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Abstract— This paper describes Hamilton-Jacobi (HJ) reach-

ability calculations for a hybrid systems formalism governing

unmanned aerial vehicles (UAVs) interacting with another

vehicle in a safety-critical situation. We use this problem to

lay the foundations toward the goal of refining or designing

protocols for multi-UAV and/or manned vehicle interaction. We

describe here what mathematical foundations are necessary to

formulate verification problems on reachability and safety of

flight maneuvers. We finally show how this formalism can be

used in the chosen application to inform UAV decisions on

avoiding unsafe scenarios while achieving mission objectives.

I. INTRODUCTION

In modern autonomous flight systems, the tasks of control

and management of aircraft are often distributed between

the onboard autonomous controller and external human op-

erators. In safety-critical maneuvers, the decision authority

almost exclusively resides with the human operators. How-

ever, this makes controlling large numbers of autonomous

vehicles highly inefficient and prone to human errors. An

important consideration is thus how the UAV would detect

and respond to situations where the human input would place

the UAV in imminent danger. In this paper, we develop a

hybrid system formalism and some verification approaches

for a particular safety-critical flight scenario, as a first step

towards constructing automated decision protocols that can

be formally verified to ensure the safe operation of mixed-

initiative systems.

As a practical motivation, we consider the specific case

of Automated Aerial Refueling (AAR). During a refueling

operation, an unmanned aerial vehicle (UAV) first detaches

from its formation and then approaches the rear of a tanker

aircraft for refueling. The boom operator onboard the tanker

would then lower a fuel boom (essentially a rigid fuel nozzle)

to refuel the UAV. Once the refueling is complete, the
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operator would disconnect the boom and the UAV would

rejoin its formation.

As we will discuss in this paper, the entire process can

be formulated in terms of a hybrid system where a finite

number of discrete states and state transitions are defined,

as well as continuous control laws and system models

defined within the individual states. With a hybrid system

formulation, one could then apply reachable set theory [1]

to verify the feasibility and safety of any given maneuver

or operator command. There are many different ways to

compute reachable sets, the method based on Hamilton-

Jacobi PDEs, presented in [1], is used here.

For each state transition and escape maneuver, one could

compute the capture reachable set, which is the set of aircraft

states from which a maneuver can be completed within a

finite time horizon. The UAV could then consult this data in

real-time to determine a strategy for completing the refueling

sequence under time constraints. Furthermore, given that the

UAV would need to come into close proximity of the tanker

aircraft, one would like to avoid collisions in the event of

disturbances, for example air turbulence, variations in tanker

aircraft speed, and mistakes in operator commands. Then one

could compute unsafe reachable sets from which a collision

would result if the UAV continued its current maneuver.

The capture sets and the unsafe sets could then be com-

bined to determine the sequence of flight mode transitions

to extricate the UAV from an unsafe zone and safely resume

the refueling maneuver. This provides a powerful toolset

for future work in constructing a formal decision protocol

to ensure the safety of the tanker and the UAV during the

refueling process even under faulty operator commands, and

disturbances.

II. BACKGROUND

The use of Hamilton-Jacobi (HJ) reachable sets has seen

successes in numerous aeronautical applications. In [1],

one can find a comprehensive overview of the computation

techniques underlying the HJ reachable set method, its con-

nection with hybrid system theory, and several applications

of the method to hybrid system verification.

Of particular interest to our discussion is the use of

Hamilton-Jacobi methods in air traffic control. In [2] and [3],

the authors present a method for detecting possible “loss of

separation” between pairs of aircraft over a given airspace,

based upon backward reachable sets computed using HJ

PDEs, and using the framework of a dynamic game between

aircraft and uncertainty.

The reachable set method has also been successfully used

to verify safety of conflict resolution aircraft maneuvers [4],
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Fig. 3: Aerial Refueling Formation Transition Model. The initial state is Stationary 1.

deviates from its heading due to external disturbances when

performing one of the formation transitions.

We define four different escape modes, based on relative

cardinal locations around the tanker (before/behind on the

left/right). For escape mode 1, the UAV attempts to move to

a position to the left and behind the tanker, while for escape

mode 2, the UAV attempts to move to a position to the right

and behind the tanker. For escape mode 3, the UAV attempts

to move to a position behind the tanker, while maintaining

the same heading as the tanker aircraft. For escape mode

4, the UAV attempts to move to a position in front of the

tanker, also while being aligned with the tanker heading. The

control laws for these maneuvers take a similar form as the

equations given above, with different proportional constants

and desired final locations.

IV. REACHABLE SET CALCULATIONS

As mentioned in section III-C, two different types of

reachable sets are used in the safety verification and construc-

tion of decision protocols for the aerial refueling procedure,

namely the capture set and the unsafe set. We take the

Hamilton-Jacobi approach [2], [11] towards the calculation

of the time varying reachable sets. We will first review the

general Hamilton-Jacobi method allowing for input uncer-

tainty, and then adapt it for our hybrid automaton.

Mathematically speaking, one can define the target set

implicitly as the sublevel set of a scalar function of the states

[2] φ0 : R
3 →R. If we are to call the target set T = G0, then

G0 =
{

x ∈ R
3,φ0(x)≤ 0

}
(4)

Similarly, one can define the set of states controllable to

G0 after time τ as the sublevel set of the level set function

φ : R
3×R→ R. Let this set be Gτ , then

Gτ =
{

x ∈ R
3,φ(x,−τ)≤ 0

}
(5)

As can be seen, the set of states at which the level

set function is zero defines the boundary of the backward

reachable set at time t. It has been shown in [2] that if

all control inputs u(t) within the input space U and all

disturbance inputs d(t) within the input space D are bounded

at any given time, and if the system behavior f (x,u,d)
satisfies certain continuity constraints, φ(x, t) is the solution

to the terminal value Hamilton-Jacobi PDE

∂φ

∂ t
+H

(
x,

∂φ

∂x

)
= 0, φ(x,0) = φ0(x) (6)

In cases where the optimal control input attempts to

maximize the reachable set, while the worst case disturbance

input attempts to minimize the reachable set, the Hamiltonian

is defined as

H (x, p) =−max
d∈D

min
u∈U

pT f (x,u,d) (7)

where p is a placeholder for ∇φ .

We note that for the hybrid system automaton defined

in Section III-C, the set of disturbance inputs is empty. To

generate the reachable sets for a particular feedback control

law u = K(x) as defined in Section III-D, one would use the

system behavior ẋ = f (x,K(x)), which is input free.

With this formulation of the Hamiltonian, we are now

able to generate the reachable sets for each of the formation

transitions and evasive maneuvers with fixed control inputs.

For capture sets, the target set is chosen to be a closed set of

states around a desired waypoint. The general form of such

a target set is given below:

G0 =

⎧⎨
⎩

x1 ∈ [x1min
,x1max ]

x2 ∈ [x2min
,x2max ]

x3 ∈ [x3min
,x3max ]

(8)

For unsafe sets, the set of unsafe final states is chosen to

be a disk around the tanker aircraft with a slight dent behind

the tanker to allow the UAV to approach the fuel boom.

Precisely, this set is given by

G0 =
{

x ∈ X | x2
1 + x2

2 ≤ d0

}
\ N (9)

where d0 is the unsafe radius, and N is a neighborhood of

states around the boom location (x1 = D, x2 = 0).
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We will note however, that the results could be easily

extended to cases where we allow for uncertainty in tanker

inputs that lie within certain deterministic bounds, thus

adding robustness into the capture and unsafe sets that are

generated. Specifically, we will introduce a case where the

tanker velocity v0 in Eq. (1) is not constant, but rather

allowed to vary within a range [vmin,vmax]. In the framework

of the HJ equations, the disturbance input space is given by

D = {v0 : v0 ∈ [vmin,vmax]}.
For general system dynamics, the solution to the H-J PDE

is difficult to compute analytically. Several high resolution

numerical approximation schemes exist to compute the level

set function. For this project, computations of the reachable

sets were performed using the Toolbox for Level Set Methods

developed by Prof. Ian Mitchell of University of British

Columbia [12] for MATLAB, based upon the level set theory

described extensively in [13] and [14]. In the numerical

approximation scheme, the continuous state space is divided

into a finite number of grid cells, and each grid cell is

assigned a numerical value of the level set function during

the reachable set computation. The computation cost of the

level set method is strongly tied to the dimension of the

problem and the number of grid cells used.

V. ANALYSIS OF RESULTS

To validate the capture and unsafe reachable sets, we

constructed MATLAB simulations of various refueling se-

quence scenarios. For the simulation results shown in this

section, we set the velocity of the tanker aircraft to be

v0 = 0.2. Furthermore, we assume that the velocity input

has the saturation limits [0.05,0.5], and the angular velocity

input has the saturation limits [−π/6,π/6]. The control law

parameter values used for the simulation are summarized in

Table I.

TABLE I: Control Law Parameters

Maneuver k1 k2 x1 f x2 f

Detach 1 5 5 1 1

Precontact 0.15 5 1 0

Contact 5 5 0.25 0

Postcontact 5 5 1 0

Detach 2 0.15 5 1 1

Rejoin 5 5 0.25 1

A. Capture Sets Computation and Simulation

As mentioned in the previous section, the target set for

capture reachable sets is chosen to be a neighborhood around

the set of desired final states. In terms of the control laws, the

desired spatial location is given by the x1 f and x2 f parame-

ters. Since we would like the UAV to end its maneuver with

a heading roughly the same as that of the tanker aircraft, the

desired final relative heading is zero. For example, the target

set for the Precontact maneuver (transition from waypoint 2

to 3) can be chosen to be

G0 =

⎧⎨
⎩

x1 ∈ [0.75,1.25]
x2 ∈ [−0.25,0.25]
x3 ∈ [−π/9,π/9]

(10)

Fig. 4: Capture Set for Transition 2 to 3 (Precontact), x1 and

x2 represent longitudinal and lateral offset (respectively), and

x3 represents the offset in heading between the UAV and

tanker.

To compute the capture set of this maneuver, we used the

Hamiltonian function defined in Section IV, substituting the

Precontact control law for u1 and u2. For a choice of 10

seconds for the time horizon, the capture set generated for

this maneuver is shown in Figure 4.
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Fig. 5: Refueling sequence simulation with capture sets.

For all states within this reachable set, the UAV is guaran-

teed to be driven into the desired target set within 10 seconds
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under the Precontact flight mode. The reachable sets for

other flight modes can be generated similarly using different

specifications of the target set and control constants.

Using our MATLAB simulation environment, we con-

structed a complete simulation of the refueling sequence with

the reachable sets superimposed on the trajectories of the

UAV. It was found that if we generate capture sets for each

flight mode over multiple time horizons, they can be used to

design the transition timing of the refueling process. First,

we find the capture sets for the last transition (Rejoin). We

then find the smallest time horizon at which the capture set

includes the target set of the next to last transition (Detach

2). By this, we can guarantee that if the UAV reaches the

target set for Detach 2, it will reach the target set for Rejoin

within this time horizon. We then propagate this backward

by finding the smallest time horizon at which the capture

sets for the Detach 2 transition includes the target set for the

Detach transition. In this manner, we obtain a sequence of

time horizons that can be used as the transition timings.

In Figure 5, the complete set of reachable sets is plotted

as the UAV transitions from one maneuver to another in a

refueling sequence. For each maneuver, it is shown that if

the UAV reaches the target set of the current maneuver, then

it is guaranteed to be within the backward reachable set of

the next maneuver.

B. Fallback/Waveoff Scenario Simulation

As defined in Section III-C, the unsafe set for a given

maneuver is the set of states from which the UAV could

enter an unsafe zone around the tanker aircraft using the

corresponding control laws for the maneuver. In a deter-

ministic situation, the control laws are designed so that the

UAV would never enter the unsafe set while performing any

maneuver. However, in practical situations, environmental

factors such as wind turbulence and variations in tanker

velocity could cause the UAV to miss the fuel boom and stray

into the unsafe zone of the tanker aircraft. In these cases, the

UAV would have to execute a sequence of escape maneuvers

to avoid a collision with the tanker while completing the

maneuvers necessary for the refueling process.

In our example scenario, we consider the case where the

UAV starts at an unsafe location close to the tanker and

chooses to initiate, without operator commands, a sequence

of maneuvers to a safe location where it is feasible to

perform the Contact maneuver. If the unsafe sets were not a

concern, the UAV could construct a sequence of maneuvers

by ensuring that the target set of one maneuver lies within

the reachable set of the next maneuver, much like how the

refueling sequence was constructed in Section V-A.

However, in this case, we have the further constraint that at

the start of any maneuver in the sequence, the UAV cannot be

inside the unsafe set of that maneuver. In this case, although

the maneuver which minimizes the time to reach the fuel

boom would be to simply back up the UAV directly and

then perform the Contact maneuver, this would clearly cause

the UAV to enter the unsafe zone of the tanker aircraft. By

taking into account the unsafe sets, the UAV would instead

need to speed up and then steer left so as to be able to safely

backup into the reachable set for the Contact maneuver. It

is important to note that part of the reachable set for the

Contact maneuver actually intersects with the unsafe set for

the same maneuver. The states where the sets intersect would

result in the UAV arriving at the fuel boom in desired time,

but also having entered the unsafe zone of the tanker in that

process. To avoid this situation, the UAV would need to back

up far enough so that it is within the part of the reachable

set that does not intersect with the unsafe set.

The complete sequence of maneuvers is shown in Fig-

ure 6. The fallback sequence described here is obtained

from repeated simulations using multiple reachable sets. The

sets are computed offline, and the datasets used at runtime.

Computation:simulation time ratios, using high accuracy,

range from 70:1 to approximately 1400:1.
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Fig. 6: Maneuvers for Fallback Scenario.

C. Comparison of Capture Sets and Unsafe Sets under Worst

Case Tanker Speed Input

In the preceding simulations, all reachable sets and unsafe

sets were generated using completely known control laws

and system behavior. Although it may be reasonable to

expect relatively accurate measurements of the instantaneous

location and relative heading of the UAV using modern

navigational instruments, there is a degree of uncertainty

associated with the velocity of the tanker. This uncertainty

may not be significant for maneuvers far enough from the

tanker aircraft. However, for the Contact maneuver where

the UAV would need to come into close proximity with the

tanker aircraft, even slight variations in the tanker aircraft

speeds may endanger the safety of the maneuver.

The Hamilton-Jacobi formulation of reachable sets gives

a convenient method to account for this uncertainty in the

tanker aircraft velocity. As seen in the reachable set section,

we can allow this velocity to fluctuate within a specified
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range [vmin,vmax] as an input to the system. For the reachable

set calculations, one needs to only maximize or minimize the

Hamiltonian as necessary over the range of this input. Using

this method, the worst case capture set and unsafe set were

obtained under uncertain but bounded tanker velocity and

are shown in Figure 7 (a) and (b), along with the same sets

calculated under deterministic tanker velocity.
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(a) “Contact” reachable set without
uncertainty (outer line), with uncer-
tainty (inner line).
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(b) “Contact” unsafe set with un-
certainty (outer line), without uncer-
tainty (inner line).

Fig. 7: Reach/Unsafe Set under Worst Case Tanker Speed.

As expected, the worst case capture set with added un-

certainty is smaller than that without uncertainty. This is

due to the fact that under worst case tanker aircraft speed

input, the tanker is effectively trying to prevent the UAV

from entering the refueling zone. Similarly, the worst case

unsafe set under uncertainty is shown to be larger than that

without uncertainty. This results from the worst case tanker

speed input which effectively tries to force a collision with

the UAV. In the context of the maneuver designed for the

second fallback scenario described in the previous section,

the reachable set from which it is safe to reach the fuel

boom without encroaching on the unsafe zone of the tanker

is significantly reduced under uncertain tanker velocity. This

may force the UAV to return to waypoint 3 before re-

initiating the capture maneuver.

VI. CONCLUSION AND FUTURE WORK

Using a state transition diagram for discrete dynamics

and a state space model for continuous behavior, we have

formulated the refueling process as a hybrid system model.

Simple proportional control laws were chosen to control the

UAV to desired locations during the refueling process.

With a hybrid system model, system verification is for-

mulated as a hybrid system verification problem. Through

the Hamilton-Jacobi formulation of reachable sets, we were

able to use numerical techniques to compute the capture sets

and unsafe sets for all maneuvers in the refueling process.

Results from the reachable set simulations demonstrated that

the use of capture set and unsafe set data allows us to design

the transition timing of the refueling sequence, detect unsafe

maneuvers, and design fallback maneuvers that reach the

desired target set in minimum time while avoiding collisions

with the tanker aircraft.

The challenge going forward will be to combine the results

of the reachable set simulations and construct a formal algo-

rithm with which the UAV could generate autonomous deci-

sions for formation transitions based on operator commands,

its onboard state, and reachable set data. To ensure the

reliability of the reachable sets used for synthesizing flight

critical decisions, one also needs to investigate techniques

for increasing the accuracy of the reachable sets without

significant increases in computation cost.
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