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Abstract— In this paper we propose a virtual closed loop
model parameterization to perform system identification. This
parameterization is designed to achieve specific goals. We show
that the method includes, as special cases, known methods for
closed loop identification and also offers additional flexibility.
We analyze the ramifications of the new tailor-made parame-
terization for systems operating in closed loop. The approach
exploits a property of Box-Jenkins models in order to minimize
the bias arising from feedback and noise model mismatch.

I. INTRODUCTION

Identification of systems operating in closed loop has
received considerable attention in the System Identification
literature [8], [14], [15], [4], [12].

There are safety and economic reasons to perform identifi-
cation experiments in closed loop. Also, it is known that the
optimal experiment is usually performed in closed loop [17],
[11], [15], [5], [10]. Indeed, recent research has established
that, for a general class of systems, and when there is a
constraint on the output power, the optimal experiment is
necessarily closed loop [3].

Unfortunately, the identification of systems operating un-
der the presence of feedback presents several difficulties [15],
[4]. For example, correlation between the input signal and the
noise is problematic in the context of several identification
techniques. In fact, it is well known that the Prediction Error
Method (PEM) provides a non-consistent estimate in the
presence of under-modeling of the noise transfer function
[4].

Several attempts to overcome this difficulty have been
made. In particular, indirect identification is a popular ap-
proach to mitigate this difficulty. Traditional indirect identi-
fication is a two step procedure where the identification of a
plant object is first obtained and then the open loop system
is unraveled from this preliminary estimate. Here, and in the
sequel, we use the term “plant object” to refer to a transfer
function that depends on the system. In traditional indirect
identification, the plant object to be identified is usually the
complementary sensitivity transfer function relating the refer-
ence signal to the output [14]. However, several difficulties
are known to exist with this approach. For example, it is
common that the estimate of the open loop process is not nec-
essarily stabilized by the controller used in the identification
experiment, even though it is known that the real system is

Juan C. Agüero and Graham C. Goodwin are with the School of Electrical
Engineering and Computer Science, The University of Newcastle, Australia.
Email: {juan.aguero,graham.goodwin}@newcastle.edu.au

Paul M. J. Van den Hof is with Delft Center for Sys-
tems and Control, Delft University of Technology. Email:
p.m.j.vandenhof@tudelft.nl

stabilized by this controller. This difficulty can be overcome
by using a particular parameterization of the system, the so
called Dual-Youla parameterization [9], [13], [16]. Also, it
is often true in practice that the controller can have certain
non-linearities e.g. anti-windup schemes [7]. This difficulty
renders the usual indirect identification approaches unusable
on many problems. Recent research reported in [2], [1],
[6] has proposed an alternative method which tackles the
difficulty of non-linear or partially known controllers. The
method is based on a “virtual controller” which approximates
the true one. The method is, in general, non-consistent when
PEM is utilized. However, the asymptotic bias is small in the
frequency range where the virtual controller approximately
matches the true one. This method leads to a new class of
estimators for systems operating in closed loop.

In this paper, we generalize the virtual closed loop ap-
proach. We show that, by suitable choice of parameters,
the method specializes to known closed loop identification
schemes. We propose a parameterization of the process
which is designed in order to achieve different goals. In
particular, we focus on the minimization of the asymptotic
bias due to feedback and noise model mismatch.

The remainder of the paper is organized as follows: In
Section II we describe the scheme of interest in a general
non-linear setting. In Section III we specialize to linear
systems. In Section IV we show that the virtual closed
loop method generalizes known schemes for closed loop
identification. In Section V we show how the choice of
parameters in the virtual closed loop affects the asymptotic
bias in the identification of systems operating in closed loop.
In Section VI we present a numerical example. Finally in
Section VII we draw conclusions.

II. GENERAL SYSTEM OF INTEREST

We consider the following general non-linear system (see
Figure 1):

yt = Go(ut, ut−1, · · · , wt, wt−1, · · · ) (1)

where ut, yt are the input and output signals and wt is zero
mean Gaussian white noise of variance σ2

w. We assume that
the input and output signals are bounded. In this section,
we do not make assumptions on the experimental conditions.
However, the system may have been operating in closed loop
in order to ensure bounded input-output signals for and open
loop unstable process.

In order to develop the identification procedure proposed

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

WeA04.3

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1968



in this paper, we first define the following signals:

xt = F1ut + F2yt (2)
zt = F3ut + F4yt (3)

where F1, F2, F3 and F4 are stable filters. We assume
that F1 is bi-proper. Notice that the signals x and z are
bounded because they are generating by passing bounded
signals trough stable filters.

We assume that the filters Fi are written in terms of the
following polynomials:

Fi = NiD
−1
i (4)

where Di roots are inside the stability boundary.
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Fig. 1. Signal Generation in the Virtual Closed Loop Method.
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Fig. 2. Generalized Virtual Closed Loop.

We note that the signals xt and zt are readily obtained
from knowledge of ut and yt. We then have the following
core result:

Theorem 1: The signal transformations (2) and (3) induce
the “virtual closed loop” shown in Figure 2.

Proof: The result is obtained by re-arranging equations
(2) and (3) and using some block algebra. �

Notice that the feedback loop in Figure 2 has nothing to do
with the existence of otherwise of a real closed loop system.

This is the reason for the term “Virtual Closed Loop” (VCL).
Also, stability is not an issue for the system of Figure 2
since we already know that all signals are bounded. In the
remainder of the paper we will explore the implications of
this configuration in System Identification. We propose to
identify a model relating the signals xt and zt shown in
Figure 2.

Towards this goal, we conceive of a model of the same
structure as that shown in Figure 2 but parameterized by a
vector θ. This is shown in Figure 3. The basic idea of virtual
closed loop identification is to estimate θ by minimizing
some function of the error between the measured signal z
and the model output ẑ. Note that stability is an issue and
this model as we are treating xt as an external signal.
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+ +
F3 F4

+ −

x

F2

1
F1

G(θ)

Fig. 3. Predictor Model for the Generalized Virtual Closed Loop.

III. SPECIALIZATION TO LINEAR SYSTEMS

For the case of linear systems, the model (1) can be written
as:

yt = Go(q−1)ut + vt (5)

vt = Ho(q−1)wt (6)

where q−1 is the back-shift operator, and the transfer func-
tions Go and Ho are defined as follows:

Go = BoA
−1
o (7)

Ho = PoQ
−1
o (8)

where Bo, Ao, Po, Qo are polynomials and Po and Qo are
monic and have roots inside the stability boundary.

Using equations (5), (2) and (3) we obtain the following
set of equations describing the virtual closed loop system:1 −F3 −F4

0 F1 F2

0 −Go 1

ztut
yt

 =

 0
xt
vt

 (9)

Solving for z, u and y we have the following:

zt =
F3 + F4Go
F1 + F2Go

xt +
F1F4 − F2F3

F1 + F2Go
Howt (10)

ut =
1

F1 + F2Go
xt −

F2

F1 + F2Go
Howt (11)

yt =
Go

F1 + F2Go
xt +

F1

F1 + F2Go
Howt (12)
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The core idea of the approach proposed in the current
paper is to identify the virtual closed loop system in (10).
Accordingly, we define the following transfer functions

Ro =
F3 + F4Go
F1 + F2Go

, Ko =
F1F4 − F2F3

F1 + F2Go
Ho (13)

We will use a Box-Jenkins type of model for the virtual
closed loop system in which we treat F3+F4G(ρ)

F1+F2G(ρ) as a Tailor-
made parameterization and we independently parameterize
K in terms of a parameter η. Hence, the parameters ρ, and
η are estimated by minimizing a criterion of the form:

J =
N∑
t=1

ε2t (14)

where

εt = K(η)−1 [zt −R(ρ)xt] (15)

R(ρ) =
F3 + F4G(ρ)
F1 + F2G(ρ)

(16)

In the subsequent analysis we will analyze the impact of
the following two issues:

1) xt is not, in general, an exogenous signal but is
potentially correlated with the noise wt.

2) The class of models used for K(η) may not include
the true noise model Ko e.g. we might decide to use
a fixed noise model K 6= Ko.

IV. SPECIALIZATION TO DIRECT AND INDIRECT CLOSED
LOOP IDENTIFICATION METHODS

Here, we show that the Virtual Closed Loop method
generalizes known methods for closed loop identification.
In particular, it is readily seen that:
• Direct identification (see e.g. [12]) is obtained by the

choice F1 = F4 = 1, F2 = F3 = 0. This results in

xt = ut, zt = yt, Ro = Go,Ko = Ho

• Traditional Indirect identification ([14]) is obtained by
the choice F1 = C−1

o , F2 = F4 = 1, F3 = 0 where Co
is the (assumed known and linear) true controller. This
results in

xt = rt, zt = yt, Ro =
GoCo

1 +GoCo
,Ko =

1
1 +GoCo

Ho

.
• The Dual Youla method ([9], [13], [16]) results from the

choice F1 = Dc, F2 = Nc, F3 = −Nx, F4 = Dx where
M = NcNx+DcDx is stable, minimum phase, and bi-
proper (same number of poles and zeros) and where
NcD

−1
c is a co-prime representation of the (assumed

known and linear) true controller Co and where Gx =
NxDx−1 is a co-prime representation of an a-priori
given estimate for Go.

• The “whitening procedure” (see e.g. [12]) is obtained
by the choice F1 = F4 = F and F2 = F3 = 0. In this
case we have

xt = ut, zt = yt, Ro = Go,K0 = FHo

Note that if F ≈ H−1
o , then we might consider using a

fixed filter K = 1 in the estimates.

V. ANALYSIS OF VIRTUAL CLOSED LOOP
IDENTIFICATION

Here we revert to the general scheme given in (2), (3).
We will hypothesize that the true system operates in closed
loop with either a non-linear controller or a linear controller
which are only partially known.

Remark 1: As a preliminary observation, we see that,
when xt is considered as an exogenous signal, then the
virtual closed loop of Figure 3 will be stable if and only
if the polynomial N1D2Â + N2D1B̂ has its roots inside
the stability boundary where G = B̂/Â. Thus, if the virtual
controller C̄ = F2F

−1
1 is known to stabilize the true system

when xt is exogenous, then it suffices to search for estimated
models such that the tailor-made parameterization of R is
stable. OOO

The key tool that we will utilize to analyze the estimates
provided by the virtual closed loop schemes is the following:

Lemma 1: Consider the parameter estimation scheme de-
scribed in (14) to (16) where zt is related to xt as in (10).

• For general, possibly non-linear, feedback of the form

xt = Γ(xt−1, xt−2, · · · , zt, zt−1, · · · , rt, rt−1, · · · )
(17)

where rt is a given exogenous reference signal, then the
asymptotic bias in the resulting estimate of Ro is

BR = R−Ro = [Ko −K]
[

Φwx
Φx

]
+

(18)

where [Φ]+ represents the causal part of Φ, and where
Φxw and Φx respectively denote the cross spectrum
between xt and wt and the spectrum of xt.

• For the case of linear feedback, where the feedback
takes the form

xt = γo(q−1)(rt − zt) (19)

then the asymptotic bias can be evaluated explicitly as

BR = [K −Ko]
[

(γoKoSo)∗σ2
w

|So|2Φr + |γoKoSo|2σ2
w

]
+

(20)

where ∗ denotes complex conjugate and So represents
the sensitivity function given by

So =
1

1 +Roγo
(21)

Proof: Essentially as in [4], [12] with a change of notation.
�

Remark 2: If we apply Lemma 1 to direct identification,
then we see that the estimates will be biased when K differs
from Ko = Ho. This is a well known problem with direct
identification when the noise model is ill-defined (e.g. time
varying). OOO

We can apply Lemma 1 to the Virtual Closed Loop
scheme. To do this, we need to evaluate Φwx and Φx in
terms of other signals. To do this we will assume either that
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• The true system operates under non-linear feedback of
the form

ut = K{ut−1, ut−2, · · · , , yt, yt−1, · · · , rt, rt−1, · · · }
(22)

or
• linear feedback of the form

ut = Co(q−1)(rt − yt) (23)

Note that the controllers described above are not the con-
trollers given (17) and (19). Of course, there is a relationship
between the feedback laws found by solving the various
system of equations. Indeed, this underlies the methodology
used to prove the following result:

Theorem 2: Consider the virtual closed loop estimates
described in (14) to (16). Also, assume that
• Go lies in the model class G(ρ) for some ρ = ρo.
• H is the implicit equivalent noise model induced by the

relationship

H :=
F1 + F2Go

M
K (24)

M := F4F1 − F2F3 (25)

Then, the asymptotic bias in the estimate of Go induced by
solving R = F3+F4G

F1+F2G
for G is

Go −G ≈ (Ho −H)(F1 + F2Go)
[

1
F1 + F2Go

β

α

]
+

(26)

where

β := Φwu + (C̄HoS̄o)∗σ2
w (27)

α := Φu + |C̄HoS̄o|2σ2
w + 2Re {(C̄HoS̄o)∗Φwu} (28)

C̄ :=
F2

F1
, S̄o :=

1
1 +GoC̄

(29)

Moreover, when the true controller is linear and with transfer
function is Co, we have that:

β = [(C̄ − Co)HoSoS̄o]∗σ2
w, So =

1
1 +GoCo

(30)

Proof: See the Appendix. �
Theorem 2 provides a basis for choosing suitable values

for F1, F2, F3, F4. In particular, we see from (26) and (30)
that the asymptotic bias is small under either of the following
two conditions
• Ho −H is small
• C̄ − Co is small

Note that this holds on a frequency by frequency basis so
it suffices for C̄ to be near the true controller when Ho −
H is large or for Ho − H to be small when C̄ is a poor
representation of the true controller.

Hence, it makes sense to choose F1, F2 such that C̄ =
F2F

−1
1 is close to the true controller. For example, if the true

controller is a linear controller with anti-windup protection,
then C̄ could be chosen as the linear controller without anti-
windup.

From (10), it may be tempting to think that a good to
choice for F3, F4 would be such that F1F4 = F2F3 since

this removes all noise from (10). However, in this case, Ro =
F4F

−1
3 i.e. we learn nothing about Go. Thus, it is necessary

to design the filters Fi such that M is different from zero in
the frequency range of interest.

An alternative choice of F3, F4 would be to use a-priori
estimates Gx, Hx for Go, Ho to render Ko ≈ 1. In this case,
we might try using a fixed value for K (namely 1) in (15).
The virtual closed loop scheme then reduces to an output
error method linking the measured variable zt to the model
output ẑt. Of course, based on Theorem 2, bias may result
if F1+F2Go

F1F4−F2F3
is significantly different form Ho in frequency

ranges where C̄ is a poor approximation to the true controller.

VI. A NUMERICAL EXAMPLE

Consider the following system:

Go =
b1q

−1

1− a1q−1
(31)

Ho =
1 + c1q

−1 + c2q
−2 + c3q

−4 + c4q
−4

1 + d1q−1 + d2q−2 + d3q−4 + d4q−4
(32)

with a1 = 0.6, b1 = 0.4, c1 = 1.851, c2 = −1.976,
c3 = − 0.7605, c4 = 0, d1 = −1.2, d2 = 0.3309,
d3 = −0.6484, d4 = 0.605. The true control law is given by

ut = Co(q−1)(rt − yt) (33)

Co(q−1) =
0.5q−1

1− 0.5q−1
(34)

where rt zero mean Gaussian noise of variance σ2 = 10
passing trough the filter 0.2q−1

1−0.95q−1 . We use N = 10000 data
points. The ratio between the variance of the output noise
(vt = Howt) and the variance of the output is σ2

v/σ
2
y ≈ 0.4

for all the experiments.
For the Virtual Closed Loop identification method we

choose F1 = 1, F2 = 1, F3 = 0, F4 = 1. This implies
that C̄ = F2/F1 = 1. We use an output error model for the
virtual closed loop, i.e. K(q−1) = 1.
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Fig. 4. Bode diagrams for Go (left) and Ro (right).
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Fig. 5. Bode diagrams for 1−Ho (left) and 1−Ko (right).

Figure 4 shows the Bode diagrams for Go(q−1) and
Ro(q−1). The Bode diagram for 1 − Ho(q−1) and for
1−Ko(q−1) are shown in Figure 5. This figure shows that Ho

and Ro are different from 1 in the range of frequencies where
the magnitude of Go and Ro are significant. This implies a
difficulty for using an output error model to identify Go and
Ro.

We identify the system by using direct identification with
the following model for the transfer function Ho(q−1):

H(q−1) =
1 + c1q

−1 + · · ·+ cnq
−n

1 + d1q−1 + · · ·+ dnq−n
(35)

for different values of n.
Figure 6 shows the parameter estimates for 300 Monte-

Carlo Experiments. We see that, even though we use an
output error model for the virtual closed loop, the bias in
the estimated model is small. This is due to the fact that the
model for the controller is correct in the frequency region of
interest. This, actually shows an advantage of using the VCL
method. On the other hand, the bias of the models obtained
by using direct identification for a Box-Jenkins model is
only reduced when the noise model order (n) is increased.
Moreover, we see in Figure 6 that the parameters estimated
with direct identification are unbiased only when there is no
under-modelling (n = 4).

It is important to note that direct identification is also
covered by the VCL method (F2 = F3 = 0, F1 = F4 = 1).
However, the VCL method provides additional flexibility
which is useful to reduced the bias in the estimates.

VII. CONCLUSIONS

In this paper we have generalized the virtual closed loop
(VCL) approach to System Identification. We have focused
on systems operating in closed loop and we have analyzed
the asymptotic bias due to feedback and noise model mis-
matching. We have shown that the new parameterization

generalizes known methods for closed loop identification and
also offers additional flexibility. A numerical example has
confirmed the claimed merits of the approach.
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APPENDIX

A. Proof of Theorem 2:

Using the model in equation (10) and equation (18), we
have that:

Ro −R = (Ko −K) [κ]+ (36)

where

κ =
1

F1 + F2Go

β

α
(37)

β := Φwu + (C̄HoS̄o)∗σ2
w (38)

α := Φu + |C̄HoS̄o|2σ2
w + 2Re {(C̄HoS̄o)∗Φwu} (39)
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Fig. 6. Results for 300 Monte-Carlo experiments. True value (big-blue-cross). (a) VCL with an output error model (K = 1), (b) Direct identification
with an output error model (H = 1), (c) Direct identification using a noise transfer model with n = 1, (d) Direct identification using a noise transfer
model with n = 2, (e) Direct identification using a noise transfer model with n = 3, (f) Direct identification using a noise transfer model with n = 4.

We have that the difference between Ro and R is given
by:

Ro −R = (Ho −H)
M

F1 + F2Go
[κ]+ (40)

On the other hand, the difference between Ro and its
estimate R is also given by:

Ro −R =
F3 + F4Go
F1 + F2Go

− F3 + F4G

F1 + F2G
(41)

=
(F1F4 − F2F3)(Go −G)
(F1 + F2Go)(F1 + F2G)

(42)

Solving for G we have:

G =
MGo − F1(F1 + F2Go)(Ro −R)
M + F2(F1 + F2Go)(Ro −R)

(43)

and then calculating the difference between Go and G we
have that:

Go −G =
(F1 +GoF2)2(Ro −R)

M + F2(F1 + F2Go)(Ro −R)
(44)

Then, using (40) we have that:

Go −G =
(F1 +GoF2)(Ho −H) [κ]+

1 + F2(Ho −H) [κ]+
(45)

We have that the asymptotic bias on the estimate of Go is
given by:

Go −G = (F1 + F2Go)
(Ho −H) [κ]+

1 + F2(Ho −H) [κ]+
(46)

Using a Taylor expansion of first order we have that the
asymptotic bias on the estimate of Go can be approximated
as follows:

Go −G ≈ (Ho −H)(F1 + F2Go)
[

1
F1 + F2Go

β

α

]
+

(47)

which finishes the proof.
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