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Abstract—This paper establishes conditions for the
existence of optimal stationary policies for a class of
long-run average cost control problems. The discrete-
time system is assumed to be linear with respect to
the state but the controls take an abstract state-
feedback structure. The derived approach may be
used to represent systems where the state is observed
by the controller only through some specially struc-
tures output (no history is employed). It is shown
that, if there exists an optimal-abstract policy for the
discounted-cost problem, and such a policy generates
an autonomous system with uniform exponential de-
cay, then there exists an optimal stationary policy for
the average cost problem. Notions of controllability
and observability of linear time-varying systems are
imposed.

Index Terms—discrete-time systems, feedback con-
trol, controllability, observability, linear-quadratic
problems, optimal stochastic control, Markov pro-
cesses.

I. Introduction

Consider a discrete-time linear system modeled by the
following evolution difference equation:

xk+1 = Axk +Buk +Ewk, ∀k ≥ 0, x0 ∈ R
n, (1)

where xk, uk, and wk evolve respectively, in R
n, R

m, and
R

q and they represent the system state, control variable,
and additive noisy input, in this order. As usual, the
matrices A, B and E, of respective dimensions, are given.

There exist many systems for which the controller does
not have complete information on the system state xk.
In the stochastic control literature the optimal control
problem is studied, taking into account the past history
of an observation process. This optimal approach, how-
ever, leads to control laws with increasing complexity
as the time evolves. Another view that can be drawn
from the deterministic theory, aiming at applications and
control implementation, employs only the knowledge of
the present observation to determine the control action.
Those are the cases of decentralized and static output
feedback systems [1], [2]. To describe these and other
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systems, particularly the ones where restriction exists on
the observation of the system state xk, we shall impose
an abstract state-feedback structure for the controls uk.
To fix ideas, suppose that g belongs to a set of actions
G, and that K is a function that maps G to the space of
real matrices of dimension m× n. We then assume that
uk depends linearly on xk as follows:

uk = K(g)xk, ∀g ∈ G, ∀k ≥ 0. (2)

The variable g will be termed as abstract control, and the
problem is to select an appropriate g such that the system
(1) satisfies some desired characteristic. Observe that the
abstract structure of (1)-(2) can be used to represent a
broad range of linear control systems. For instance, in
the particular case of decentralized control systems (see
[1], [3]), the aim is to design a set of matrices (G1, . . . ,Gn)
such that

xk+1 =

(

A+
η

∑
i=1

BiGiCi

)

xk +wk, ∀k ≥ 0, x(0) = x0 ∈ R
n,

(3)
evolves in such a manner that an index criterion is
minimized. The correspondence between (1)-(2) and (3)
follows easily by setting in (1)-(2), B = I, g = (G1, . . . ,Gn),
and K(g) = ∑n

i=1 BiGiCi. Note in (3) that, if η = 1, then
one retrieves the static-output feedback systems (see [2],
[4]).

The main motivation of this paper is as follows. It is
well-known that, if {wk} is a zero mean, gaussian process
with covariance matrix equal to the identity, then the
covariance matrix of xk satisfies (see [5, Ch. 2], [6])

Xk+1 = Agk
XkA′

gk
+Σ, ∀gk ∈ G, ∀k ≥ 0, (4)

where Ag := A + BK(g) for all g ∈ G, X0 denotes the
covariance matrix of x0, and Σ is a nonnegative matrix.
Let us assume in this discussion that Xk takes values in a
set X only. Let C : X×G → R+ be a suitable function for
which the cost incurred at the k-stage is C(Xk,gk). Then
the long-run average cost is given by

J(ψ,X) := lim sup
N→∞

1

N

N−1

∑
k=0

C(Xk,gk), (5)

with ψ := {g0,g1, . . .}, where gk ∈ G for all k ≥ 0, and
X0 = X ∈ X. Let Ψ be the set of all feasible sequences
ψ, and let Ψs ⊂ Ψ be the set of all stationary sequences,
so that if ψ ∈ Ψs then ψ = {g,g, . . .}. The average cost
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control problem is to find a sequence of abstract controls
ψ∗ such that

J(ψ∗,X) = inf
ψ∈Ψ

J(ψ,x) =: J∗(X), ∀X ∈ X. (6)

It is clear that

inf
ψ∈Ψ

J(ψ,X) ≤ inf
ψ∈Ψs

J(ψ,X), ∀X ∈ X. (7)

The above inequality incites the following question.
(Q)What are the conditions for which (7) holds with “=”
in lieu of “≤”?

There are two important reasons for willing the equal-
ity sign in (7). The first is motivated by the fact
that stationary actions are preferred than non-stationary
ones, mainly due to the easiness of implementation of
the former when compared with the latter. The second
reason is related to how to obtain a numerical solution for
the long-run average cost control problem. For instance,
to the best of the authors’ knowledge, there is no method
to solve numerically every control problem written as a
static-output feedback one. Only particular cases of this
problem can be dealt with by using numerical algorithms
(see [2], [4], [7], [8] and the references therein). In view of
this, we now discuss why the equality sign in (7) could
be useful in the static-output feedback problem.

Suppose for the moment that one has a computational
method for finding an optimal solution for the finite-
horizon control problem

inf
{g0,...,gN}

N

∑
k=0

C(Xk,gk). (8)

Let {g∗0, . . . ,g
∗
N} be an optimal solution for (8). Then one

could hope that such time-dependent solution would ap-
proximate a stationary solution as long as the horizon N

goes to infinity, or formally {g∗0,g
∗
1, . . . ,g

∗
N}→ {g∗,g∗, . . .}

as N → ∞. Moreover, one expects that

1

N

N

∑
k=0

C(X∗
k ,g∗k) →

1

N

N

∑
k=0

C(Xk,g
∗) as N → ∞,

where {X∗
k } is generated by {g∗k}, and {Xk} by {g∗}. Note,

however, that the above approximation would be valid
only if (7) holds with equality instead of strict inequality.
Thus an important, and also an intriguing question,
is how to assure the existence of optimal stationary
solutions for infinite-horizon control problems. We shall
restrict our analysis to the problem of minimizing the
long-run average cost (6) subject to the dynamics (4).

The main contribution of this paper is to provide
the conditions asked in (Q), with a minor conceptual
modification. This occurs due to the following fact: the
abstract control minimizing the right-hand side of (7)
may depend on the state matrix sequence {Xk}, so that
the infimum in the right-hand side of (7) is reached by
a stationary function g∗ : X → G instead of a stationary
action g∗ ∈ G. Since the latter is a particular case of
the former, we seek an optimal stationary function g∗ :

X → G to answer affirmatively (Q). We shall use results
borrowed from the theory of Markov Control Processes
(MCP), for which the question of existence of optimal
stationary policies for the long-run average cost has been
closely scrutinized (see the monographs [9], [10], and the
articles [11], [12], [13], [14], [15] for further details). It
is worthy to point out that the main technique used in
the theory of MPC to prove the existence of optimal
stationary policies for average cost problems is known
as the vanishing discount approach, and the conditions
we shall provide are based on it.

The paper is organized as follows. Section II is con-
cerned with definitions, notations, and establishes the
main results. In this section we introduce the notions
of policies, the vanishing discount approach is revisited,
and some important conditions are stated. We stress the
assumptions of inf-compactness on the cost by stage, and
the existence of optimal policies with exponential decay
for the discounted problem. Finally, Section III presents
some concluding remarks.

II. Preliminaries, notations, and main results

We denote respectively the real and natural numbers
by R and N. The normed linear space of all n×m real
matrices is denoted by R

n,m. The superscript ′ indicates
the transpose of a matrix. Let S

n0 be the closed convex
cone {U ∈ R

n,n : U = U ′ ≥ 0}; 〈·, ·〉 will stand the inner
product in S

n0, and ‖ · ‖ will denote either the standard
Euclidean norm in R

n or the Frobenius norm for matri-
ces. We say that a matrix sequence {Uk;k ≥ 0} is bounded
if supk∈N ‖Uk‖ < ∞.

The following definitions and conventions will apply
throughout this paper.

(i) X and G are given sets referred to as state space and
abstract control space, respectively. In particular,
we assume X ⊂ S

n0.
(ii) For each x ∈ X, there is given a nonempty measur-

able subset G(x) of G. The set G(x) represents the
set of feasible abstract controls or actions when the
system is in state x ∈X, and with the property that
the set

K := {(x,g)|x ∈ X,g ∈ G(x)} (9)

of feasible state-actions pairs is a measurable subset
of X×G.

(iii) We denote by F the set of all functions f : X → G

such that f (x) ∈ G(x) for all x ∈ X. The functions
in F are called selectors. We denote by Π the set
of all sequences π = { f0, f1, . . .} such that fk ∈ F

for all k ≥ 0. Elements of Π are referred to abstract
policies. Elements of Π of the form π = { f , f , . . .},
where f ∈ F, are referred to as stationary abstract
policies.

(iv) Let Q : G → S
n0 be a continuous, measurable func-

tion. The one-stage cost function C : K → R+ is
defined as follows:

C(X ,g) = 〈Q(g),X〉, ∀(X ,g) ∈ K. (10)
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(v) Let A : G → R
n,n be a continuous, measurable func-

tion. In connection with (4), we define the following
deterministic recurrence:

Xk+1 = A(gk)XkA(gk)
′ +Σ, ∀k ≥ 0, X0,Σ ∈ X,

(11)

where the abstract control, applied at the k-th
stage, is gk = fk(Xk) whenever { fk} ∈ Π.

We shall consider that the one-stage cost, defined in
(10), satisfies in addition the following requirement.

Assumption 2.1: The one-stage cost C : K→R+ is inf-
compact on K.
Recall that a function v : K → R is said to be inf-
compact on K if, for each x ∈ X and r ∈ R+, the set
{g ∈ G(x)|v(x,g) ≤ r} is compact (see [9, p. 28], [16, p.
46]).

For sake of notational simplicity, the one-stage cost
C(Xk, fk(Xk)) will be denoted by C(Xk,gk) when gk = fk(Xk)
with { fk} ∈ Π. This enables us to represent the long-run
average cost by

J(π,X) := lim sup
N→∞

1

N

N−1

∑
k=0

C(Xk,gk), (12)

when using the policy π ∈ Π and initial state X0 = X ∈X.
The average cost control problem is to find a policy π∗

such that

J(π∗,X) = inf
π∈Π

J(π,X) =: J∗(X), ∀X ∈ X. (13)

The policy π∗ satisfying (13) is referred to average cost
optimal.

A. The vanishing discount approach

In this section we obtain conditions that assure the
existence of a stationary optimal policy for the long-run
average cost control problem. For this purpose we shall
use results from the Markov Control Processes theory,
in particular those related to the well-known vanishing
discount approach [9], [10], [13], [17]. Let the discount
criterion be defined as

Vα(π,X) :=
∞

∑
k=0

αkC(Xk,gk), π ∈ Π, X ∈ X, (14)

when using policy π ∈ Π, given the initial state X0 =
X ∈ X, where α represents the discount factor. The α-
discount abstract control problem is then given by

Vα(π∗
α ,X) = inf

π∈Π
Vα(π,X) =: V ∗

α (X), ∀X ∈ X, (15)

and an abstract policy π∗
α satisfying (15) is said to be

α-discount optimal.
Definition 2.1: Let Φ : Π×N×N→M

n,n be the follow-
ing evolution operator:

Φ(π,k,s) =

{

A(gk−1) · · ·A(gs) if k > s ≥ 0,

I otherwise,

where gk = fk(Xk) whenever π = { fk} ∈ Π, and Xk is
generated by (11).

With the above definition, we can introduce the following
assumption.

Assumption 2.2: Let α0 ∈ (0,1). Then, for all α ∈
[α0,1), there exist X0 ∈X and a corresponding α-discount
optimal abstract policy π∗

α such that

‖Φ(π∗
α ,k +n,k)‖ ≤ Mα exp(−ξα ·n), ∀k > n ≥ 0, (16)

with supα0≤α<1 Mα < ∞ and infα0≤α<1 ξα > 0.
Assumption 2.2 roughly says that there exist α-discount
optimal abstract policies π∗

α , with α within a neighbor-
hood of 1, such that the evolution operator corresponding
to π∗

α has a uniform exponential decay. Such assumption
enable us to state the following main result.

Theorem 2.1: Suppose that Assumptions 2.1 and 2.2
hold. Then there exist a nonnegative constant ρ, a
measurable function h : X → R+, and a selector f ∗ ∈ F

such that

ρ +h(X) ≥ min
g∈G(X)

[

C(X ,g)+h
(

A(g)XA(g)′ +Σ
)]

= C(X , f ∗(X))+h
(

A( f ∗(X))XA( f ∗(X))′ +Σ
)

, ∀X ∈ X.
(17)

Moreover, the following hold:

(i) The policy f ∞ = { f ∗, f ∗, . . .} is average cost optimal
and ρ is the minimum average cost, that is,

J∗(X) = J( f ∞,X) = ρ, ∀X ∈ X. (18)

(ii) Any selector f ∗ ∈ F that satisfies (17) also satisfies
the assertion in (i).

It is noteworthy from Theorem 2.1 that the average cost
optimal value ρ in (18), and its corresponding stationary
optimal policy f ∞, do not depend on the choice of the
initial state X0 = X ∈ X.

B. Proof of Theorem 2.1

We shall show that the following two assertions hold:

(a) There exist a state Z ∈ X and numbers α0 ∈ (0,1)
and L ≥ 0 such that

(1−α)V ∗
α (Z) ≤ L, ∀α ∈ [α0,1). (19)

(b) Set hα(X) = V ∗
α (X) −V ∗

α (Z). Then there exists a
measurable function b : X → R+ such that

0 ≤ hα(X) ≤ b(X), ∀X ∈ X, ∀α ∈ [α0,1). (20)

If one assumes that both (a) and (b) hold then the
result of Theorem 2.1 follows straightforwardly from [9,
Th. 5.4.3, p. 88] or [13, Th. 3.8]. Thus, it remain to
show that (a) and (b) hold. For this, let us adopt the
following convention. For any π = { fk} ∈ Π, we assume
that gk = fk(Xk) with Xk generated by (11). Now, recalling
the one-stage cost C(·) in (10), we obtain the following
preliminary result after some algebraic manipulation.

Lemma 2.1: There holds

N−1

∑
k=t

αkC(Xk,gk) = 〈L
(π)
t,N ,Xt〉+

N−1

∑
k=t+1

αk〈L
(π)
k,N ,Σ〉, (21)
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for all N > 0 and all t = 0, . . . ,N, where Xk satisfies (11)
and

L
(π)
k,N = Q(gk)+αA(gk)

′L
(π)
k+1,NA(gk), k = 0, . . . ,N −1

LN,N = 0. (22)

The next result states that the sequence {L
(π)
k,N}

N
k=0 is

bounded whenever π satisfies the exponential decay of
Assumption 2.2.

Lemma 2.2: Suppose that Assumption 2.2 holds.
Then, for all α ∈ [α0,1), there exists a corresponding α-
discount optimal policy πα such that the following hold:

(i) The matrix sequence {Pα
k }, with Pα

k :=

limN→∞ L
(πα )
k,N , has a bound which does not

depend on α.
(ii) There exists a function β : (0,1) → R+ such that

lim
N→∞

N−1

∑
k=1

αk〈L
(πα )
k,N ,Σ〉 = β (α). (23)

Proof: Assumption 2.2 implies that

‖Φ(πα ,k +n,k)‖ ≤ Me−ξ n, k ≥ n, (24)

where M := supα0≤α<1 Mα < ∞ and ξ := infα0≤α<1 ξα >
0. Now, let {gα

k } be the optimal sequence of actions

corresponding to the optimal policy πα , and let X
(πα )
k be

the recurrence (11) when it is evaluated to {gα
k }. It then

follows from (24) that there exists a constant c0 such that

sup
α0≤α<1

sup
k∈N

‖X
(πα )
k ‖ ≤ c0. (25)

We can conclude, from (25), that there exists a bounded
set X̄⊂X so that Xα

k ∈ X̄ for all k ≥ 0 and all α ∈ [α0,1).
We now claim that there exists a constant c1 such that

sup
α0≤α<1

sup
k∈N

‖Q(gα
k )‖ ≤ c1. (26)

Indeed, since the inf-compact assumption on K (see
Assumption 2.1) implies that the set

λ (r) := {g ∈ G(X) | 〈Q(g),X〉 ≤ r, ∀X ∈ X̄}

is compact for all r ∈ R+, then there exists a sufficiently
large r0 for which gα

k ∈ λ (r0) for all k ≥ 0 and all α ∈
[α0,1). This, together with the fact that Q(λ (r)) is a
compact set (because Q is a continuous function) proves
the claim.

Now, observe that (22) can be written equivalently to

L
(πα )
k,N+1 =

N

∑
j=k

αN− jQ(gN− j+k)Φ(πα ,N − j + k,k). (27)

Hence, we can see from (24), (26), and (27) that

lim
N→∞

‖L
(πα )
k,N ‖

= lim
N→∞

∥

∥

∥

∥

∥

N

∑
j=k

αN− jQ(gN− j+k)Φ(πα ,N − j + k,k)

∥

∥

∥

∥

∥

≤ lim
N→∞

N

∑
j=k

‖Q(gN− j+k)Φ(πα ,N − j + k,k)‖

≤ c1M · lim
N→∞

N

∑
j=k

e−ξ (N− j) ≤ c1M/(1− e−ξ ). (28)

Thus Pα
k := limN→∞ L

(πα )
k,N is bounded for all k ≥ 0 and all

α ∈ [α0,1), and this proves assertion (i).
To prove assertion (ii), notice that

〈L
(πα )
k,N ,Σ〉 ≤ ‖Σ‖‖L

(πα )
k,N ‖ ≤ ‖Σ‖ lim

N→∞
‖L

(πα )
k,N ‖ = ‖Σ‖‖Pα

k ‖,

for all k ≥ 0, and the conclusion follows using the result
of assertion (i).

Proof of Theorem 2.1 continued

The main argument in the proof of Theorem 2.1 now
follows. Notice from (14), (15) and (21) that

V ∗
α (X) = inf

π∈Π

(

lim
N→∞

〈L
(π)
0,N ,X〉+

N−1

∑
k=1

αk〈L
(π)
k,N ,Σ〉

)

. (29)

Consider X0 ∈ X as given by Assumption 2.2, and let
πα,0 ∈ Π be an optimal abstract policy in (29) when
X = X0. We now show that there exists M > 0 such that

hα(X)=V ∗
α (X)−V ∗

α (X0)≤M‖X‖, ∀α ∈ [α0,1), ∀X ∈X.
(30)

Indeed, by using (15) and (29) we have

hα(X) = inf
π∈Π

(

lim
N→∞

〈L
(π)
0,N ,X〉+

N−1

∑
k=1

αk〈L
(π)
k,N ,Σ〉

)

−V ∗
α (πα,0,X0)

≤ lim
N→∞

[

〈L
(πα,0)
0,N ,X〉+

N−1

∑
k=1

αk〈L
(πα,0)

k,N ,Σ〉

]

− lim
N→∞

[

〈L
(πα,0)
0,N ,X0〉+

N−1

∑
k=1

αk〈L
(πα,0)

k,N ,Σ〉

]

, (31)

where the inequality in (31) arises from an optimal
argument. Observe now that, by Lemma 2.2(i), there
exists M > 0 satisfying

lim
N→∞

‖L
(πα,0)
0,N ‖ ≤ M, ∀α ∈ [α0,1), ∀k ≥ 0. (32)

Applying Lemma 2.2(ii) with (32) in the right-hand side
of (31), we obtain

hα(X) ≤ ‖X‖ · lim
N→∞

‖L
(πα,0)
0,N ‖+β (α)

− lim
N→∞

〈L
(πα,0)
0,N ,X0〉−β (α)

≤ M‖X‖,
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which proves (30). Hence item (b) holds by letting Z = X0

and b(X) = M‖X‖ for all X ∈X. We claim that (a) holds.
Indeed, we can see from (29) and (32) that

(1−α)V ∗
α (X0)

= (1−α) lim
N→∞

(

〈L
(πα,0)
0,N ,X0〉+

N−1

∑
k=1

αk〈L
(πα,0)

k,N ,Σ〉

)

≤ (1−α)
∞

∑
k=0

αk‖M‖ ·max(‖X0‖,‖Σ‖)

= ‖M‖ ·max(‖X0‖,‖Σ‖),

which shows the claim. This argument completes the
proof of Theorem 2.1. �

C. Further conditions

In this section we provide some sufficient conditions
for Assumption 2.2, motivated by the fact that such
conditions, together with Assumption 2.1, will guarantee
the existence of an optimal abstract stationary policy for
the long-run average cost problem (6) (see Theorem 2.1).

To begin with, let us introduce the following notation.
Let {Ak} be any matrix sequence, and define

Ψ(k,s) = Ak−1Ak−2 · · ·As, for each k > s ≥ 0, (33)

with Ψ(s,s) = I. In connection, we present below the con-
trollability and observability concepts for time-varying
systems [18], [19], [20], which will be useful in the proof
of the next main theorem.

Definition 2.2: The pair (Ak,Bk) is uniformly control-
lable (or simply controllable) if there exists Tc ≥ 1 and a
real number σc > 0 such that, for all k ≥ Tc,

Tc−1

∑
i=0

Ψ(k,k− i)Bk−i−1B′
k−i−1Ψ(k,k− i)′ ≥ σcI.

Definition 2.3: The pair (Ak,Ck) is uniformly observ-
able (or simply observable) if there exists To ≥ 1 and a
real number σo > 0 such that, for all k ≥ 0,

To−1

∑
i=0

Ψ(k + i,k)′C′
k+iCk+iΨ(k + i,k) ≥ σoI.

Controllability and observability concepts allow us to
relate a uniform bound on the cost C(·) with a uniform
exponential decay, as the one stated in (16). For this
purpose, let us introduce the following assumption.

Assumption 2.3: Let α0 ∈ (0,1). Then, for all α ∈
[α0,1), there exist X0 ∈X and a corresponding α-discount
optimal abstract policy πα = { f α

k } ∈ Π such that

C(Xk, f α
k (Xk)) ≤ ρ,

where ρ is some constant that does not depend on α,
and Xk satisfies (11) with A( f α

k (Xk)) in place of A(gk).
We are now ready to state the following theorem.

Theorem 2.2: Suppose that Assumptions 2.1 and 2.3
hold, and let { f α

k } ∈ Π and Xk be as in Assumption 2.3.
Define Aα

k = A( f α
k (Xk)), and Qα

k = Q( f α
k (Xk)) for all k ≥ 0

and all α ∈ [α0,1), and let E be a matrix such that Σ =

EE ′. If the pair (Aα
k ,E) is controllable, and (Aα

k ,(Qα
k )

1
2 )

is observable (with the numbers σc and σo in Definitions
2.2 and 2.3 do not depending on α), then the conclusions
of Theorem 2.1 are valid.

Proof: Let α ∈ [α0,1) be arbitrary but fixed. Let
{Yk} be an output matrix sequence for such α, that is,

let Yk := ΛkXα
k Λ′

k where Λk = (Qα
k )

1
2 for all k ≥ 0. Since

‖Y
1/2

k ‖ = 〈Λk,Xk〉 ≤ ρ, for all k ≥ 0, then {‖Y
1/2

k ‖} is

bounded. Thus, since {‖Y
1/2

k ‖} is bounded and the pair

(Aα
k ,Λk) is observable, we have that {‖X

1/2

k ‖} is bounded

[21, Lemma 24]. The bounded sequence {‖X
1/2

k ‖}, to-
gether with the controllability of the pair (Aα

k ,E) yields
[21, Lemma 25]

‖Aα
k+n−1 · · ·A

α
k ‖ ≤ Mα exp(−ξα . ·n), ∀k > n ∈ N,

where Mα and ξα are positive numbers. Using the fact
that ρ, σc, and σo do not depend on α, one can shown
straightforwardly that there exist M,ξ > 0 such that

Mα ≤ M < ∞, 0 < ξ ≤ ξα , ∀α ∈ [α0,1).

Hence Assumption 2.2 holds, and the result then follows
from Theorem 2.1.

III. Concluding remarks

This paper has shown that there exists an stationary
optimal policy for the long-run average cost control
problem provided that Assumptions 2.1 and 2.2 are sat-
isfied. The derived results consider a discrete-time linear
system under an abstract state-feedback structure (see
(2) and (9)). Our results rely on (i) the vanishing discount
approach, and (ii) the existence of an exponential decay
for the control action that minimizes the α-discount
problem, with α within a neighborhood of 1. From
these assumptions, Theorem 2.1 shows that an stationary
optimal policy f ∞ = { f ∗, f ∗, . . .} for the average cost
problem exists. Moreover, Theorem 2.2 shows that the
results of Theorem 2.1 apply, under the hypothesis of
controllability, observability, together with an uniform
bound on the cost C(·), when it is evaluated to α-discount
optimal policies πα .
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