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Abstract— Control-theoretical studies on Feedback Error
Learning (FEL) have been active recently. The authors general-
ized this scheme to multi-input multi-output (MIMO) systems
with application to writing one-stroke characters by a two-
link manipulator. After mentioning those related works, this
paper studies further issues on MIMO-FEL, with focus on
insufficient excitation and plant parameter estimation by means
of frequency response.

I. INTRODUCTION

Feedback Error Learning (FEL) originates from the pio-

neering work by Kawato et al. [1] on brain motor control.

Our neural system is too slow in transmission to control

motion only by feedback, hence it also uses feedforward with

learning, whose mechanism was modeled as FEL.

This scheme soon attracted much attention in control

engineering as well. Miyamura and Kimura [2] have estab-

lished a control theoretical validity of the FEL method in

the frame of adaptive control for single-input single-output

(SISO) systems, proving its stability based on strict positive

realness, whereas Muramatsu and Watanabe [3] have relaxed

this condition by using the error signal between the reference

and the output signal as well as the feedback input. Then

Alali et al. [5] developed a MIMO-FEL scheme, which was

further applied to a two-link manipulator, thereby showing

that MIMO-FEL is effective for learning how to write one-

stroke characters with the manipulator.

A striking feature in FEL is its excellent tracking perfor-

mance without precise knowledge on the plant. This is so

even without sufficient excitation of signals, which is clear

both in simulation and experiment [5], [6]. So far, however,

stability has been shown only in the case of sufficient

excitation for the MIMO case.

The objectives of this paper are two-fold: First, we prove

that the tracking error in [5] converges exponentially to

zero even without full PE condition; i.e., even if signals are

insufficiently rich1. This is important since in practice, PE

condition is undesirable or even impossible to satisfy while

good tracking performance is required.

Secondly, by making full use of this performance, we

estimate plant parameter while in closed-loop operation. Our

scenario is as follows: We first apply a sinusoidal signal

with a single frequency component, a typical example of

insufficient excitation, as a reference signal. We make the
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1But we need certain approximation which is carried over since [2].

Fig. 1. Feedback Error Learning Architecture for MIMO Biproper Systems

feedforward controller learn to track this reference. After

convergence the trained controller reflects the inverse re-

sponse of the plant only at this frequency. We repeat this

process for various frequencies. Rapid convergence of FEL

allows us to do it efficiently. The plant parameter is finally

computed by solving a linear equation from these data.

It is widely known that closed-loop identification is dif-

ficult since the input/output signals have correlation. Under

sensor noise, our method does not solve the problem per-

fectly, yet gives a new insight from an adaptive viewpoint.

We cancel the feedback signal by feedfoward control, thus

leading to virtual open-loop operation. We do not even

require knowledge of feedback controller for estimation.

II. REVIEW OF MIMO-FEL

Consider the following state-space plant model

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) (1)

where x ∈ R
n, u ∈ R

m, y ∈ R
m, (A, B, C) controllable

and observable. In this paper, we confine ourselves to the

biproper case 2 , i.e., det D �= 0. Assume that (1) is minimum

phase. Then, there exists a proper stable system Q(s) such

that P (s)Q(s) = I , where P (s) = D + C(sI − A)−1B.

The feedback error learning architecture of the plant (1) is

shown in Fig. 1. Here we assume that we have already given

the feedback controller Kfb to stabilize the plant, where det

Kfb �= 0. However, this is not expected to give a good

tracking performance because we do not know the model

precisely. Thus, we need to adapt a feedforward controller

QΘ(s) to generate uff in order to improve the performance;

i.e., to minimize the error signal e(t) in Fig. 1.

In fact, we can attain e = 0 in steady state by some QΘ(s).
The “optimal” feedforward controller in this sense is

u0(t) = P (s)−1r(t) = Q(s)r(t). (2)

2It is known that biproper systems can be made positive real by some
feedback [2], which we will use in a stability proof. If a MIMO system is
not biproper, we put a prefilter to compensate the delay [5], [6].
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In reality, however, we cannot construct Q(s) in advance

since (A, B, C, D) in (1) is assumed to be unknown. We

consequently need adaptation to realize (2). We first take a

pair (Af , Bf ) such that Bf ∈ R
νm×m and

(sI − Af )−1Bf =
1

d(s)







S(s) O
. . .

O S(s)






, S =







1
...

sν−1







(3)

for a Hurwitz polynomial d(s) and an integer ν (see [5] for

concrete forms of Af and Bf ). Consider

η =





(sI − Af )−1Bfr

(sI − Af )−1Bfu0

r



 ∈ R
ℓ, ℓ := 2νm + m. (4)

If ν is large enough, then there exist F0, G0 ∈ R
m×νm, and

H0 ∈ R
m×m such that

Q(s) = {I−G0(sI−Af )−1Bf}
−1{H0+F0(sI−Af )−1Bf}.

Namely, we attain

u0(t) = Θ0η(t), Θ0 = [F0 G0 H0] ∈ R
m×ℓ. (5)

However, F0 , G0 and H0 are unknown matrices to be

estimated (which will be called “optimal” later), so that we

replace them with tunable matrices:

û0(t) = Θ(t)η(t), Θ(t) = [F (t) G(t) H(t)] (6)

where u0 in (4) is replaced by û0
3 and Θ(t) is tuned by the

MIMO-version learning law [5]

dΘ

dt
= αufb(t)ηT (t) (7)

with a small positive constant α that gives adaptation speed.

We apply û0 as uff in Fig. 1.

MIMO-FEL has turned out to be highly effective for

tracking reference signals. Various simulation results show

that tracking error converges to zero very fast [5]. This

scheme has also been applied to a two-link manipulator

for learning to write one-stroke characters [6]. For the

experimental hardware and written characters, see Figs. 2 and

3 respectively. It is clear that in such cases reference signals

lack sufficient excitation (see §4.2 in conference version of

[6] for a detail), which motivates our development below.

III. EXPONENTIAL TRACKING ERROR CONVERGENCE

Persistent excitation (PE) is a sufficient condition to ensure

parameter convergence as well as tracking error convergence

for FEL [2], [3], [5]. In this paper, we relax this condition

for the latter convergence [7].

We start by considering the dynamics of the parameter

estimation error defined by

Ψ(t) := Θ0 − Θ(t), (8)

3Conference vesion of [5] used u for u0 in (4), which is not desirable,
as pointed out by reference [12]. On the other hand, journal version of [5]
and both versions of [6] used û0 and applied it as uff correctly.

Fig. 2. Two-link Manipulator

Fig. 3. Written Characters 0 and 8 by the Manipulator

as in [2], [3]. By (7) we have

Ψ̇(t) = −αufb(t)η
T (t). (9)

In our scheme (see Fig. 1), we have

ufb = u − uff = P−1y − ûo. (10)

Furthermore,

P−1y = Qy ∼= Qr = uo, (11)

in the neighborhood of the optimal parameter (i.e., when

Ψ ∼= 0). By (8), (10), and (11) we obtain

ufb(t) = u0(t) − û0(t) = Ψ(t)η(t) (12)

Substituting (12) in (9) we have

Ψ̇(t) = −αΨ(t)η(t)ηT (t). (13)

Note that (13) is a matrix differential equation with variable

coefficients. Now let us define the Lyapunov function V =
1

2
tr{ΨT Ψ}. Its derivative is computed as

V̇ (t) = tr[ΨT (t)Ψ̇(t)] = −αtr[ΨT (t)Ψ(t)η(t)ηT (t)] ≤ 0.

(14)

This proves that Ψ remains bounded. If η is bounded, then

from (12) the error

e(t) = K−1

fb
ufb(t) = K−1

fb
Ψ(t)η(t), (15)

remains bounded. Furthermore, if η̇ is bounded, then V̈

is also bounded, V̇ is uniformly continuous, then we can

apply Barbalat lemma [4] (see Appendix A) to ensure that

limt→∞ e(t) = 0. But this does not guarantee the exponential
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convergence of e(t) to zero. An additional condition is

usually imposed to this end, as follows [2], [3], [5].

In general, we say that a vector signal ξ(t) =
[ξ1(t) ξ2(t) · · · ξp(t)]

T
satisfies the PE condition, if there

exists δ > 0 such that

Ξ(t0, δ) =

∫ t0+δ

t0

ξ(t)ξT (t)dt > 0, (16)

for arbitrary initial time t0. Now we first show that if η(t)
in (4) is PE, then e(t) converges to zero exponentially; i.e.,

there exist constants φ ≥ 0, σ > 0 such that

‖e(t)‖ ≤ φe−σt. (17)

After that, we will relax this sufficient condition.

For Ψ = (ψij) in (8), let vec(Ψ) denote the vector formed

by stacking its columns into one long vector:

vec(Ψ) = (ψ11 · · ·ψm1 ψ12 · · · · · ·ψmℓ)
T . (18)

Then for any matrices X , Y and Z with appropriate dimen-

sions, it is known that [9]

vec(XY Z) = (ZT ⊗ X)vec(Y ), (19)

where ⊗ is Kronecker product. Hence (13) is written as

vec(Ψ̇(t)) = (η(t)ηT (t) ⊗ (−αI))vec(Ψ(t))

= −α







η1(t)I
...

ηℓ(t)I






[η1(t)I · · · ηℓ(t)I] vec(Ψ(t))

(20)

This means that (13) is the system of linear differential

equations. Now we have the following lemma.

Lemma 1:

If η(t) satisfies the PE condition, then there exists δ > 0
such that

∫ t0+δ

t0

η(t)ηT (t) ⊗ Idt > 0 (21)

for arbitrary t0.

Proof: see the Appendix B. ⋄

Corollary:

If η(t) is PE, then (20) is globally exponentially stable, which

implies that e(t) also converges to zero exponentially.

Proof: The first statement holds by applying Exponential

Stability Theorem [10], see Appendix C, to the vector

differential equation (20), with Lemma 1. The second holds

by (15). ⋄

Now we proceed to the case where η is not fully excited,

the first main objective of the paper. We start by defining the

correlation matrix:

M =

∫

∞

t0

η(t)ηT (t)dt ≥ 0. (22)

The constant matrix M fails to be positive definite but is pos-

itive semidefinite anyway. Hence there exists an eigenvalue

decomposition:

M = R

[

Λ 0
0 0

]

RT , Λ = diag(λ1, · · · , λp) (23)

where R is an ℓ× ℓ orthogonal matrix and λ1 ≥ · · · ≥ λp >

0. Now let us show that the error system (12) and (13) can

be written equivalently as a reduced system.

Theorem 1:

Using the MIMO-FEL adaptive law (7), the smallest nonzero

eigenvalue λp always exists unless η ≡ 0, e ≡ 0. Further,

the tracking error e converges to zero exponentially.

Proof: If M = 0 then, from (22) η ≡ 0, and from (15) the

error e ≡ 0. Hence M �= 0 and λp > 0 exists. Defining

ρ(t) = RT η(t) ∈ R
ℓ, Ω(t) = Ψ(t)R ∈ R

m×ℓ, (24)

ρ(t) =

[

ρ1(t)
ρ2(t)

]

, Ω(t) =
[

Ω1(t) Ω2(t)
]

(25)

in block sizes compatible with (23), the error (12) can be

written as follows:

ufb(t) = ΨRRT η = Ωρ = Ω1ρ1 + Ω2ρ2. (26)

From (23), the correlation matrix of ρ is computed as

∫

∞

t0

ρ(t)ρT (t)dt =

[

Λ 0
0 0

]

, (27)

which implies from (25) that

∫

∞

t0

ρ1(t)ρ
T
1 (t)dt = Λ > 0, ρ2 ≡ 0. (28)

Substituting (28) in (26) gives

ufb(t) = Ω1(t)ρ1(t). (29)

This implies that we have reduced ρ to ρ1, which has a

smaller dimension and is persistently excited by (28).

A similar reduction can be shown for Ω as follows. By

post-multiplying both sides of (13) by R we obtain

Ψ̇(t)R = −αΨ(t)η(t)ηT (t)R. (30)

Using (24) and (12), we have

Ω̇(t) = −αufb(t)ρ
T (t) = −αΩ1(t)ρ1(t)ρ

T (t) (31)

by (29), which can be partitioned using (25) and (28) as

Ω̇1(t) = −αΩ1(t)ρ1(t)ρ
T
1 (t), Ω̇2(t) = 0. (32)

It follows that the reduced parameter error Ω1 in (32)

converges exponentially based on Corollary to Lemma 1 . As

Ω1 → 0, ufb(t) → 0 by (29), which ensures the exponential

convergence of e by (15). ⋄

The proof concludes that there is no need for convergence

of the full parameter matrix Θ(t) for the purpose of the

exponential convergence of the tracking error. Rather, partial

excitation of η, i.e., that of ρ1, is enough for the exponential

convergence of e(t).
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IV. PARAMETER ESTIMATION BY FREQUENCY RESPONSE

A main advantage of FEL as mentioned above is the

exponential convergence of the tracking error by means of

learning feedforward controller. It is then natural to expect

that the acquired QΘ(s) has some knowledge on the plant

model. If, in particular, we apply a sinusoidal reference, then

QΘ(s) works as the inverse of the plant at this specific

frequency.

In this section we show that, by testing various fre-

quencies, we can identify the plant parameter from such

knowledge while in closed-loop operation. To be specific,

we consider a left factorization

P (s) = D−1(s)N (s), (33)

where D(s) and N (s) are polynomial matrices defined by

D(s) = sµI + sµ−1D1 + . . . + Dµ,

N (s) = sµN0 + sµ−1N1 + . . . + Nµ.
(34)

N0 is nonsingular because (1) is biproper. Our objective

here is to estimate the coefficient matrices in (34) based on

MIMO-FEL. Now we apply the reference signals of the form

ri
k(t) = γi

k sin(ωit), k = 1, · · · , m, (35)

with linearly independent vectors γi
1, · · · , γi

m for i =
1, · · · , µ. Then, we make the feedforward controller learn

to track such references. After convergence the trained con-

troller satisfies

P (jωi)QΘi
k(jωi)γi

k = γi
k. (36)

Hence from (33) we obtain

N (jωi)[ξi
1 · · · ξi

m] = D(jωi)[γi
1 · · · γi

m]. (37)

where ξi
k := QΘi

k(jωi)γi
k. (37) is a linear equation with

respect to the coefficient matrices of (34). By testing (35)

for various frequencies and solving (37) for i = 1, · · · , µ,

we obtain those coefficient matrices.

In order to explain more specifically, take the second

order bi-prober SISO case for example. Then, we have

four parameters to be estimated. We apply two different

frequencies in order to estimate the parameters. By taking

γi
1 = 1, we obtain ξi

1 = QΘi
1(jωi) = αi + jβi. Then (37)

becomes

(−ω2
i + jωin1 + n2)(αi + jβi) = −ω2

i + jωid1 + d2, (38)

where the scalar coefficients are written in lowercase. Com-

paring its real and imaginary parts, we have

−ω2
i αi + αin2 − ωiβin1 = −ω2

i + d2

−ω2
i βi + βin2 + ωiαin1 = ωid1

}

i = 1, 2. (39)

The plant parameter is then computed by solving the follow-

ing linear equation:




ω1 0 −α1ω1 −β1

ω2 0 −α2ω2 −β2

0 1 β1ω1 −α1

0 1 β2ω2 −α2









d1

d2

n1

n2



 =





−β1ω2
1

−β2ω2
2

ω2
1
− α1ω2

1

ω2
2
− α2ω2

2



 .

In general, the algorithm is summarized as follows:

1) Put i = 1.

2) Take a frequency ωi. Put k = 1.

3) Apply sinusoidal reference input ri
k(t) in (35). Use

the learning law (7) to tune the linear filter parameter

in (6). After convergence, compute QΘi
k(jωi).

4) Put k := k + 1 and go to Step 3 until k = m.

5) Obtain the equation (37) for i. Put i := i + 1 and go

back to Step 2 until i = µ.

6) Based on the obtained data, solve the linear system of

equations (37).

Note that the proposed algorithm cancels the feedback ef-

fect by adjusting feedforward control, thereby obtaining i/o

relations of the plant itself. The rapid convergence of FEL

allows us to achieve this process efficiently. An advantage of

the proposed method is that it does not require knowledge

of the feedback controller.

V. EXAMPLES

To illustrate the proposed method, we perform numerical

simulation. Here we confine ourselves in SISO case for

simplicity. Consider the second order plant:

P (s) =
s2 + 3s + 2

s2 + 7s + 12

We apply the reference input ri(t) = sin(ωit), for ω1 = 1
[rad/s] and ω2 = 2 [rad/s]. We choose a suitable feedback

controller gain Kfb = 5 which maintains the closed-loop

stability.

A. Proposed Method
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Fig. 4. Tracking Errors

Based on the order of the plant, we set

Af =

[

0 1
−5 −5

]

, Bf =

[

0
1

]

.

Then, we tune Θ(t) using the learning law (7) so that we

can improve the tracking performance. Fig. 4 shows that the

error signals ei(t) for the two frequencies converge to zero

very fast. In view of this, we take the value of Θi(t) at

the time when ei(t) vanishes; e1(t) and e2(t) vanish around

t1 = 20 and t2 = 40, respectively. The learned feedforward

controllers for the two frequencies are as follows:

QΘ1
(s) =

3.421s2 + 16.77s + 18.28

s2 + 5.428s + 1.232
,
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QΘ2
(s) =

1.66s2 + 7.978s + 10.6

s2 + 2.666s + 0.3708
.

Note that the resulting QΘi
(s) does not represent the

inverse of the plant, i.e., P (s)QΘi
(s) �= 1, because Θ(t)

converges to a constant matrix not necessarily optimal. This

is because ri(t) lacks full excitation or the PE condition,

nonetheless the tracking is successful, due to the first result

of this paper. In fact, the correlation matrix is computed as

M =







1.2161 0.012 3.8782 3.0599 4.9343
0.012 1.2022 −2.9742 3.8524 6.0719
3.8782 −2.9742 20.1335 0.1532 0.6543
3.0599 3.8524 0.1532 20.1224 31.5214
4.9343 6.0719 0.6543 31.5214 50.2183






,

which gives rank M = 4.

Now, let us estimate the plant parameter. The Bode

plot in Fig. 5 shows that the estimated gain and phase

at the particular frequencies coincide with the true values;

P (jωi) = Q−1

Θi
(jωi). From these data, the linear equation

in Section IV has been solved with respect to the parameter.

The result is as follows:

PFEL(s) =
s2 + 2.8387s + 1.8611

s2 + 6.8567s + 11.1334
.

If we take more time than t1 and t2, or if we test more

frequencies, then the result of estimation becomes better.

Fig. 5. FEL Analysis Results: solid line: P (s), dashed line: Q
−1

Θ1
(s),

dotted line: Q
−1

Θ2
(s)

B. Conventional Method

We adopt an approach based on one-degree of freedom

control scheme (1DOF); i.e., without the feedforward con-

troller in Fig. 1. The frequency response data from the

reference input and the output of the plant are used to

estimate the plant parameter. In this simulation, the spectrum

analyzer in MATLAB is used to measure the frequency

response data. The data is collected at the same time as

Section V-A for fair comparison between both methods. We

also use the same feedback controller, reference input and

frequencies. From the frequency response data, we solve the

linear equation as in the proposed algorithm to estimate the

closed-loop transfer function. Then, by using the feedback

controller knowledge, the plant is estimated as follows:

Pcon.(s) =
s2 + 3.405s + 2.5697

s2 + 7.15s + 14.51
.

The result is biased from the actual plant parameter. Of

course, the estimation is much improved if we take more

time.

C. Results Comparison

It can be seen clearly that the estimation based on the FEL

is better than the conventional approach as shown in Figs. 6

and 7.
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P (s) − Pcon.(s)

The former is fairly close to the actual one. We conclude

that the proposed algorithm gives good approximation of the

plant model faster than the conventional method. Another

merit of FEL estimation over the conventional one is that it

does not require the feedback controller knowledge.

D. Further Verification by Experiment

It is also possible to verify the proposed method by

experiment with the two-link manipulator. Instead of writing

characters, sinusoidal signals are applied as reference in X

and Y axes, so that the manipulator learns to draw various
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ellipsoids. Fig. 8 shows one such result. The authors are cur-

rently analyzing the data, but have not finished identification

of the manipulator at the moment of final version submission

for some reasons.
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Fig. 8. Ellipsoids drawn by manipulator

VI. CONCLUSION

The main objective of this work is to prove the exponential

convergence of the tracking error without full excitation in

FEL. The merit of this result is that in many applications

good tracking performance is required, while it is not desir-

able or even impossible to satisfy PE condition. Furthermore,

the parameter estimation using FEL shows better result than

conventional approach after the error convergence without

using the knowledge of the feedback controller as required

by most of the conventional methods.

It is worth to compare the proposed method with the

recent work by Kaneko et al. [11], where two degree of

freedom structure is used as in our approach for closed-loop

identification based on fictitious reference iterative tuning

(FRIT). FRIT requires only one-shot experimental data to

identify the plant parameter. However, the parameter tuning

is done off-line using the collected data while the proposed

method works on-operation.

A drawback in this paper is that we have proved merely

local stability, as is also the case in [2], since we have

used approximation in (11). Positive realness also seems a

conservative condition, because extensive simulation results

suggest stability in a more general case. It is future work

to generalize in this direction, together with establishing an

on-line estimation method.

Finally, the authors are grateful for anonymous reviewers

who gave various suggestions, which include drawing their

attention to the paper [12], though detailed discussion re-

mains as future work.
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APPENDIX

A. Barbalat Lemma (page 205 in [4]):

If a function g : [0,∞) → R is uniformly continuous and
∫

∞

0

g(s)ds has a finite value, then lim
t→∞

g(t) = 0.

B. Proof of Lemma 1:

In order to prove that

∫ t0+δ

t0

η(t)ηT (t) ⊗ Idt =









∫ t0+δ

t0
η2
1dtI

∫ t0+δ

t0
η1η2dtI · · ·

∫ t0+δ

t0
η2η1dtI

∫ t0+δ

t0
η2
2dtI · · ·

...
...

. . .









> 0,

it is enough to show that if A = (aij) > 0 then

A ⊗ I =







a11I a12I · · ·
a21I a22I · · ·

...
...

. . .






> 0.

There exists an orthogonal matrix V such that

V T AV = diag(α1, α2, · · ·) with αi > 0.

Hence we obtain (V ⊗ I)T A ⊗ I(V ⊗ I)

=







α1 0
α2

0
. . .






⊗ I =







α1I 0
α2I

0
. . .






> 0.

C. Exponential Stability Theorem (page 73 in [10]):

Let w(t) ∈ R
n be piecewise continuous: If w(t) is PE,

then the solution of φ̇(t) = −gw(t)wT (t)φ(t) for g > 0 is

globally exponentially stable.
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