
  

  

Abstract—A multi-objective flight controller design method 
for an airplane with multiple operating points (MOP) is 
proposed via Lyapunov theory, which takes account of handling 
quality requirement and robust stability simultaneously. A 
handling quality criterion for all flights that correspond to 
multiple operating points is derived by linear matrix inequality 
(LMI) approach. Based on parameter-dependent Lyapunov 
functions combined with a descriptor system approach, a robust 
stability condition for the flight control system is obtained. At 
last, a flight controller is designed by solving a set of LMIs and 
the adjusting range of the parameter that influences the 
sensitivity of output responses and feasibility of LMIs is obtained 
by introducing convex optimization algorithms. Simulation 
results illustrate the effectiveness of the proposed method. 

I. INTRODUCTION 
NE of the necessary performances of a flight control 
system is handling the operating quality, which means 

the easiness of carrying out maneuvers. Hence, there have 
been several criteria established for handling the operating 
quality that quantify the desirable aircraft performance from 
the pilot’s point of view. 

In [1], a handling quality criterion is developed for a high 
AOA maneuvering. The C* criterion has been applied to 
design flight control systems of airplanes for civil aviation [2]. 
The specification ADS-33C, which is dependent on the task to 
be performed, essentially quantifies acceptable parameters 
defining aircraft dynamics. Besides the above-mentioned 
criteria, control anticipation parameter (CAP), which 
characterizes the easiness of incorporation into the design, is 
also a handling quality metric that is used widely. 
Consequently, various control techniques have been exploited 
to design a flight controller that satisfies existing handling 
quality specifications.  

In [3], a model reference adaptive control scheme for an 
aircraft is developed by using modified time response 
parameters as a handling quality criterion. In [4], a flight 
controller for a helicopter is designed via the implicit model 
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following approach, where the H∞ norm between the actual 
system outputs and outputs of the desired handling quality 
model is minimized.  In [5], a design method of translational 
rate commanded controller is proposed for a helicopter in 
hover using sliding mode, where hyper-plane is designed by 
means of a multivariable linear quadratic optimization. In [6], 
with the ADS-33D as the design criteria, the problem of fuzzy 
switching control for UH-60A helicopter is investigated via 
H∞ control approach. In [7], a controller architecture, which 
combines an online adaptive neural network with model 
inversion control, is presented for a tilt rotor aircraft. This 
controller can provide a pilot with consistent handling quality 
during conversion from fixed wing flight to hover. In [8], 
combined with dynamic inversion, stochastic robust nonlinear 
control is proposed for an aircraft, which gives good handling 
qualities without the use of gain scheduling. In [9], based on 
the H∞control, a multivariable design method is proposed for a 
helicopter. In [10], by H∞ model matching approach, a single 
degree of freedom controller for a UAV is designed. In [11], 
an adaptive back-stepping flight control law design to achieve 
a satisfactory CAP for all flight conditions is presented. 

Robust stability is another important performance property 
of flight control systems. Some results on robust control 
design for an aircraft dynamic system have been reported in 
[12, 13] recently. However, with the intention of ensuring 
both handling quality and robust stability, a multi-objective 
controller design for an airplane with multiple operating 
points has not been considered as yet. On the other hand, the 
LMI approach has significant advantages of simplifying the 
design procedure and achieving a multi-objective design. 
Thus, if both the handling quality requirements and the robust 
stability conditions are formulated in terms of LMIs, a 
multi-objective controller design is facilitated. 

An LMI framework is proposed in this work for an airplane 
with multiple operating points aimed at designing a 
multi-objective flight controller that guarantees both handling 
quality requirement and robust stability. The main feature of 
the proposed method is that by a single controller the control 
objective is satisfied for all operating points instead of 
computing respective controllers for different operating 
points. This enables to avoid the controller switch from one 
operating point to another. A handling quality criterion for all 
flights across the envelope containing multiple operating 
points is formulated in the form of linear matrix inequality 
(LMI). In the sense of Lyapunov theory, a robust stability 
condition for the flight control system is derived by a 
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descriptor system approach. Consequently, the existence of 
such controller depends on the solvability of a set of LMIs. 
Moreover, the adjusting range of a parameter needed in the 
design can be easily obtained using the convex optimization 
algorithm, which has an influence on the sensitivity of output 
responses and solving feasibility of LMIs above. Finally, the 
necessity and feasibility of the obtained controller are verified 
on the grounds of computer simulation results.  

II. THE AIRPLANE MODEL  
It is well known from the literature, an airplane dynamic 

system typically has multiple flight conditions that correspond 
to the convex combination of given operating points. The 
values of system matrix parameters are constant for each 
operating point and vary from one operating point to another. 
The longitudinal dynamics in the flight envelope containing 
three operating points as apexes are described [14] by  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

x t A x t B u t
y t C x t

λ λ
λ

= +
=

,                           (1) 

where 2( )x t R∈ is the state vector containing angle of attack 
(AOA)α and pitch rate q , 2( )u t R∈  is the control input vector 
containing elevator angle eδ and power lever deflection tδ , 
and ( )y t R∈ is pitch rate q . The system matrices 2 2( )A Rλ ×∈ , 

2 2( )B Rλ ×∈ and 1 2( )C Rλ ×∈  belong to a polytopic uncertainties 
domain S  and can be written as a convex combination of the 
polytope vertex ( , , )i i iA B C , that is, 

3

1
( ( ), ( ), ( )) ( , , )i i i i

i
A B C A B C Sλ λ λ λ

=

= ∈∑ ,               (2) 

where uncertain vector T 3
1 2 3[ , , ] Rλ λ λ λ= ∈ is a fixed but 

unknown parameters satisfying 
3

3

1
{ : 1, 0}i i

i
Rλ λ λ λ

=

∈ Ξ ∈ = ≥∑ .                    (3) 

III. THE MULTI-OBJECTIVE CONTROL LAW 
The design problem considered in this section is to find a 

two-block controller which consists of a feed-forward 
controller ( )Ku t Kr= and a static state feedback controller 

( ) ( )Fu t Fx t= such that the closed-loop system satisfies 
(i) good time response to pilot step stick input r , 

i.e. 1 2CAPγ γ< < for given scalars 1γ and 2γ . 
(ii) robust stability in the presence of parameters in (3). 

Remark 1. In the closed-loop system, the trajectory evolves in 
two phases. When the maneuver is initiated (i.e. 0r ≠  is 
imposed on the system), requirement (i) is satisfied 
by ( )Ku t and ( )Fu t . This is referred to as the first phase. Once 
the maneuver is achieved (i.e. 0r = ), requirement (ii) is 
secured by ( )Fu t  only, which is called the second phase. It is 
worth mentioning that F needs not to be changed from the first 
phase to the second since it is obtained by our multi-objective 
design method presented below. 

Consider airplane system (1) with ( ) ( ) ( )K Fu t u t u t= +  and 
let 1 2 3C C C C= = = . Then the closed-loop system is given by 

( ) ( ) ( ) ( )
( ) ( )

clx t A x t B Kr
y t Cx t

λ λ= +
=

,                        (4) 

where ( ) ( ) ( )clA A B Fλ λ λ= + , 2 1K R ×∈ , 2 2F R ×∈ , r R∈ is step 
stick input from a pilot. Using the closed-loop system, design 
requirements (i) and (ii) can be formulated in terms of LMIs. 

A. Handling Quality Criterion 
CAP is defined upon the assumption that a pilot initiates a 

maneuver predicting the steady state normal acceleration with 
initial pitch acceleration, that is, 

0( | )CAP
( | )

ec t

ec tn
θ δ

δ
=

=∞

=
Δ

,                                 (5) 

where ecδ denotes elevator deflection command, 0( | )ec tθ δ =  
represents initial pitch acceleration and ( | )ec tn δ =∞Δ is steady 
state normal acceleration change.  
Remark 2. In order to illustrate the necessity of the constraint 
on CAP, (5) is rewritten as 

0
FS

( | )CAP= ( | )
yec t z n

z
z ec t

F M FF n
θ δ

δ
=

=∞
⋅ = ⋅Δ ,                (6) 

where zF denotes stick force, stick sensitivity FSM represents 
initial pitch acceleration generated by unit stick force and unit 
acceleration stick force yn

zF is stick force that generates unit 
steady state acceleration. It follows from (6) that CAP has a 
close relation with FSM and yn

zF which reflect handling sense of 
a pilot directly. Hence, the value of CAP influences handling 
quality of an airplane. If the value of CAP is too small, yn

zF has 
to be increased to keep proper FSM or FSM is enlarged to 

maintain satisfactory yn
zF . It is also difficult for a big CAP to 

get satisfactory tradeoff between yn
zF and FSM . In a word, the 

value of CAP must be restricted to an appropriate range in 
order to obtain satisfactory handling quality. 

The following theorem rewrites the CAP equivalently using 
system matrices of the closed-loop system (4). 
Theorem 1.  For the closed-loop system (4) and pilot step 
stick input r , CAP becomes 

1
0

( )CAP
( ) ( )cl

CB K g
CA B K U

λ
λ λ−= − ⋅                     (7) 

under the condition of zero initial states, 
where 0U and g denotes equilibrium velocity along the X axis 
and acceleration of gravity, respectively. 
Proof: Under the condition of zero initial states, the transfer 
matrix from r toα is Gα  and that from r to q is qG . 

1( ( )) ( )clG C sI A B Kα α λ λ−= −  
1( ( )) ( )q clG C sI A B Kλ λ−= − ,                      (8) 

where Cα is a matrix extractingα from x . According to (8), the 
step response of (4) is given as follows 

0
( ) lim( / ) 0

s
s s G s

→
∞ = × × =αα                         (9) 
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1

0
( ) lim( / ) ( ) ( )q cls

q s G s CA B Kλ λ−

→
∞ = × = −               (10) 

1

(0) lim( / )

        lim[ ( ( )) ( ) ]

qs

cls

q s s G s

Cs sI A B Kλ λ
→∞

−

→∞

= × ×

= −
 

adj( ( ))lim[ ( ) ]
det( ( ))

cl

s
cl

sI ACs B K
sI A

λ λ
λ→∞

−=
−

.                   

Since, det( ( ))clsI A λ− is a 2-th order monic polynomial 
of s and adj( ( ))clsI A λ− is a transfer matrix whose diagonal 
elements are 1-th order monic polynomials and other elements 
are lower than 1-th order polynomial, 

(0) ( )q CB Kλ=                                (11) 
is derived. From 0( ( ) ( ))n q g UαΔ = − ∞ − ∞ , (5) and (9)~(11), 
Eq. (7) is satisfied. This completes the proof. 
Remark 3. It follows from the above-mentioned dimension 
of ( )A λ , ( )B λ , C , F and K that both numerator ( )CB Kλ and 
denominator 1( ) ( )clCA B Kλ λ− in (7) are scalars, which indicates 
that (7) in Theorem 1 is valid. 

Using this equivalent expression (7) of CAP, the next 
theorem formulates the CAP requirement as solvable LMIs. 
Theorem 2: For given scalars 1 20 γ γ< < and 0ε > , if there 
exist symmetric matrix Q ,W and matrices K and R such that 

( )
0

*
i iC A I W CB R

Q
ρ δ δ+ +⎡ ⎤

>⎢ ⎥
⎣ ⎦

,                  (12) 

0
*

iW B K
I

−⎡ ⎤
<⎢ ⎥−⎣ ⎦

,                             (13) 

T T( ) 0i i i iAW WA B R B R W Q+ + + + + < ,              (14) 
0W > ,                                     (15) 

2 T( ) 0, 1,2,3i iCB K CB K I iε + + + < = ,              (16) 
where 1 1 0U gγ γ= , 2 2 0U gγ γ= , 1 2 1 2( ) (2 )δ γ γ γ γ= + , 

2 2 2 2
2 1 1 2( ) (4 )ρ ε γ γ γ γ= − , then CAP and control law satisfy 

1 2<CAPγ γ< .                                (17) 
1( ) ( ) ( )u t Kr t RW x t−= + .                        (18) 

Proof: According to (15), we have 
T 1 T( ) ( ) ( ) ( )cl cl cl clWA W A W A W WA Wλ λ λ λ− + + + =  
T 1( ( ) ) ( ( ) ) 0cl clWA W W A W Wλ λ−+ + > .                       (19) 

From (12), (14), 1F RW −= and cli i iA A B F= + , it follows that 
( )

0
*

cliC A I W
Q

ρ δ +⎡ ⎤
>⎢ ⎥

⎣ ⎦
,                        (20) 

T 0cli cliA W WA W Q+ + + < .                       (21) 
By (20), (21), (13) and (16), we get 

3

1

( ( ) ) ( )
0

* *
cl cli

i
i

C A I W C A I W
Q Q

ρ δ λ ρ δ
λ

=

+ +⎡ ⎤ ⎡ ⎤
= >⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
∑   (22) 

T( ) ( )cl clA W WA W Qλ λ+ + + =                                
3

T

1
( ) 0i cli cli

i
A W WA W Qλ

=

+ + + <∑ ,                (23) 

3

1

( )
0

* *
i

i
i

W B K W B K
I I

λ
λ

=

− −⎡ ⎤ ⎡ ⎤
= <⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦
∑ ,             (24) 

2 T( ) ( ( ) )CB K CB K Iε λ λ+ + + =  

3
2 T

1
( ( ) ) 0i i i

i
CB K CB K Iλ ε

=

+ + + <∑ .                (25) 

From (19) and (23), we have 
T 1 T( ) ( ) ( ( ) ( ) )cl cl cl clWA W A W A W WA W Qλ λ λ λ− > − + + > .   (26) 

From 0ρ− < and by Schur complement with (22), we get 
T T T 1( ( ) ) ( ( ) )cl clQ W A I C C A I Wδ λ ρ δ λ−> + +  

From this inequality and (26), 

T 1

( ( ) )
0

* ( ) ( )
cl

cl cl

C A I W
WA W A W

ρ δ λ
λ λ−

+⎡ ⎤
>⎢ ⎥

⎣ ⎦
.                   (27) 

is derived by Schur complement. By left and right multiplying 
both sides of (27) by T 1diag{ , ( ) }clI A Wλ− − and 1 1diag{ , ( )}clI W A λ− − , 

respectively, we obtain 
1

1

( ( ))
0

*
clC I A

W
ρ δ λ−

−

⎡ ⎤+
>⎢ ⎥

⎣ ⎦
.                      (28) 

By Schur complement, (24) and (28) are equivalent to 
T( ) ( ( ) )W B K B Kλ λ> ,                         (29) 

1 T T( ( )) ( ( )) 0cl clC I A W I A Cρ δ λ δ λ− −− + + > .           (30) 
From (29) and (30), we obtain 

1| ( ( )) ( ) |clC I A B Kδ λ λ ρ−+ < .                    (31) 
According to (25) and T( ( ) )( ( ) ) 0CB K I CB K Iλ λ+ + > , 

| ( ) |CB Kλ ε>                                 (32) 
is satisfied. From (31) and (32), we have the following 
inequality 

1( ( )) ( )| |
( )

clC I A B K
CB K

ρδ λ λ
λ ε

−+ < .                   (33) 

According to 2 2 2 2
2 1 1 2( ) (4 )ρ ε γ γ γ γ= − , (33) becomes 

1
2 1

1 2

( ) ( )| |
( ) 2

clCA B K
CB K

λ λ γ γδ
λ γ γ

− −+ < .                   (34) 

From 1 2 1 2( ) (2 )δ γ γ γ γ= + , (34) is equivalent to 
1

1 2

1 ( ) ( ) 1
( )

clCA B K
CB K

λ λ
γ λ γ

−

− < < − .                    (35) 

From 1 1 0( ) 0U gγ γ= > , 2 2 0( ) 0U gγ γ= > and (35), 
1( ) ( ) 0

( )
clCA B K
CB K

λ λ
λ

−

<                              (36) 

is derived. And (36) is equivalent to two cases below.  
case I: 1( ) ( ) 0, ( ) 0clCA B K CB Kλ λ λ− > < , 
case II: 1( ) ( ) 0, ( ) 0clCA B K CB Kλ λ λ− < > . 
In both case I and case II, (35) is equivalent to 

2 11

( )
( ) ( )cl

CB K
CA B K

λγ γ
λ λ−− < < − .                      (37) 

According to 0
1 1

U
g

γ γ= , 0
2 2

U
g

γ γ= and (37), we have 

1 21
0

( )
( ) ( )cl

CB K g
CA B K U

λγ γ
λ λ−< − ⋅ < .                   (38) 

From (7) and (38), we know that (17) is satisfied. 
Remark 4. In Theorem 2, according to (11) and (32), we 
have | (0) |q ε> . So, if the free scalar ε is increased, the ratio of 
initial pitch rate becomes larger, which improves the 
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sensitivity of output response q . 

B. Robust Control Synthesis 
Since (ii) is secured only by ( )Fu t , we get the closed-loop 

system with ( ) ( )u t Fx t=  by a descriptor system approach [15] 
( ) ( )x t tη= ,                                                  
( ) ( ( ) ( ) ) ( )t A B F x tη λ λ= + .                    (39) 

Theorem 3. The system (39) is robustly stable if there exist a 
symmetric matrix W , a matrix R and symmetric positive 
definite matrices ( 1,2,3)iX i = such that 

T T T T T T

0
* 2

i i i i i i iAW WA B R R B WA R B X W
W

⎡ ⎤+ + + + + −
<⎢ ⎥−⎣ ⎦

,  (40) 

The state-feedback gain is then given by 1F RW −= . 
Proof: Defining 1

2P W −= , 1 1
1 0i iP W X W− −= > , R FW= , 

multiplying (40) by 1 1diag{ , }W W− − and 1 1diag{ , }W W− −  on the 
left and the right, respectively, we obtain 

T T
2 2 2 1 2

2

0
* 2

cli cli cli iA P P A A P P P
P

⎡ ⎤+ + −
<⎢ ⎥−⎣ ⎦

.                (41) 

According to (41), we have 
T T

2 2 2 1 2

2

( ) ( ) ( ) ( )
* 2

cl cl clA P P A A P P P
P

λ λ λ λ⎡ ⎤+ + −
=⎢ ⎥−⎣ ⎦

 

T T3
2 2 2 1 2

1 2

0
* 2

cli cli cli i
i

i

A P P A A P P P
P

λ
=

⎡ ⎤+ + −
<⎢ ⎥−⎣ ⎦

∑ .              (42) 

Choose a parameter-dependent Lyapunov function 
T

1( , ) ( ) ( ) ( )V x x t P x tλ λ= ,                         (43) 

where
3

1 1
1

( ) 0i i
i

P Pλ λ
=

= >∑ , T
1 1 0i iP P= > . Differentiating ( , )V x λ  

with respect to t  and using (39), we have 
T

1( , ) 2 ( ) ( ) ( )V x x t P x tλ λ=                                                              

1 2T T

2

( ) ( )
2 ( ) ( )

0 0
P P x t

x t t
P

λ
η ⎡ ⎤ ⎡ ⎤⎡ ⎤= ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎣ ⎦⎣ ⎦
                                  

1 2T

2

( ) ( )
2 ( )

0 ( ) ( ( ) ( ) ) ( )
P P t

t
P t A B F x t

λ η
ζ

η λ λ
⎡ ⎤ ⎡ ⎤

= ⎢ ⎥ ⎢ ⎥− + +⎣ ⎦⎣ ⎦
                      

T T
T 2 2 2 1 2

2

( ) ( ) ( ) ( )
( ) ( )

* 2
cl cl clA P P A A P P P

t t
P

λ λ λ λζ ζ
⎡ ⎤+ + −

= ⎢ ⎥−⎣ ⎦
 (44) 

where
TT T( ) ( ) ( )t x t tζ η⎡ ⎤= ⎣ ⎦ . Using (42) and (44), we have 

( , ) 0, ( ) 0V x tλ ζ< ∀ ≠ ,                         (45) 
which means that system (39) is robustly stable. 

C. Multi-objective Controller Design 
The multi-objective controller satisfying (i) and (ii) can be 

obtained by solving LMIs (12)-(16) and (40). Hence, we can 
calculate K and F according to the design program below. 

i) Scalars 1γ and 2γ are computed with 1γ and 2γ . 

ii) The scalar ε is determined. 
iii) δ and ρ are figured from parameters obtained above. 
iv) K , F are gotten by solving LMIs (12)-(16) and (40).  

Remark 5. Since F satisfies conditions of Theorem 2 and 
Theorem 3 simultaneously, it needs not to be changed from 
the first phase to the second. 
Remark 6. If the solution of LMIs is feasible, there exists a 
multi-objective flight controller for system (4). Moreover, the 
controller gain depends on the selection of ε value. So in 
order to secure feasibility of LMIs and sensitivity of output 
responses, it is crucial to choose ε in a reasonable range.  

Next, by constructing and resolving convex optimization 
problems, the adjusting range of ε can be obtained. By 
replacing 2ε in Theorem 2 with a decision variable 0ε > , the 
proofs of theorems below are the same as for Theorem 2. 
Theorem 4. Consider system (4) and given scalars 1 2γ γ< . The 
following convex optimization problem: 

, , , ,
min

iR Q W K X
ε                                       (46) 

subject to                    (13)-(15), (40), 
2 2 2

2 1 1 2( ) (4 ) ( )
0

*
i iC A I W CB R

Q
ε γ γ γ γ δ δ⎡ ⎤− + +

>⎢ ⎥
⎣ ⎦

,     (47) 

T( ) 0, 1,2,3i iCB K CB K I iε + + + < = ,              (48) 
0ε >                                           (49) 

has a solution , , , , , iR Q W K Xε . Then, ε satisfies ε ε≥ . 

Theorem 5. Consider system (4) and given scalars 1 2γ γ< . The 
following convex optimization problem: 

, , , ,
min

iR Q W K X
ε−                                     (50) 

subject to           (13)-(15), (40) and (47)-(49) 
has a solution , , , , , iR Q W K Xε . Then, ε satisfies | |ε ε≤ − .  

IV. ILLUSTRATIVE EXAMPLE AND SIMULATION RESULTS 
This section presents simulation results and result analysis 

from the multi-objective controller described in the previous 
section. The flying qualities analyses based on MIL-F-8785C 
are presented first. Then, the robustness to uncertain system 
vector is analyzed in the simulation. For various operating 
points, values of system parameters [14] are given in Table I. 

TABLE  I 
  SYSTEM MATRIX PARAMETERS 

Operating point 1 2 3 

11a  -0.886 -1.328 -1.726 

12a  0.987 0.983 1.278 

21a  -2.039 -6.44 -8.37 

22a  -0.878 -1.493 -1.941 

11b  -0.186 -0.301 -0.392 

12b  -0.036 -0.059 -0.076 

21b  -22.06 -44.43 -57.76 

22b  -3.803 -7.815 -10.16 

First, we design a simple robust controller with no 
consideration of CAP. Consequently, by solving LMIs (40) 
the corresponding controller gain is 

2.4388 1.2667
-14.7025 -7.2310

F ⎡ ⎤= ⎢ ⎥
⎣ ⎦

. 

Second, we design a multi-objective controller taking 
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account of CAP. According to the handling qualities 
requirements guideline of MIL-F-8785C [15], CAP satisfies 
requirement of category A and level 1, i.e. 0.28<CAP<3.6 . By 
applying Theorem 4 and Theorem 5, the adjusting range of 
ε is 0.3441 2.9063ε≤ ≤ . Letting 0.4ε = and according to the 
above-mentioned design procedure, the controller gain is 

[ ]T0.8962 5.0187K = − , 2.4847 22.5169
14.9503 126.4054

F ⎡ ⎤= ⎢ ⎥− −⎣ ⎦
 

A. Handling Quality Analysis 
In order to illustrate the necessity of constraints on CAP, on 

different operating points, CAP is computed for the open-loop 
system, the closed-loop system with a simple robust controller, 
and the closed-loop system with a multi-objective controller. 
The obtained results are shown in table II. For simplicity, 
three systems above are named system 1, system 2 and system 
3, respectively. For system 1 and system 2, CAP on each 
operating point satisfies 

1
0CAP ( ) ( )

e e
CB CA B g Uδ δ

−= − ⋅ ,               (51) 

where A in system 1 is iA , A in system 2 is i iA B F+ and 
e

Bδ is 
vector in iB according to elevator input. 

TABLE  II 
  CAP FOR EACH OPERATING POINT (OP) 

 1λ  2λ  3λ  system 1  system 2 system 3

OP1 1 0 0 0.1031 0.0396 0.5431 

OP2 0 1 0 0.2078 0.0376 0.4513 

OP3 0 0 1 0.2702 0.0489 0.5867 

From Table II, it follows that CAP values of system 1 and 
system 2 are not within level 1 boundary. However, CAP 
values of system 3 are just in the desirable range, which 
satisfies requirement of category A and level 1. So, it is easy to 
perceive the contrast between the results with and without the 
consideration of CAP. 

B. Robust Stability Analysis 
For robust stability, response on different operating points 

is shown in Figure 1, where r is 0.3rad input for 0.3s.  
From Figure 1, it is obvious that attack of angleα and pitch 

rate q converge to equilibrium by the designed controller on 
given operating points. This result has shown that the 
proposed multi-objective controller ensures robust stability in 
spite of fixed but unknown parameters in the model. 

If the pilot feels that the airplane responses to stick input are 
sluggish, according to Remark 4 the responses can be 
improved by designing a new controller with a larger ε . 
Figures 2-4 show responses for different ε on given operating 
points. As seen, the sensitivity of output response q improves 
with acceptable overshoot and the flight state α can be still 
stabilized in the meanwhile. However, as the ε value increases 
further, sensitivity of q enhances slightly with a remarkable 
overshoot. Hence, in the design for the controller, ε should be 
determined to secure an appropriate trade-off between the 

sensitivity and overshoot of output response q . 
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      Fig. 1.  Response of the airplane on different operating points. 
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Fig. 2.  Response for different ε on operating point 1. 
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Fig. 3.  Response for different ε on operating point 2. 
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Fig. 4. Response for different ε on operating point 3. 

 

V. CONCLUSION 
A multi-objective control strategy using LMIs to design a 

robust flight controller for an airplane with multiple operating 
points has been presented. In order to guarantee handling 
quality requirement while considering the robust stability in 
the presence of fixed but unknown system parameters, a 
multi-objective controller is introduced, which can be solved 
via a convex problem with common solutions. The handling 
quality of airplane dynamics in the flight envelope containing 
multiple operating points is determined by CAP in LMI form. 
Furthermore, the design parameter range, in which the value 
guarantees the sensitivity of output responses and feasibility 
of LMIs, is given by solving a convex optimization problem. 
The simulation study demonstrates that the proposed 
controller design is able to satisfy the typical design 
requirements. 
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