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Abstract— This paper presents the optimal quadratic-
Gaussian controller for stochastic nonlinear polynomial systems
with linear control input and a quadratic criterion over linear
observations. The optimal closed-form controller equations are
obtained using the separation principle, whose applicability to
the considered problem is substantiated. As an intermediate
result, the paper gives a closed-form solution of the optimal reg-
ulator (control) problem for nonlinear polynomial systems with
linear control input and a quadratic criterion. Performance of
the obtained optimal controller is verified in the illustrative
example against the conventional LQG controller that is optimal
for linearized systems. Simulation graphs demonstrating over-
all performance and computational accuracy of the designed
optimal controller are included.

I. INTRODUCTION

Although the optimal LQG controller problem for lin-

ear systems was solved in 1960s, based on the solutions

to the optimal filtering [1] and optimal regulator [2], [3]

problems, the optimal controller for nonlinear systems has

to be determined using the nonlinear filtering theory (see

[4], [5], [6]) and the general principles of maximum [3]

or dynamic programming [7], which do not provide an

explicit form for the optimal control in most cases. However,

taking into account that the optimal filtering and control

problems can be explicitly solved in a closed form in the

linear case, and the optimal controller can be then obtained

using the separation principle [2], [3], this paper exploits

the same approach for designing the optimal controller for

polynomial systems with linear control input over linear

observations. The designed optimal solution is based on the

recently obtained optimal filter and regulator for polynomial

systems states. Thus, this paper continues a long tradition

of the optimal control design for nonlinear systems (see, for

example, [8]–[13]) and not so long research on the optimal

closed-form filter design for nonlinear ([14]–[19]), and in

particular, polynomial ([20]–[23]) systems. Nevertheless, to

the best of authors’ knowledge, the optimal closed-form

controller design for polynomial systems has not been yet

considered in the literature, due to the absence of closed-

form solutions to the optimal filtering and control problems

for polynomial system states.

This paper presents solution to the optimal quadratic-

Gaussian controller problem for stochastic nonlinear poly-

nomial systems with linear control input and a quadratic
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criterion over linear observations. First, the separation prin-

ciple is substantiated for nonlinear polynomial systems with

a quadratic criterion over linear observations. Then, the

paper gives a closed-form solution of the optimal regulator

(control) problem for polynomial systems with linear control

input and a quadratic criterion. The obtained solution con-

sists of a linear feedback control law and two differential

equations, linear and Riccati ones, for forming the optimal

control gain matrix. This result is proven in Appendix.

Finally, based on that closed-form optimal control problem

solution, the optimal filter for polynomial system states over

linear observations [23], and the separation principle, the

paper presents the optimal solution to the original quadratic-

Gaussian controller problem, which has essentially the same

structure as the solved optimal regulator (control) problem

plus the variance equation for forming the optimal filter gain

matrix. All four differential equations included in the optimal

controller are interconnected.

Performance of the designed optimal controller for

stochastic nonlinear polynomial systems with linear control

input and a quadratic criterion over linear observations is

verified in the illustrative example against the conventional

LQG controller that is optimal for a linearized system.

The simulation results show a big advantage in favor of

the designed optimal controller for nonlinear polynomial

systems: the terminal values of the cost function are 105

times less for the designed optimal controller than for the

best controller available for a linearized system.

II. OPTIMAL CONTROLLER PROBLEM

A. Problem statement

Let (Ω,F,P) be a complete probability space with an

increasing right-continuous family of σ -algebras Ft , t ≥ t0,

and let (W1(t),Ft , t ≥ t0) and (W2(t),Ft , t ≥ t0) be indepen-

dent Wiener processes. The Ft -measurable random process

(x(t),y(t)) is described by a nonlinear differential equation

with a polynomial drift term for the system state

dx(t) = f (x, t)dt +B(t)u(t)dt +b(t)dW1(t), x(t0) = x0,
(1)

and a linear differential equation for the observation process

dy(t) = (A0(t)+A(t)x(t))dt +G(t)dW2(t). (2)

Here, x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the control

input, and y(t) ∈ Rm is the linear observation vector, m ≤ n.

The initial condition x0 ∈Rn is a Gaussian vector such that x0,

W1(t)∈ Rp, and W2(t)∈ Rq are independent. The observation

matrix A(t) ∈ Rm×n is not supposed to be invertible or even

square. It is assumed that G(t)GT (t) is a positive definite
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matrix, therefore, m ≤ q. All coefficients in (1)–(2) are

deterministic functions of appropriate dimensions.

The nonlinear function f (x, t) is considered polynomial of

n variables, components of the state vector x(t) ∈ Rn, with

time-dependent coefficients. Since x(t) ∈ Rn is a vector, this

requires a special definition of the polynomial for n > 1.

In accordance with [22], a p-degree polynomial of a vector

x(t) ∈ Rn is regarded as a p-linear form of n components of

x(t)

f (x, t) = a0(t)+a1(t)x+a2(t)xxT + . . .+ap(t)x . . .p times . . .x,
(3)

where a0 is a vector of dimension n, a1 is a matrix of

dimension n×n, a2 is a 3D tensor of dimension n×n×n, ap

is an (p + 1)D tensor of dimension n× . . .(p+1) times . . .× n,

and x × . . .p times . . .× x is a pD tensor of dimension n ×
. . .p times . . .× n obtained by p times spatial multiplication

of the vector x(t) by itself. Such a polynomial can also be

expressed in the summation form

fk(x, t) = a0 k(t)+∑
i

a1 ki(t)xi(t)+∑
i j

a2 ki j(t)xi(t)x j(t)+ . . .

+ ∑
i1...ip

ap ki1...ip
(t)xi1(t) . . .xip(t), k, i, j, i1 . . . ip = 1, . . . ,n.

The quadratic cost function J to be minimized is defined

as follows

J =
1

2
E[xT (T )Φx(T )+

∫ T

t0

uT (s)R(s)u(s)ds+

∫ T

t0

xT (s)L(s)x(s)ds], (4)

where R is positive definite and Φ, L are nonnegative definite

symmetric matrices, T > t0 is a certain time moment, the

symbol E[ f (x)] means the expectation (mean) of a function

f of a random variable x, and aT denotes transpose to a

vector (matrix) a.

The optimal controller problem is to find the control

u∗(t), t ∈ [t0,T ], that minimizes the criterion J along with

the unobserved trajectory x∗(t), t ∈ [t0,T ], generated upon

substituting u∗(t) into the state equation (1).

B. Separation principle

It can be observed that the separation principle [2], [3]

remains valid for polynomial stochastic systems. Indeed, let

us replace the unmeasured polynomial state x(t), satisfying

(1), with its optimal estimate m(t) over linear observations

y(t) (2), which is obtained using the following optimal filter

for polynomial states over linear observations (see [23] for

the corresponding filtering problem statement and solution)

dm(t) = E( f (x, t) | FY
t )dt +B(t)u(t)dt+ (5)

P(t)AT (t)(G(t)GT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt).

m(t0) = E(x(t0) | FY
t ),

dP(t) = (E((x(t)−m(t))( f (x, t))T | FY
t )+ (6)

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

b(t)bT (t)−P(t)AT (t)(G(t)GT (t))−1A(t)P(t))dt,

P(t0) = E((z(t0)−m(t0))(z(t0)−m(t0))
T | FY

t ),

where P(t) is the conditional variance of the estimation error

x(t)−m(t) with respect to the observations Y (t).
Recall that m(t) is the optimal estimate for the state vector

x(t), based on the observation process Y (t) = {y(s), t0 ≤ s ≤
t}, that minimizes the Euclidean 2-norm

H = E[(x(t)−m(t))T (x(t)−m(t)) | FY
t ]

at every time moment t. Here, E[ξ (t) | FY
t ] means the

conditional expectation of a stochastic process ξ (t) = (x(t)−
m(t))T (x(t) − m(t)) with respect to the σ - algebra FY

t

generated by the observation process Y (t) in the interval

[t0, t]. As known [24], this optimal estimate is given by the

conditional expectation m(t) = E(x(t) | FY
t ) of the system

state x(t) with respect to the σ - algebra FY
t generated by

the observation process Y (t) in the interval [t0, t]. As usual,

the matrix function P(t) = E[(x(t)−m(t))(x(t)−m(t))T |FY
t ]

is the estimation error variance.

Remark 1. The equations (5) and (6) do not form a

closed system of equations due to the presence of polynomial

terms depending on x, such as E( f (x, t) | FY
t ), and E((x(t)−

m(t)) f T (x, t)) |FY
t ), which are not expressed yet as functions

of the system variables, m(t) and P(t). However, as shown

in [20]-[23], the closed system of the filtering equations

can be obtained for any polynomial state (1) over linear

observations (2), using the technique of representing superior

moments of the conditionally Gaussian random variable

x(t)−m(t) as functions of only two its lower conditional

moments, m(t) and P(t) (see [20]-[23] for more details of

this technique). Apparently, the polynomial dependence of

f (x, t) and (x(t)−m(t)) f T (x, t) on x is the key point making

this representation possible.

It is readily verified (see [2]) that the optimal control

problem for the system state (1) and cost function (4) is

equivalent to the optimal control problem for the estimate

(5) and the cost function J represented as

J = E{
1

2
mT (T )Φm(T )+

1

2

∫ T

t0

uT (s)R(s)u(s)ds

+
1

2

∫ T

t0

mT (s)L(s)m(s)ds+ (7)

1

2

∫ T

t0

tr[P(s)L(s)]ds+
1

2
tr[P(T )Φ]},

where tr[A] denotes trace of a matrix A. Since the latter part

of J does not directly depend on control u(t) or state x(t),
the reduced effective cost function M to be minimized takes

the form

M = E{
1

2
mT (T )Φm(T )+

1

2

∫ T

t0

uT (s)R(s)u(s)ds+

1

2

∫ T

t0

m(s)L(s)m(s)ds}. (8)
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Thus, the solution for the optimal control problem specified

by (1),(4) can be found solving the optimal control problem

given by (5),(8). Finally, the minimal value of the criterion J

should be determined using (7). This conclusion presents the

separation principle for polynomial systems with a quadratic

cost function.

C. Optimal control problem solution: Measured state

To handle the optimal control problem given by (5),(8),

let us first give the solution to the general optimal control

problem for a polynomial system with linear control input

and a quadratic cost function.

Consider a polynomial system with linear control input

dx(t) = f (x, t)dt +B(t)u(t)dt +b(t)dW1(t), x(t0) = x0,
(9)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rl is the control

input, the polynomial drift function f (x, t) is defined by

(3), and the assumptions made for the system (1) hold. The

quadratic cost function J to be minimized is defined by (4).

The optimal control problem is to find the control u∗(t), t ∈
[t0,T ], that minimizes the criterion J along with the trajectory

x∗(t), t ∈ [t0,T ], generated upon substituting u∗(t) into the

state equation (1). The solution to the stated optimal control

problem is given by the following theorem.

Theorem 1. The optimal regulator for the polynomial

system (9) with linear control input with respect to the

quadratic criterion (4) is given by the control law

u∗(t) = R−1(t)BT (t)[Q(t)x(t)+ p(t)], (10)

where the matrix function Q(t) is the solution of the Riccati

equation

Q̇(t) = L(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .

(11)

+pap(t)x(t) . . .p−1 times . . .x(t)]
T Q(t)−

Q(t)[a1(t)+a2(t)x(t)+a3(t)x(t)x
T (t)+ . . .

+ap(t)x(t) . . .p−1 times . . .x(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = −Φ, and the vector

function p(t) is the solution of the linear equation

ṗ(t) = −Q(t)a0(t)− [a1(t)+2a2(t)x(t)+ (12)

3a3(t)x(t)x
T (t)+ . . .+ pap(t)x(t) . . .p−1 times . . .x(t)]

T p(t)−

Q(t)B(t)R−1(t)BT (t)p(t),

with the terminal condition p(T ) = 0. The optimally con-

trolled state of the polynomial system (9) is governed by the

equation

dx(t) = f (x, t)dt +B(t)R−1(t)BT (t)[Q(t)x(t)+ (13)

p(t)]dt +b(t)dW1(t), x(t0) = x0.

Proof of the theorem is given in Appendix.

D. Optimal controller problem solution: Unmeasured state

Based on the result of Theorem 1 and the preceding

derivations substantiating separation of the filtering and con-

trol problems, the solution to the original optimal controller

problem (1)–(4) is given as follows. The corresponding

optimal control law takes the form

u∗(t) = R−1(t)BT (t)[Q(t)m(t)+ p(t)], (14)

where the matrix function Q(t) is the solution of the Riccati

equation

Q̇(t) = L(t)− [c1(t)+2c2(t)m(t)+3c3(t)m(t)mT (t)+ . . .
(15)

+pcp(t)m(t) . . .p−1 times . . .m(t)]T Q(t)−

Q(t)[c1(t)+ c2(t)m(t)+ c3(t)m(t)mT (t)+ . . .

+cp(t)m(t) . . .p−1 times . . .m(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = −Φ, and the vector

function p(t) is the solution of the linear equation

ṗ(t) = −Q(t)c0(t)− [c1(t)+2c2(t)m(t)+ (16)

3c3(t)m(t)mT (t)+ . . .+ pcp(t)m(t) . . .p−1 times . . .m(t)]T p(t)−

Q(t)B(t)R−1(t)BT (t)p(t),

with the terminal condition p(T ) = 0, where

c0(t),c1(t), . . . ,cp(t) are the coefficients in the representation

of the term E( f (x, t) | FY
t ) in the right-hand side of (5) as a

polynomial of m, that is,

E( f (x, t) | FY
t ) = c0(t)+ c1(t)m+

c2(t)mmT + . . .+ cp(t)m . . .p times . . .m.

Upon substituting the optimal control (14) into the equa-

tion (5), the following optimally controlled state estimate

equation is obtained

dm(t) = E( f (x, t) | FY
t )dt+ (17)

B(t)R−1(t)BT (t)[Q(t)m(t)+ p(t)]dt+

P(t)AT (t)(B(t)BT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt).

with the initial condition m(t0) = E(x(t0) | FY
t ).

Thus, the optimally controlled state estimate equation (17),

the gain matrix constituent equations (15) and (16), the

optimal control law (14), and the variance equation (6) give

the complete solution to the optimal controller problem for

polynomial systems with linear control input and a quadratic

cost function. This solution is not yet written in a closed

form due to non-closeness of the filtering equations (5),(6)

in the general situation; however, as noted in Remark 1, the

closed-form solution can be obtained for any specific form

of the polynomial drift f (x, t) in the equation (1). In the next

subsection, the closed-form optimal solution is obtained for

the particular case of a second degree polynomial function

f (x, t).
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1) Optimal controller problem solution for second degree

polynomial state: Let the function

f (x, t) = a0(t)+a1(t)x+a2(t)xxT (18)

be a second degree polynomial, where x is an n-dimensional

vector, a0(t) is an n-dimensional vector, a1(t) is a n× n-

dimensional matrix, and a2(t) is a 3D tensor of dimension

n×n×n. In this case, the representations for E( f (x, t) | FY
t )

and E((x(t)−m(t))( f (x, t))T | FY
t ) as functions of m(t) and

P(t) are derived as follows (see also the results in [20]-[23])

E( f (x, t) | FY
t ) = a0(t)+a1(t)m(t)+ (19)

a2(t)m(t)mT (t)+a2(t)P(t),

E( f (x, t)(x(t)−m(t))T ) | FY
t )+

E((x(t)−m(t))( f (x, t))T | FY
t ) = (20)

a1(t)P(t)+P(t)aT
1 (t)+2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T .

Substituting the expression (19) in (5) and the expression

(20) in (6), the filtering equations for the optimal estimate

m(t) and the error variance P(t) are obtained

dm(t) = (a0(t)+a1(t)m(t)+a2(t)m(t)mT (t)+ (21)

a2(t)P(t))dt +B(t)u(t)dt+

P(t)AT (t)(G(t)GT (t))−1[dy(t)− (A0(t)+A(t)m(t))dt],

m(t0) = E(x(t0) | FY
t )),

dP(t) = (a1(t)P(t)+P(t)aT
1 (t)+ (22)

2a2(t)m(t)P(t)+2(a2(t)m(t)P(t))T +

b(t)bT (t))dt −P(t)AT (t)(G(t)GT (t))−1A(t)P(t)dt.

P(t0) = E((x(t0)−m(t0))(x(t0)−m(t0))
T | FY

t )).

Taking into account the representation (19): c0(t) =
a0(t)+ a2(t)P(t), c1(t) = a1(t), c2(t) = a2(t), the equations

(15) and (16) take the following particular forms in the case

of a second degree polynomial function (18)

Q̇(t) = L(t)− [a1(t)+2a2(t)m(t)]T Q(t)− (23)

Q(t)[a1(t)+a2(t)m(t)]−Q(t)B(t)R−1(t)BT (t)Q(t),

with the terminal condition Q(T ) = −Φ, and the vector

function p(t) is the solution of the linear equation

ṗ(t) = −Q(t)(a0(t)+a2(t)P(t))− (24)

[a1(t)+2a2(t)m(t)]T p(t)−Q(t)B(t)R−1(t)BT (t)p(t),

with the terminal condition p(T ) = 0.

The optimally controlled state estimate equation (17) takes

the the following particular form

dm(t) = (a0(t)+a1(t)m(t)+a2(t)m(t)mT (t)+a2(t)P(t))dt+

B(t)R−1(t)BT (t)[Q(t)m(t)+ p(t)]dt+ (25)

P(t)AT (t)(G(t)GT (t))−1(dy(t)− (A0(t)+A(t)m(t))dt).

with the initial condition m(t0) = E(x(t0) | FY
t ).

Thus, the optimally controlled state estimate equation (25),

the gain matrix constituent equations (23) and (24), the

optimal control law (14), and the variance equation (22) give

the complete closed-form solution to the optimal controller

problem for second degree polynomial systems with linear

control input and a quadratic cost function. In the next

section, performance of the designed closed-form optimal

controller for second degree polynomial systems is verified

in an example.

III. EXAMPLE

This section presents an example of designing the optimal

controller for a second degree polynomial system (1) over

linear observations (2) with a quadratic criterion (4), using

the scheme (21)–(25), and comparing it to the best linear

controller available for a linearized system.

Consider a scalar quadratic polynomial state equation

ẋ(t) = 0.1x2(t)+u(t), x(0) = x0, (26)

and linear observations

y(t) = x(t)+ψ(t), (27)

where ψ(t) is a white Gaussian noise, which is the weak

mean square derivative of a standard Wiener process (see

[24]), and x0 is a Gaussian random variable. The equations

(26) and (27) present the conventional form for the equations

(1) and (2), which is actually used in practice [25].

The controller problem is to find the control u(t), t ∈ [0,T ],
T = 5, that minimizes the criterion

J =
1

2
E[

∫ T

0
u2(t)dt +

∫ T

0
x2(t)dt]. (28)

In other words, the control problem is to minimize the overall

energy of the state x using the minimal overall energy of

control u.

Let us first construct the controller where the control law

u(t) and the matrices P(t) and Q(t) are calculated in the same

manner as for the optimal linear controller for the linearized

system (26)

ẋ(t) = 0.2m(t)x(t)−0.1m2(t)+u(t), x(0) = x0, (29)

which yields u(t) = R−1(t)BT (t)Q(t)m(t) (see [2] for refer-

ence). Since B(t) = 1 in (26) and R(t) = 1 in (28), the control

law is actually equal to

u(t) = Q(t)m(t); (30)

where m(t) satisfies the equation

ṁ(t) = a(t)m(t)+B(t)u(t)+P(t)AT (t)×

G(t)GT (t))−1(y(t)− (A0(t)+A(t)m(t))),

m(t0) = m0 = E(x0 | FY
t0

); Q(t) satisfies the Riccati equation

Q̇(t) = −aT (t)Q(t)−Q(t)a(t)+

L(t)−Q(t)B(t)R−1(t)BT (t)Q(t)),
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with the terminal condition Q(T ) = −Φ; and P(t) satisfies

the Riccati equation

Ṗ(t) = P(t)a(t)+a(t)P(t)+b(t)bT (t)−

P(t)AT (t)(G(t)GT (t))−1A(t)P(t),

with the initial condition P(t0) = E((x0 − m0)(x0 − m0)
T |

y(t0)). Since t0 = 0, a(t) = 0.2m(t), B(t) = 1, b(t) = 0 in

(29), A0(t) = 0, A(t) = 1, G(t) = 1 in (27), and L = 1 and

Φ = 0 in (28), the last equations turn to

ṁ(t) = 0.1m2(t)+u(t)+P(t)(y(t)−m(t)), m(0) = m0,
(31)

Q̇(t) = 1−0.4m(t)Q(t)− (Q(t))2, Q(5) = 0, (32)

Ṗ(t) = 0.4m(t)P(t)− (P(t))2, P(0) = P0. (33)

Upon substituting the control (30) into (31), the controlled

estimate equation takes the form

ṁ(t) = 0.1m2(t)+Q(t)m(t)+P(t)(y(t)−m(t)), m(0) = m0.
(34)

For numerical simulation of the system (26),(27) and the

controller (30)-(34), the initial values x(0) = 1, m(0) = 2,

and P(0) = 10 are assigned. The disturbance ψ(t) in (27) is

realized using the built-in MatLab white noise function.

The results of applying the controller (30)–(34) to the

system (26),(27) are shown in Fig. 1, which presents the

graph of control function (30) and the graph of the criterion

(28) J(t) in the interval [0,5]. The value of the criterion (28)

at the final moment T = 5 is too large and unacceptable:

J(5) = 6.68∗104.

Let us now apply the optimal controller for second de-

gree polynomial systems designed according to the optimal

scheme (21)–(25),(14) to the system (26), (27). The control

law (14) takes the form

u∗(t) = Q(t)m(t)+ p(t), (35)

where

ṁ(t) = 0.1m2(t)+0.1P(t)+u(t)+P(t)(y(t)−m(t)), (36)

m(0) = m0, and

Q̇(t) = 1−0.3m(t)Q(t)− (Q(t))2, Q(5) = 0, (37)

ṗ(t) = −0.1Q(t)P(t)−0.2m(t)p(t)−Q(t)p(t), p(5) = 0,
(38)

Ṗ(t) = 0.4m(t)P(t)− (P(t))2, P(0) = P0. (39)

Note that the obtained system (36)–(39) can be solved using

simple numerical methods, such as ”shooting.” This method

consists in varying initial conditions of (37) and (38) until

the given terminal conditions are satisfied.

Upon substituting the control (35) into (36), the optimally

controlled estimate equation takes the form

ṁ(t) = 0.1m2(t)+0.1P(t)+Q(t)m(t)+

p(t)+P(t)(y(t)−m(t)), m(0) = m0, (40)

For numerical simulation of the system (26),(27) and the

controller (35)-(40), the initial values x(0) = 1, m(0) = 2,

and P(0) = 10 are assigned. The disturbance ψ(t) in (27) is

realized using the built-in MatLab white noise function.

The results of applying the controller (35)–(40) to the

system (26),(27) are shown in Fig. 2, which presents the

graph of control function (30) and the graph of the criterion

(28) J(t) in the interval [0,5]. The value of the criterion

(28) at the final moment T = 5 is 105 times less than in the

preceding case: J(5) = 0.64.

It can be observed that the final criterion values at T = 5

are definitively better for the designed optimal controller for

second degree polynomial systems in comparison to the best

controller available for a linearized system. This successfully

verifies overall performance and computational accuracy of

the designed optimal controller for polynomial systems.

IV. APPENDIX

Proof of Theorem 1. Necessity. Define the Hamiltonian

function [3] for the optimal control problem (9),(4) as

H(x,u,q, t) = E
{1

2
(uT R(t)u+ xT L(t)x)+qT ẋ(t)

}

=

= E
{1

2
(uT R(t)u+ xT L(t)x)+qT [ f (x, t)+B(t)u]

}

. (41)

Applying the maximum principle condition ∂H/∂u = 0 to

this specific Hamiltonian function (41) yields

∂H/∂u = 0 ⇒ R(t)u(t)+BT (t)q(t) = 0.

Accordingly, the optimal control law is obtained as

u∗(t) = −R−1(t)BT (t)q(t).

Let us seek q(t) as an affine function of x(t)

q(t) = −Q(t)x(t)− p(t), (42)

where Q(t) is a square matrix of dimension n × n, such

that Q(T ) is a symmetric matrix, and p(t) is a vector of

dimension n. This yields the complete form of the optimal

control

u∗(t) = R−1(t)BT (t)[Q(t)x(t)+ p(t)]. (43)

Note that the transversality condition [3] for q(T ) implies

that q(T ) = −Q(T )x(T )− p(T ) = ∂J/∂x(T ) = Φx(T ) and,

therefore,

Q(T ) = −Φ and p(T ) = 0. (44)

Using the co-state equation E
{

dq(t)/dt
}

= −∂H/∂x,

which gives

E
{

−dq(t)/dt = L(t)x(t)+ [∂ f (x, t)/∂x]T q(t)
}

, (45)

and substituting (42) into (45), we obtain

E
{

Q̇(t)x(t)+Q(t)d(x(t))/dt + ṗ(t) = (46)

L(t)x(t)− [∂ f (x, t)/∂x]T (Q(t)x(t)+ p(t))
}

.

Substituting the expression for ẋ(t) from the state equation

(9) into (46) yields

E
{

Q̇(t)x(t)+Q(t) f (x, t)+Q(t)B(t)u(t)+ ṗ(t) = (47)
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L(t)x(t)− [∂ f (x, t)/∂x]T (Q(t)x(t)+ p(t))
}

.

Substituting now the representation (3) for f (x, t) and the

optimal control law (43) into (47) and taking into account

the expression for ∂ f (x, t)/∂x

∂ f (x, t)/∂x = a1(t)+2a2(t)x+

3a3(t)xxT + . . .+ pap(t)x . . .p−1 times . . .x,

the following equation including Q(t) and p(t) is obtained

upon omitting the expectation sign

Q̇(t)x(t)+Q(t)[a0(t)+a1(t)x(t)+

a2(t)x(t)x
T (t)+ . . .+ap(t)x(t) . . .p times . . .x(t)]+

ṗ(t)+Q(t)B(t)R−1(t)BT (t)[Q(t)x(t)+ p(t)] = (48)

L(t)x(t)− [a1(t)+2a2(t)x(t)+3a3(t)x(t)x
T (t)+ . . .+

pap(t)x(t) . . .p−1 times . . .x(t)]
T (Q(t)x(t)+ p(t)).

The equation (48) is satisfied, if Q(t) and p(t) are assigned

as the solutions of the equations (11) and (12), respectively,

with the initial conditions defined by (44). The necessity part

is proved.

Sufficiency. The optimality of the optimal control law u∗(t)
given in Theorem 1 and by the formula (43) is proved in a

standard way (see details, for example, in [26]): composing

the Hamilton-Jacobi-Bellman (HJB) equation, corresponding

to the Hamiltonian (41), and demonstrating that it is satisfied

with the Bellman function V (x, t) = − 1
2
xT Qx− pT x, where

Q(t) and p(t) are the solutions of the equations (11) and (12),

respectively. The demonstration mostly repeats the formulas

(44)–(48) in the necessity part. Finally, minimizing the right-

hand side of the HJB equation over u yields the optimal

control u∗(t) in the form (43). The theorem is proved. ¥
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Fig. 1. Graphs of the control (30) u(t) and the criterion (28) J(t)
corresponding to the controller (30)–(34) in the interval [0,5].
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Fig. 2. Graphs of the control (35) u(t) and the criterion (28) J(t)
corresponding to the controller (35)–(40) in the interval [0,5].
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