Before stating the main result of this section, we introduce

the following notation. The notation diag(γ1, · · · , γn) repre-

sents the diagonal matrix with diagonal elements γ1, · · · , γn

and Lγ denotes Lγ := diag(γ1, · · · , γn)Lw, where γT Lw =
0, γ := [γ1, · · · , γn]T . Moreover Lγsym := 1

2 (Lγ + LT
γ )

denotes the symmetric part of a matrix Lγ . Let λmin(L) and

λmin2(L) be the smallest eigenvalue and the second smallest

eigenvalue, respectively, of any real symmetric square matrix

L. We can now state the following,

Theorem 2: Consider the n rigid bodies represented by

(1) and the input (3). Then, under the assumption that the

relative orientations, e−ξ̂iθieξ̂jθj ∀i, j, are positive definite

and the interconnection digraph GO is strongly connected,

there exist positive real numbers a and b such that

Uexp(t) ≤ aUexp(0)e−λmin2(Lγsym)bt. (6)

Proof: Omitted due to page limitations.

Because of the independence of Uexp(0) on the graph

structure, Theorem 2 implies that the larger the value of

λmin2(Lγsym) for a given digraph, the faster the right hand

side of (6) converges to 0. In general, λmin2(Lγsym) is

called algebraic connectivity of a graph, and it is well-

known in consensus [2] that it is a measure of the speed

of convergence.

Theorem 2 also gives another important insight into con-

vergence analysis. In the inequality (6), the error of outputs

between rigid bodies exponentially converges to 0, though

Theorem 1 only shows asymptotic convergence. Notice that

Theorem 2 assumes the positive definiteness of the relative

orientations, while Theorem 1 that of the individual orien-

tations. If eξ̂dθd = I3, the latter assumption includes the

former. In fact, we can confirm that if e−ξ̂iθieξ̂jθj > 0 ∀i, j,

then e
ˆ̄ξiθ̄i = e−ξ̂αθαeξ̂iθi ∀i become positive definite by

choosing eξ̂αθα = eξ̂1θ1 .

We next investigate the situation where the information

graph changes over time. To study the effect of switching

topology we utilize the concept of brief instability developed

in [26]. This concept will be instrumental in capturing the

fraction of the time that the graph may remain disconnected.

Let G ⊆ GO be a certain set of possible state independent

graphs with n nodes and let s(t) : [0,∞] → G be the piece-

wise constant switching signal with consecutive switching

times separated by a dwell time, τD > 0. Namely, any two

consecutive switching times tl and tl+1, l ≥ {0, 1, 2, · · · }
satisfy tl+1 − tl ≥ τD, l ≥ 0. The signal s(t) belongs to

either the following subsets of G,

1) Gc ⊆ G: a subset of strongly connected digraphs,

2) Gdc ⊆ G: a subset of not strongly connected digraphs.

It is obvious from the definitions that G = Gc ∪ Gdc holds

true. Let us now introduce the connectivity loss time T (τ, t),
which is the length of the time when the digraph belongs

to Gdc over any time interval [τ, t]. The function T (τ, t) is

clearly given by

T (τ, t)=

∫ t

τ

X (s(r))dr, X (s(t)) :=

{

0 s(t) ∈ Gc

1 s(t) ∈ Gdc

.

Brief connectivity losses [26] means

T (τ, t) ≤ α(t − τ) + T0 ∀t ≥ τ ≥ 0 (7)

holds for some T0 ≥ 0 and 0 ≤ α < 1.

Theorem 3: Consider the n rigid bodies represented by

(1) and the input (3). Assume that the relative orientations,

e−ξ̂iθieξ̂jθj ∀i, j, are positive definite. Then, if the inequal-

ities (7) holds, there exists a lower bound of τD such that

the velocity input (3) achieves output synchronization in the

sense of (2).

Proof: Omitted due to page limitations.

Roughly speaking, the inequality (7) means that the fraction

of the connectivity loss time is small, and the existence of a

lower bound of τD assures that the digraph does not switch

frequently.

IV. FLOCKING ALGORITHM IN SE(3)

In Section III-A, we show that flocking in the sense of

velocity matching results from the input (3). This flocking is

only taken account of an alignment rule. However, Olfati-

Saber [16] insists that distributed algorithms for creation

of flocking should be embodied three rules introduced by

Reynolds, which are cohesion, separation and alignment

rules. The cohesion and alignment rules are already incor-

porated in the proposed input (3), however the separation

rule, or collision avoidance is not. In this section we thus

incorporate the third rule into the input (3) based on the

ideas in [20] and [21], which guarantees collision avoidance.

Accordingly we reformulate the problem in Section III
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A. Problem Reformulation

In this section, we investigate not only output synchro-

nization but also collision avoidance. The collision in this

paper is defined as follows.

Definition 2: (Collision) Rigid body i and j are said to

collide (Fig. 4) , if and only if

‖pi − pj‖ ≤ r, r > 0.
Next we define the avoidance region [20], [21] as

Ω:=
⋃

j>i

Ωij , Ωij :={P : P ∈ R3n, ‖pi−pj‖≤r},

and sensing region as

D :=
⋃

j>i

Dij , Dij :={P : P ∈ R3n, r<‖pi−pj‖≤R}

where P := [pT
1 , · · · , pT

n ]T . By definition, P (t) /∈ Ω means

that collision does not occur between rigid bodies at time

t. Additionally, we define a sensing network as a position

dependent graph GC = (V, EC) where EC := {(j, i) ∈ V ×
V | r < ‖pi − pj‖ ≤ R}. Its neightbors of rigid body i is

defined as NCi := {j ∈ V | (j, i) ∈ EC}. Throughout this

section, we assume each rigid body can get the information

about rigid body j, if j ∈ NOi∪NCi and ‖di−dj‖ > r ∀i, j.

Note that if di = 0 ∀i, then the condition ‖di−dj‖ > r ∀i, j
is violated.

B. Flocking Algorithm

In the following we propose the body velocity input to

guarantee collision avoidance. For this purpose, we use the

following functions [20].

Uij(pi, pj) =

(

min

{

0,
‖pi − pj‖

2 − R2

‖pi − pj‖2 − r2

})2

, i 6= j,

where 0 < r < R (Fig 5). Under P (0) /∈ Ω, Uij grows

infinitely as rigid body i approaches rigid body j. The partial

derivative of Uij(pi, pj) with respect to pi is given in [20].

∂Uij

∂pi
=



















0 if R≤‖pi−pj‖

sij if r<‖pi−pj‖<R

not definitd if ‖pi−pj‖=r

0 if ‖pi−pj‖<r

,

sij = 4
(R2−r2)(‖pi − pj‖

2 − R2)

(‖pi − pj‖2 − r2)3
(pi−pj).

By employing this function, we modify the body velocity

input (3) as

V b
i =

[

e−ξ̂iθi 0

0 e−ξ̂iθi

]

[

vd

eξ̂dθdωd

]

−Kpi

[

e−ξ̂iθi 0
0 I

]

(

∑

j∈NOi

wij

[

qi − qj

sk(e−ξ̂jθj eξ̂iθi)∨

]

+
∑

j∈NCi

[

∂Uij

∂pi

0

]





, i ∈ {1, · · · , n} (8)

where Kpi > 0 ∈ R3×3.

The first and second terms of the modified body velocity

input (8) are the same as the input (3). If j ∈ NCi,

then sij < 0, that is, the term
∂Uij

∂pi
works so that rigid

body i moves away from rigid body j. Thus, the third

term represents a separation rule. Therefore, the input (8)

embodies all three rules introduced by Reynolds as the same

way as the reference [16].

Theorem 4: Consider the n rigid bodies represented by

(1). Assume that the e
ˆ̄ξiθ̄i are positive definite, the intercon-

nection graph GO is fixed, undirected and connected , wij =
wji and P (0) /∈ Ω. Then the velocity input (8) guarantees

collision avoidance and achieves attitude synchronization.

Proof: Omitted due to page limitations.

In this theorem, we prove collision avoidance and attitude

synchronization. However positions of all rigid bodies do not

always converge to the desired value. These finally converge

to the positions satisfying the following condition

∑

j∈NOi

wij(qi − qj) +
∑

j∈NCi

∂Uij

∂pi
= 0 ∀i. (9)

If attitude synchronization is achieved and (9) is satisfied,

then the velocity input of each rigid body becomes the

equation (5). Therefore, the linear and angular velocities of

all rigid bodies asymptotically synchronize.

Theorem 4 assumes the graph GO is undirected while

Theorem 1 strongly connected. A similar assumption appears

in [14], which studies collision avoidance.

Remark 2: The result in this section can be extended to

guarantee obstacle avoidance in the same way as [16].

V. SIMULATION

In this section, we numerically demonstrate that the

present input (8) achieves collision avoidance and attitude

synchronization. In our simulation we assume that each

rigid body is a rectangular solid whose breadth, width,

height and circumradius are 1.2[m], 0.8[m], 0.6[m] and

1.5[m] respectively (Fig. 6). Therefore, we select the radius

of collision region as r = 3.0[m]. The group consists

of five rigid bodies with the kinematics described by (1)

and a graph structure is depicted in Fig. 7. This graph

is undirected and connected. The input (8) with vd =
[1 0 0]T , ωd = [0 0 0]T , Kpi = 0.001I3 and kei = 0.001 ∀i
is applied to each rigid body under the following condi-

tions p1(0) =
[

4 3 1
]T

, ξ1θ1(0) =
[

0.21 0.50 0.77
]T

,

p2(0) =
[

2 3 −5
]T

, ξ2θ2(0) =
[

0.60 0.04 0.83
]T

,

p3(0) =
[

3 −1 2
]T

, ξ3θ3(0) =
[

0.21 −0.77 −0.50
]T

,

p4(0) =
[

−1 2 −3
]T

, ξ4θ4(0) =
[

−0.32 0.48 −0.32
]T

,

p5(0) =
[

0 0 0
]T

, ξ5θ5(0) =
[

0.51 −0.51 −0.14
]T

and

output biases d1 =
[

0 0 0
]T

, d2 =
[

7 5 0
]T

, d3 =
[

7 −5 0
]T

, d4 =
[

14 10 0
]T

, d5 =
[

14 −10 0
]T

. We

remark that the orientation matrices are positive definite at
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Fig. 8. Trajectory and orientation of each rigid body

the initial time. Fig. 8 shows the trajectories of the rigid

bodies. In Fig. 8, the encircled number is associated with the

corresponding one in Fig. 7. We see from Fig. 8 that the rigid

bodies smoothly adjust their orientation without collisions.

From this figure we can confirm that attitude synchronization

and collision avoidance are achieved by the body velocity

input (8). In this example, positions of all rigid bodies also

converge to the desired relative one. Note that if collision

avoidance is not token account, rigid bodies 1 and 4 collide

with rigid bodies 2 and 5, respectively.

VI. CONCLUSIONS

In this paper, we have investigated output synchronization

in SE(3) based on a passivity-like property of the kinematics

of rigid bodies. We first have developed a passivity-based

control law attaining output synchronization. The passivity-

like property has been also employed in connectivity analysis

and we established a connection between the speed of

convergence and the graph structure. We have also shown

the fact that the passivity-based control input still attains

output synchronization as the case with a topology switching.

Moreover, we have extended the above results to incorporate

three flocking rules introduced by Reynolds. The simulation

results have demonstrated the validity of our results.

This work is in part supported by Grant-in-Aid for Sci-

entific Research (C) No. 19560437 and by the US National

Science Foundation under grant ECCS 07-25433.
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[19] T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen and O. Shochet, “Novel
Type of Phase Transition in a System of Self-Driven Particles,”
Physical Review Letters, Vol. 75, No. 6, pp. 1226–129, 1995.
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