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Abstract— This paper proposes a new approach for the
iterative identification of continuous-time systems, which is
based on the projection type ILC (iterative learning control)
concepts. Unlike any other ILC methods, this paper gives a
framework to perform ILC without resetting the initial condi-
tion at each iteration, which can be achieved by introducing
the dynamics into the system representation in the finite-
dimensional signal subspace. Therefore, it is not necessary to
wait for the equilibrium state patiently or reset the system
forcibly. Furthermore, a class of gain decreasing filters are
introduced, which plays a crucial role in effective parameter
convergence in the presence of heavy noise. Combination of
these results gives us the estimates which converge to the true
system parameters against measurement noise. A numerical
example is given to demonstrate its effectiveness.

I. INTRODUCTION

This paper is concerned with iterative learning control

(ILC) and identification in continuous-time systems.

As for identification, though most of the existing methods

are described in discrete-time, it would often be convenient

to have continuous-time models directly from the sampled

I/O data. In fact, it is often much easier for us to capture

the plant dynamics intuitively in continuous-time rather

than in discrete-time. A basic difficulty of continuous-time

identification is, however, that standard approaches (so called

direct methods) require to compute the time-derivatives of

I/O data. A comprehensive survey about direct methods has

been given by [1] and [2]. Furthermore, the Continuous-

Time System Identification (CONTSID) tool-box has been

developed on the basis of these direct methods [3], [4].

While, iterative learning control (ILC) has attracted much

attention over the last two decades as a powerful model-

free control methodology, [5], [6], [7], [8]. ILC returns

the input which achieves output tracking by iteration of

trials for uncertain systems. One of the major drawbacks of

ILC in continuous-time is that most approaches need time-

derivatives of I/O data [9], therefore it is quite sensitive to

measurement noise. In 2001, Hamamoto and Sugie [10], pro-

posed an ILC where the learning law works in a certain finite-

dimensional subspace and showed that time-derivatives of the

tracking error is not required to achieve perfect tracking in

the proposed scheme. Based on this work, Sugie and Sakai
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[11], [12] proposed an ILC which works in the presence of

heavy measurement noise and, moreover, the method was

shown to be applicable to identification of continuous-time

systems as well. Furthermore, Campi et al., [13] extends the

identification method to the general case where the plant has

zeros as well as poles. This identification method proved

several advantages such as: (i) no time-derivatives of I/O

data are required and (ii) it guarantees zero convergence of

the parameter estimation error.

Because of the above merits and its strong tolerance

against measurement noise, this paper focuses on the ILC

based identification. The method, however, requires us to

reset the initial condition at each iteration. Though this is

a quite common feature in ILC, it is sometimes very time

consuming because we have to wait the equilibrium state

patiently or is difficult to reset the plant forcibly in some

cases including many process control systems. Furthermore,

it is not easy to analyse robust stability quantitatively in

[13] because they employ vanishing gain in the closed loop.

In addition, the method is not suitable for tracking purpose

because the reference signal should change at every iteration.

The purpose of this paper is to propose a new framework

for ILC based identification which does not require the

reset of initial state at each iteration and overcomes the

above mentioned shortcomings in [13], while enjoying all the

merits described above. More concretely, this paper shows a

way to perform ILC without resetting the initial condition,

which can be achieved by introducing the dynamics into the

system representation in the finite-dimensional signal sub-

space. Then, a class of gain decreasing filters are introduced

outside the closed loop, which plays a crucial role in effective

parameter convergence in the presence of noise. Combination

of these results gives us the estimates which converge to

the true system parameters against measurement noise. A

numerical example is given to demonstrate its effectiveness.

II. PROBLEM SETTING

Consider the continuous-time SISO plant described by

y(t) =
Np(p)

Dp(p)
u(t) =

1 + β1p + · · · + βmpm

α0 + α1p + · · · + αnpn
u(t), (1)

where u(t) and y(t) are the input and the output, respectively,

αi ∈ R(i = 0, 1, . . . , n) and βi ∈ R(i = 1, . . . , m) are

coefficient parameters, while p is the differential operator,

i.e., pu(t) = du(t)/dt. We assume the following:

• We can measure yob(t), the output contaminated with

noise,

yob(t) = y(t) + η(t) (2)
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where η(t) is zero-mean measurement noise.

• Though the true parameters αi and βi are unknown,

the system is stable, Np(p) and Dp(p) are co-prime

and their order n and m are known.

Let for brevity

γ∗ = [α0, . . . , αn, β1, . . . , βm]T . (3)

Then, the goal is to find an identification algorithm which

produces a series of estimates
{

γ̂k
}

satisfying

γ̂k → γ∗ as k → ∞ (4)

III. RESET-FREE ITERATIVE LEARNING CONTROL

In this section, we propose a new iterative learning control

method which does not require to reset the initial condition.

A. Problem

In this study, it is assumed that the reference signal r(t)
is differentiable many times and T -periodic. (i.e. r(T + t) =
r(t), ∀t ≥ 0) Also,

{

r, ṙ, . . . , r(n+m)
}

is assumed to be

linearly independent.

Here, we define

uk(t) = u ((k − 1)T + t) t ∈ [0, T ] (5)

yk(t) = y ((k − 1)T + t) t ∈ [0, T ] (6)

for k = 1, 2, · · · . Then, the objective here is to find an input

sequence
{

uk(t)
}

such that

E
[

r(t) − yk(t)
]

→ 0 ( as k → ∞ ). (7)

Also, we let u∞(t) be its limit.

B. ILC method without resetting

1) Projection on F : A finite-dimensional subspace F is

set to include r(t)t ∈ [0, T ] and u∞(t). Also, nf is defined

as the dimension of F and F is set so as to nf ≥ n+m+1.

If the plant has no zeros,

span
{

r(t), ṙ(t), · · · , r(n)(t)
}

(8)

is a candidate of F . If the plant has zeros, r(t) should consist

of nr sinusoidal functions, and

span
{

r(t), ṙ(t), · · · , r(2nr−1)
}

(9)

can be a candidate for F .

In this study, we focus on the projection of signals onto

F . Now, we introduce f1(t), f2(t), · · · , fnf
(t) ∈ L2[0, T ]

which are the basis of F , and the projection of uk(t) onto

F is written as

uk(t)
∣

∣

F
= ūk

1f1(t) + · · · + ūk
nf

fnf
(t). (10)

Moreover, ūk ,

[

ūk
1 , · · · , ūk

nf

]T

is defined as its vector

representation. Similarly, ū∞, ȳk, r̄ are defined as vector

representation of the projection of u∞(t), yk(t) and r(t)t ∈
[0, T ], respectively.

2) State space representation in F : We next mention

about the system representation which focuses on I/O signals

projected onto the finite-dimensional subspace.

Let

P :

{

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(11)

be a state space representation of the plant model, where

x ∈ R
n is the state of the system. And, define

xk , x ((k − 1)T ) , (12)

which is the initial state of each time span [(k − 1)T, kT ].
Then, we have

P̄ :

{

xk+1 = Āxk + B̄ūk

ȳk = C̄xk + D̄ūk
(13)

where Ā ∈ R
n×n, B̄ ∈ R

n×nf , C̄ ∈ R
nf×n, D̄ ∈ R

nf×nf

are constant matrices and can be obtained numerically. In

case
{

f1(t), f2(t), . . . , fnf
(t)

}

are an orthonormal basis,

these matrices can be written as

Ā = eAT (14)

B̄ =

∫ T

0

eA(T−τ)B
[

f1(τ), · · · , fnf
(τ)

]

dτ (15)

C̄ =

∫ T

0

[

f1(τ), · · · , fnf
(τ)

]T
CeAτdτ (16)

D̄ =

∫ T

0

[

f1(t), · · · , fnf
(t)

]T
×

×

{
∫ t

0

CeA(t−τ)B
[

f1(τ), · · · , fnf
(τ)

]

dτ

}

dt

(17)

In contrast to the existing iterative learning control method

[12] , in which the plant is handled as a static system, the

plant can be handled as a discrete time dynamical system.

This introduction of dynamical system is crucial to deal with

the effect of eliminating reset operation.

3) Controller design in F : In order to achieve (7), it is

enough for us to design a robust servo controller K̄ as a

system represented in F ( see Fig.1 ) . All of such controllers

are characterized in [14]. Note that robust stability is required

for uncertainty in the initial plant PM , and it is shown in [13]

how to obtain an initial plant model, and its effectiveness is

demonstrated in [15].

Also note that controllers should be strictly proper as the

system of projected signal for realizability.

Remark 1: Here, a simple way to design such robust servo

controller is shown. Now, we define the transfer function

matrix form of the plant in F

P̄ (z) , C̄(zI − Ā)−1B̄ + D̄. (18)

Because P̄ (z) is stable, if we choose stable and strictly

proper system Q̄(z), then

K̄ : ūk =K̄(z)
(

r̄ − ȳk
)

(19)
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Fig. 1. Block diagram of the control system based on the finite-dimensional signal subspace

where

K̄(z) =P̄ (1)−1Q̄(1)−1Q̄(z)

×
[

I − P̄ (z)P̄ (1)−1Q̄(1)−1Q̄(z)
]−1 (20)

is a stabilizing and strictly proper controller which achieves

robust tracking.

C. Digital implementation

In this section, we discuss how to approximately im-

plement the iterative learning controller when the I/O are

measured at sampling time only.

The structure of controller is shown in Fig. 1. Since K̄ can

be implemented as ordinal discrete time system, it is enough

to describe how to implement the signal composition block

and the signal projection block.
1) Preparation: We suppose that the I/O data are

{u(iTs), yob(iTs)} (i = 0, 1, . . . ) where Ts is sampling time

satisfying (q + 1)Ts = T (q ∈ N).
Given functions f1(t), f2(t), . . . , fnf

(t), define Vdf ∈
R

(q+1)×nf by

Vdf ,











f1(0) f2(0) . . . fnf
(0)

f1(Ts) f2(Ts) . . . fnf
(Ts)

...
... · · ·

...

f1(qTs) f2(qTs) . . . fnf
(qTs)











. (21)

Let the QR decomposition of Vdf be

Vdf = QR, QT Q = Inf
(22)

where Q ,
[

f1, f2, . . . ,fnf

]

∈ R
(q+1)×nf and R ∈

R
nf×nf is a nonsingular upper triangular matrix. These fi’s

constitute an orthogonal basis for projection in the digital

implementation.
2) Signal composition block: Signal composition block

generates u((k − 1)T + t) (t ∈ [0, T ]) for given ūk. u(t) is

determined at sampling time point t = (k− 1)T, (k− 1)T +
Ts, . . . , kT − Ts by















u ((k − 1)T )
u ((k − 1)T + Ts)
u ((k − 1)T + 2Ts)

...

u (kT − Ts)















= Vdf ūk. (23)

Between the sampling time points, u(t) can be generated

approximately by linear interpolation.

3) Signal projection block: Signal projection block gen-

erates ȳk for measured

yd
k , [yob ((k − 1)T ) , . . . , yob (kT − Ts)]

T
∈ R

q+1.
(24)

Since fi(i = 1, 2, . . . , nf ) is an orthogonal set

of vectors with unitary norm, the projection of yd
k

onto span
{

f1, f2, . . . ,fnf

}

is
[

f1, f2, . . . ,fnf

]

QT yd
k =

VdfR−1QT yd
k, where R−1QT yd

k is an approximate ex-

pression for ȳk. This suggests using

R−1QT yd
k (25)

as the output ȳk of digitally implemented signal projection

block.

IV. CALCULATION OF PARAMETER ESTIMATES

In this section, an identification method based on the

obtained iterative learning controller is described.

A. Conversion from ū∞ to γ∗

First, we clarify the relation between ū∞ and γ∗. Here,

{

r(t), ṙ(t), · · · , r(nf−1)(t)
}

(26)

is chosen as the basis to represent projected signals in F for

simplicity.

Case 1: No plant zeros Np(p) = 1: After y(t) converged

to periodic reference signal r(t), u(t) ∈ F can be written in

following linear combination

u(t) = ū∞

1 r(t) + ū∞

2 pr(t) + · · · + ū∞

n+1p
nr(t), (27)

If the plant has no zeros, Np(p) = 1 and the linear

independency of
{

r(t), pr(t), · · · , pnf−1r(t)
}

indicates

[α0, α1, . . . , αn] =
[

ū∞

1 , ū∞

2 , . . . , ū∞

n+1

]

. (28)

Case 2: General case Np(p) 6= 1: In case the plant

has zeros and r(t) is composed by nr sinusoids, system

parameters satisfy following relationship.

Dp(p)r(t) = Np(p)u(t) (29)
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









r(t)
pr(t)

...

pnr(t)











T 









α0

α1

...

αn











=











r(t)
pr(t)

...

p2nr+m−1r(t)











T

U















1
β1

β2

...

βm















, (30)

where

U ,
[

U1 U2

]

,





































ū∞
1 0 . . . 0

ū∞
2 ū∞

1

. . .
...

ū∞
3 ū∞

2

. . . 0
...

... ū∞
1

ū∞
2nr

ū∞
2nr−1 . . .

...

0 ū∞
2nr

. . .
...

...
. . .

. . .
...

0 . . . 0 ū∞
2nr





































. (31)

Since r(t) consists of nr sinusoidal functions,

p2nrr(t), . . . , p2nr+m−1r(t) belong to F and there

exists Pr ∈ R2nr×m which satisfies










r(t)
pr(t)

...

p2nr+m−1r(t)











T

=











r(t)
pr(t)

...

p2nr−1r(t)











T

[

I2nr
Pr

]

. (32)

From above facts and the linear independency of
{

r(t), pr(t), · · · , p2nr−1r(t)
}

, relationship (30) is equiva-

lent to the following equations







[

In+1

0(2nr−n−1)×(n+1)

]T

− ([I2nr
, Pr] · U2)

T







T

·





















α0

...

αn

β1

...

βm





















=

[

I2nr

(Pr)
T

]T

· U1,

(33)

Here, the plant parameters γ∗ can be obtained from ū∞

by solving these linear equations.

B. Convergence via decreasing gain filters

By choosing an appropriate basis (26) and using a robust

servo controller, ūk converges to ū∞ even under the exis-

tence of model uncertainty. In the presence of measurement

noise, ūk does not completely converge to ū∞ by the

controller, but its expected value E
[

ūk
]

converges to ū∞

by controlling the plant with the robust servo controller.

One possible option is to use arithmetic average of ob-

tained
{

ūk
}

. However, generally speaking, arithmetic av-

erage is sensitive to outliers, and early output of iterative

learning controller contains much error due to transient

dynamics. So, adoption of simple arithmetic average often

results in extremely slow convergence.

Here, filter with decreasing gain {gk} is introduced to

overcome this problem.

Lemma 1 (decreasing gain filter): Consider the filter with

decreasing gain sequence {gk}

ûk+1 = (1 − gk)ûk + gkūk (34)

Then, its output
{

ûk
}

converges to lim
k→∞

E
[

ūk
]

if {gk}

satisfies,

0 ≤ gk < 1 (k = 1, 2, · · · )

lim
k→∞

gk = 0, lim
n→∞

n
∑

k=1

gk = ∞.
(35)

Here, it is assumed that
{

ūk
}

satisfies

lim
k→∞

E
[

ūk
]

= ū∞ (36)
∥

∥

∥
E

[

(ūm − ū∞) (ūn − ū∞)
T
]∥

∥

∥
< (const) < +∞ (37)

lim
n→∞

sup
k

∥

∥

∥
E

[

(

ūk − ū∞
) (

ūk+n − ū∞
)T

]
∥

∥

∥
= 0 (38)

Proof: For brevity’s sake, the detail of the proof is

omitted.

Here, we define

P̂k ,

∥

∥

∥
E

[

(

ûk − ū∞
) (

ûk − ū∞
)T

]
∥

∥

∥
(39)

Rk ,

∥

∥

∥
E

[

(

ûk − ū∞
) (

ūk − ū∞
)T

]∥

∥

∥
. (40)

At first, lim
k→∞

Rk = 0 is shown from the definition of the

filter (34) and assumptions on its gain sequence {gk} and
{

ūk
}

. Then, we can show P̂k → 0 using this result .

Therefore k-th estimation of the parameter γ̂k, which is

obtained by replacing ū∞ with ûk, converges to true value

γ̂k → γ∗ as k → ∞ (41)

in the presence of noise.

Remark 2: For any α > 0, decreasing gain sequence

gk =
1

1 + αk
(42)

satisfies the condition (35). Especially, α = 1 results in

arithmetic average

ûk =
û1 + ū1 + ū2 + · · · + ūk−1

k
. (43)

Moreover, the gain sequence with 0 < α < 1 tends to weight

more recent results ,while the sequence with α > 1 weights

more early results.

This fact is useful for designing the decreasing gain filter

for problems which have some tendency in measurement

accuracy.

Remark 3: Decreasing gain sequence is also useful as

learning gain of some iterative learning algorithm. For ex-

ample, Campi et al. [16] proved the learning gain which

has decreasing factor 1
k+1 is suitable, and more general

decreasing gain sequence can be proven to be suitable by

applying the proof of Lemma 1
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Fig. 2. Output y(t) with measurement noise in tracking control

V. NUMERICAL EXAMPLE

In this section, a numerical example is shown to confirm

the proposed method. The target plant in this example is

described as

P (s) =
1 − s

9 + 20s + 8s2 + s3
. (44)

But now, we assume the case in which designer only have

an inaccurate model of the plant

PM (s) =
1 − 0.5s

8 + 15s + 10s2 + 1.5s3
, (45)

and obtain an accurate model of the plant by the proposed

method.

At first, cycle of the reference signal is set as T = 5[sec]
and the periodic reference signal r(t) is set as

r(t) =
1

3
sin

(

2π

T
t

)

+
1

3
sin

(

2π

T
2t

)

+
1

3
sin

(

2π

T
4t

)

,

(46)

so nr = n = 3, m = 1. For the convenience in identification,

the basis is chosen as

{f1(t), f2(t), · · · , f6(t)} =
{

r(t), ṙ(t), · · · , r(5)
}

. (47)

Secondly, a robust servo controller is designed according

to Remark 1 with the parameter Q̄(z) = 1
1−2z

· I2nr
. This

controller can stabilize the plant P (s), in spite it is designed

with inaccurate model PM (s). In this example, sampling

time Ts is set to 5 × 10−3[sec] and y(t) is measured with

the white noise with zero mean and standard deviation 0.3.

Fig. 2 shows the response y(t) with the designed con-

troller. In the figure, black solid line shows the response of

y(t) without the measurement noise, thin gray line shows

y(t) with the measurement noise, and dashed line shows the

periodic reference signal r(t).
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Fig. 4. Bode plots of the true plant, initial model and identified model

Finally, we introduce a gain decreasing filter to estimate

accurate plant model. Here, decreasing gain

gk =
1

0.8k + 1
(48)

is adopted to suppress the error during transition period (See

Remark 2). And, the initial estimation û1 is obtained from

initial plat model PM (s).

Fig. 3 shows the history of estimated plant parameter. In

the figure, thin line with dots shows the estimation which

directly obtained from ūk and thick line shows the estimation

from output of the decreasing gain filter ûk . After 200

cycles, obtained estimation of the plant is

1 − 0.997s

9.003 + 19.98s + 8.02s2 + 0.997s3
. (49)

and comparison with the true plant in frequency domain is

shown in Fig. 4.

These results show that the proposed method can achieve

accurate identification even under heavy measurement noise.
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VI. CONCLUSIONS

In this study, a novel iterative identification method is

presented. The proposed method is based on the novel system

representation which focuses on I/O signals projected onto

the finite-dimensional subspace, and achieves reset-free iter-

ative identification. This reset-free iterative learning control

scheme should be distinguished from repetitive control by

the fact that it does not perform any feedback action during

each iteration. In the proposed method, a class of gain

decreasing filters are introduced outside the closed loop. The

filter plays a crucial role in effective parameter convergence

in this method, and has high flexibility to deal with various

estimation problems with some tendency in measurement ac-

curacy. Since the proposed method inherits advantages of the

projection type ILC method, it requires no time derivatives

of measured data and no data pre-processing, and has high

tolerance to measurement noise. A numerical example was

shown to confirm these property of the proposed method.
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