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Abstract— We study the problem of dynamic spectrum sens-
ing and access in cognitive radio systems as a partially observed
Markov decision process (POMDP). A group of cognitive
users cooperatively tries to exploit vacancies in some primary
(licensed) channels whose occupancies have a Markovian evo-
lution. We first consider the scenario where the cognitive users
are aware of the distribution of the signals they receive from
the primary users and we obtain a greedy channel selection and
access policy that maximizes the instantaneous reward, while
satisfying a constraint on the probability of interfering with
licensed transmissions. We also derive an analytical universal
upper bound on the performance of the optimal policy.

We then consider the more practical scenario where the
distribution of the signal from the primary is characterized
by an unknown random parameter. We develop an algorithm
that can learn this random parameter, still guaranteeing the
constraint on the interference probability. We also demonstrate
the performance gains of all our schemes through simulations.

I. INTRODUCTION

Cognitive radios are smart radios that exploit vacancies

in licensed spectrum by identifying times when a specific

licensed band is not used at a particular place and using

this band for unlicensed transmissions without causing in-

terference to the licensed user (referred to as the ‘primary’).

The cognitive radio (also called the ‘secondary user’) needs

to decide what is the best strategy for selecting the licensed

channels for sensing and access. The sensing and access poli-

cies should jointly ensure that the probability of interfering

with the primary’s transmission meets a given constraint.

In this paper, we consider the design of such a joint sensing

and access policy, assuming a Markovian structure for the

primary spectrum usage on the channels being monitored.

In most of the existing schemes in the literature in this

field, the authors either assume error-free observations of the

channel states [1], [2], [3] or assume that the channel states

are learned based on the ACK signals transmitted from the

secondary’s receivers [4]. We adopt a different strategy in

which we use the analog observations made on the channels

to track the probability of occupancy of the different channels

and obtain a suboptimal solution to the resultant POMDP

problem.

In the second part of the paper, we propose and study

a more practical problem that arises when the secondary

users are not aware of the exact distributions of the signals

that they see from the primary transmitters. We assume
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that these signals have distributions parameterized by an

unknown random parameter in a known set. We develop a

scheme that learns these parameters online, still satisfying a

constraint on the probability of interfering with the primary

signals. The learning algorithm converges almost surely to

the correct value of the parameter. Through simulations, we

show that this scheme gives improved performance over

the naive scheme that assumes a worst-case value for the

unknown parameter.

II. PROBLEM STATEMENT

We consider a slotted system where a group of sec-

ondary users, located close to each other, monitor a set

of L primary channels. The state of each primary channel

switches between ‘occupied’ and ‘unoccupied’ according to

the evolution of a Markov chain. The secondary users can

cooperatively sense any one out of the L channels in each

slot, and can access any one out of the L channels in the same

slot. In each slot, the secondary users must satisfy a strict

constraint on the probability of interfering with potential

primary transmissions that may be going on in any channel.

When the secondary users access a channel that is free during

a given time slot, they receive a reward proportional to the

bandwidth of the channel that they access. The objective of

the secondary users is to select the channels for sensing and

access in each slot in such a way that their total expected

reward accrued over all slots is maximized subject to the

constraint on interfering with potential primary transmissions

every time they access a channel. Since the secondary users

do not have explicit knowledge of the states of the channels,

the resultant problem is a constrained partially observable

Markov decision process (POMDP) problem.

We assume that all the L channels have equal bandwidth

B, and are statistically identical and independent in terms

of primary usage. The occupancy of each channel follows a

stationary Markov chain. The state of channel a in any time

slot k is represented by variable Sa(k) and could be either

1 or 0, where states 0 and 1 correspond to the channel being

available or unavailable for secondary access, respectively.

The statistics of this Markov process are assumed to be

known by the secondary users.

The secondary system includes a decision center that has

access to all the analog observations made by the cooperating

secondary users. The decisions about which channels to

sense and access in each slot are made at this decision

center. When channel a is sensed in slot k, we use Xa(k)
to denote the vector of observations made by the different

cooperating users on channel a in slot k. The statistics

of these observations are assumed to be time-invariant and
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conditionally independent conditioned on the states of the

channel. The observations on channel a in slot k have

distinct joint probability density functions f0 and f1 when

Sa(k) = 0 and Sa(k) = 1 respectively. The collection of all

observations up to slot k is denoted by Xk, and the collection

of observations on channel a up to slot k is denoted by Xk
a.

The channel sensed in slot k is denoted by uk and the set

of time slots up to slot k when channel a was sensed is

denoted by Kk
a . The decision to access channel a in slot k

is denoted by a binary variable δa(k), which takes value 1
when channel a is accessed in slot k, and 0 otherwise.

Whenever the secondary users access a free channel in

some time slot k, they get a reward B equal to the common

bandwidth of each of the L channels. The secondary users

should satisfy the following constraint on the probability of

interfering with the primary transmissions in each slot:

P({δa(k) = 1}|{Sa(k) = 1}) < ζ

In order to simplify the structure of the access policy, we also

assume that in each slot the decision to access a channel is

made using only the observations made in that slot. Hence

it follows that in each slot k, the secondary users can

access only the channel they sense in slot k, say channel a.

Furthermore, the access decision must be based on a binary

hypothesis test [5] between the two possible states of channel

a, performed on the observation Xa(k). The optimal test [5]

is to compare the joint log-likelihood ratio,

L(Xa(k)) = log

(
f1(Xa(k))

f0(Xa(k))

)

to some threshold ∆ that is chosen to satisfy,

P ({L(Xa(k)) < ∆} |{Sa(k) = 1}) = ζ (1)

and the optimal access decision would be to access the

sensed channel whenever the threshold exceeds the joint log-

likelihood ratio. Hence,

δa(k) = I{L(Xa(k))<∆}I{uk=a} (2)

and the reward obtained in slot k can be expressed as

r̂k = BI{Suk
(k)=0}I

n

L(Xuk
(k))<∆

o (3)

where IE represents the indicator function of event E. The

main advantage of the structure of the access policy given

in (2) is that we can obtain a simple sufficient statistic for

the resultant POMDP without having to keep track of all the

past observations, as discussed later. It also has the added

advantage that the secondary users can set the thresholds ∆
to meet the constraint on the probability of interfering with

the primary transmissions without relying on their knowledge

of the Markov statistics. This follows from the fact that the

access decisions are made using only the observations from

the current slot and the threshold is selected to satisfy the

interference constraint using only the observations from the

current slot. Therefore under this scheme, the interference

constraint is satisfied even if the secondary users do not have

accurate knowledge of the Markov statistics.

Our objective is to generate a policy that makes optimal

use of primary spectrum subject to the interference con-

straint. Since we do not know the exact number of slots over

which we need to optimize the expected accrued reward, we

introduce a discount factor α ∈ (0, 1) and aim to solve the

infinite horizon dynamic program with discounted rewards.

That is, we seek the sequence of channels {u0, u1, . . .}, such

that the

∞∑

k=0

αk
E[r̂k] is maximized, where the expectation is

performed over the random observations and channel state

realizations. It can be shown [6] that,

E[r̂k] = E

[
B(1 − ǫ̂)I{Suk

(k)=0}

]
(4)

where ǫ̂ = P({L(Xa(k)) > ∆}|{Sa(k) = 0}) (5)

Under the assumption of identical channels and time-

invariant observation-statistics, ǫ̂ given by (5) is a constant

independent of k. From the structure of the expected reward

in (4) it follows that we can redefine our problem such that

the reward in slot k is now given by:

rk = B(1 − ǫ̂)I{Suk
(k)=0} (6)

and the optimization problem is equivalent to maximizing
∞∑

k=0

αk
E[rk]. Thus the problem of spectrum sensing and

access boils down to choosing the optimal channel to sense

in each slot. Whenever the secondary users sense some

channel and make observations with log-likelihood ratio

lower than the threshold, they access that channel. Thus

we have converted the constrained POMDP problem into an

unconstrained POMDP problem.

III. DYNAMIC PROGRAMMING

The state of the system in slot k denoted by

S(k) = (S1(k), S2(k), . . . , SL(k))⊤

is the vector of states of the L channels that have independent

and identical Markovian evolutions. The channel to be sensed

in slot k is decided in slot k − 1 and is given by

uk = µk(Ik−1)

where µk is a deterministic function and Ik := (Xk, uk)
represents the net information available at slot k. The obser-

vations made in slot k can be expressed as:

Xuk
(k) = h(Suk

(k), uk, vk)

where h is a deterministic function and vk is a random

variable whose distribution conditioned on S(k) and uk is

known. The reward obtained in slot k is a function of the state

in slot k and uk as given by (6). We seek the sequence of

channels {u0, u1, . . .}, such that

∞∑

k=0

αk
E[rk] is maximized.

Under this formulation it can be easily verified that this prob-

lem is essentially a standard dynamic programming problem

with imperfect observations. It is known [7] that for such a

POMDP problem, a sufficient statistic at the end of any time
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slot k, is the probability distribution of the system state S(k),
conditioned on all the past observations and decisions, given

by P({S(k) = s}|Ik). Since the Markovian evolution of the

different channels in our problem are independent of each

other, this conditional probability distribution is equivalently

represented by the set of beliefs about the occupancy states

of each channel, i.e., the probability of occupancy of each

channel in slot k, conditioned on all the past observations

on channel a and times when channel a was sensed. We use

pa(k) to represent the belief about channel a at end of slot k,

i.e., pa(k) is the probability that the state Sa(k) of channel

a in slot k is 1 conditioned on all observations and decisions

up to time slot k given by:

pa(k) = P({Sa(k) = 1}|Xk
a, Kk

a ) = P({Sa(k) = 1}|Ik)

We use p(k) to denote the L × 1 vector representing the

beliefs about the L channels conditioned on Ik. The initial

values of the belief parameters for all channels are set using

the stationary distribution of the Markov chain. Now, using

P to represent the transition probability matrix for the state

transitions of each channel, we define:

qa(k) = P (1, 1)pa(k − 1) + P (0, 1)(1 − pa(k − 1)) (7)

This qa(k) is the occupancy probability of channel a in slot

k, conditioned on Ik−1. Using Bayes’ rule, the belief values

are updated as follows after the observation in time slot k:

pa(k) =
qa(k)f1(Xa(k))

qa(k)f1(Xa(k)) + (1 − qa(k))f0(Xa(k))
(8)

when channel a was selected in slot k (i.e., uk = a), and

pa(k) = qa(k) otherwise. Thus from (8) we see that updates

for the sufficient statistic can be performed using only the

joint log-likelihood ratio of the observations, L(Xa(k)),
instead of the entire vector of observations. Furthermore,

from (2) we also see that the access decisions also depend

only on the log-likelihood ratios. Hence we can conclude that

this problem with vector observations is equivalent to one

with scalar observations where the scalars represent the joint

likelihood ratio of the observations of all the cooperating

secondary users. Therefore, in the rest of this paper, we use

a scalar observation model with the observation made on

channel a in slot k represented by Ya(k).
Hence the new access decisions are based on comparing

the log-likelihood ratio of Ya(k) represented by L′(Ya(k))
to a threshold ∆′ that is chosen to satisfy:

P({L′(Ya(k)) < ∆′}|{Sa(k) = 1}) = ζ (9)

and the access decisions are given by:

δa(k) = I{L′(Ya(k))<∆′}I{uk=a} (10)

Similarly the belief updates are performed as in (8) with the

evaluations of density functions of Xa(k) replaced with the

evaluations of the density functions f ′
0 and f ′

1 of Ya(k):

pa(k) =
qa(k)f ′

1(Ya(k))

qa(k)f ′
1(Ya(k)) + (1 − qa(k))f ′

0(Ya(k))
(11)

when channel a is accessed in slot k (i.e., uk = a), and

pa(k) = qa(k) otherwise. We use G(p(k − 1), uk, Yuk
(k))

to denote the function that returns the value of p(k) given

that channel uk was sensed in slot k. This function can

be calculated using the relations (7) and (11). There is

some randomness in function G(.) arising from the random

observation Yuk
(k). The reward obtained in slot k can be

expressed as:

rk = B(1 − ǫ)I{Suk
(k)=0} (12)

where ǫ is given by

ǫ = P({L′(Ya(k)) > ∆′}|{Sa(k) = 0}) (13)

The maximum value of

∞∑

k=0

αk
E[rk], over all possible

channel selection policies, is a function of p, the initial value

of the belief vector, i.e., the prior probability of channel

occupancies in slot −1. We denote this function, called the

optimal reward-to-go function, by J(p). From the structure

of the dynamic program, it can be seen that the observation

noises vk are i.i.d., the Markov chain that controls the state

transitions is stationary, and the reward obtained in each slot

is non-negative and bounded above by B. This observation

suggests that the optimal solution to this dynamic program

can be obtained by solving the following Bellman equation

[7] for the optimal reward-to-go function:

J(p) = max
u∈A

[B(1 − ǫ)(1 − qu) + αE(J(G(p, u, Yu)))] (14)

where A = {1, 2, . . . , L} is the set of channels, p represents

the initial value of the belief vector and q is calculated from

p as in (7) by:

qa = P (1, 1)pa + P (0, 1)(1 − pa), a ∈ A (15)

Since it is not easy to find the optimal solution to this

Bellman equation, we adopt a suboptimal strategy to obtain

a channel selection policy that performs well.

In the rest of the paper we make the following assumptions

on the probability transition matrix P , which gives the state

transition probabilities for the Markov chain representing the

state of each channel:

Assumption 1 : 0 < P (j, j) < 1, j ∈ {0, 1} (16)

Assumption 2 : P (0, 0) > P (1, 0) (17)

where P (i, j) represents the probability that a channel that

is in state i in slot k switches to state j in slot k + 1. The

first assumption ensures that the resultant Markov chain is

irreducible and positive recurrent, while the second assump-

tion ensures that it is more likely for a channel that is free

in the current slot to remain free in the next slot than for a

channel that is occupied in the current slot to switch states

and become free in the next slot.
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A. Greedy policy

A straightforward solution to the channel selection prob-

lem is to employ the greedy policy, i.e., the policy of

maximizing the expected instantaneous reward. The expected

instantaneous reward obtained by accessing some channel a

in a given slot k is given by B(1 − ǫ)(1 − qa(k)) where ǫ

is given by (13). Hence the greedy policy is to choose the

channel a that maximizes 1 − qa(k).

u
gr

k = argmax
u∈A

{1 − qu(k)} (18)

In other words, in each slot k+1, the greedy policy chooses

the channel that is most likely to be free, conditioned on Ik.

The greedy policy for this problem is in fact equivalent to

the QMDP policy, which is a standard sub-optimal solution

to the POMDP problem (see, e.g., [8]). In [6] we also show

that the results of [2] and [3] can be used to argue that the

greedy policy is optimal in high SNR.

B. An upper bound

An upper bound on the optimal reward for a POMDP can

be obtained by making the QMDP assumption [8] wherein

we assume that in all future slots, the state of all channels

become known exactly after making the observation in that

slot. The optimal reward under this assumption is a function

JQ of the initial belief vector p(−1), i.e., the vector of prior

probabilities of occupancy of the channels in slot −1. A

typical choice of this initial value is given by the stationary

distribution of Markov chains. Under this initialization, an

upper bound for the optimal reward of the POMDP is

given by JU = JQ(p∗1) where p∗ represents the stationary

distribution of the transition probability matrix P and 1
represents an L × 1 vector of all 1’s.

The first step involved in evaluating JU is to determine

J̃ , the optimal reward function under the assumption that all

the channel states become known exactly after making the

observation in each slot including the current slot. We have

to evaluate J̃(x) for all binary strings x of length L that

represent the 2L possible values of the vector representing

the states of all channels in slot −1. The QMDP assumption

implies that the functions JQ and J̃ satisfy the equation:

JQ(z) = max
u∈A

{[
α

∑

x∈{0,1}L

P({S(0) = x})J̃(x)

+B(1 − ǫ)(1 − qu)

]}
s.t. p(−1) = z

Hence the upper bound JU = JQ(p∗1) can be easily

evaluated using the transition probability matrix P once the

function J̃ is determined.

Now we describe how one can solve for the function

J̃ under the assumption that the states of all the channels

become known at the time of observation. It is easy to see

that the optimal access decision in each slot k is to access

some channel that is free in that slot, if any. Moreover,

the optimal channel to be sensed in slot k is chosen so

as to maximize the expected instantaneous reward, which is

achieved by sensing the channel that is most likely to be free

in the current slot. Now under the added assumption stated

in (17) earlier, if some channel was free in the previous time

slot, that channel would be the one that is most likely to be

free in the current time slot. Hence the optimal policy would

be to select some channel that was free in the previous time

slot, if there is any. If not, the optimal policy would be to

select any of the L channels, since all of them are equally

likely to be free in the current slot. Hence the function J̃ can

be derived in a straightforward manner as illustrated below.

The argument of J̃ is the state of the system in the slot

preceding the initial slot, i.e., S(−1).

J̃(x) = max
u∈A

E
[[

B(1 − ǫ)I{Su(0)=0} +

αJ̃(S(0))
]∣∣{S(−1) = x}

]

=

{
B(1 − ǫ)P (0, 0) + αV (x) if x 6= 1
B(1 − ǫ)P (1, 0) + αV (x) if x = 1

where V (x) = E[J̃(S(0))|{S(−1) = x}] and 1 is an L × 1
string of all 1’s. This means that we can write

J̃(x) = B(1 − ǫ)

[
P (0, 0)

∞∑

k=0

αk −

(P (0, 0) − P (1, 0))w(x)

]
(19)

where

w(x) := E


 ∑

M≥−1:S(M)=1

αM+1

∣∣∣∣∣{S(−1) = x}




is a scalar function of the vector state x. Here the expectation

is over the random slots when the system is in state 1. Now

by stationarity we have:

w(x) = E


 ∑

M≥0:S(M)=1

αM

∣∣∣∣∣{S(0) = x}


 (20)

We use P to denote the matrix of size 2L×2L representing

the transition probability matrix of the joint Markov process

that describes the transitions of the vector of channel states

S(k). The (i, j)th element of P represents the probability

that the state of the system switches to y in slot k + 1 given

that the state of the system is x in slot k, where x is the

L-bit binary representation of i−1 and y is the L-bit binary

representation of j − 1. Using a slight abuse of notation

we represent the (i, j)th element of P as P(x, y) itself. Now

equation (20) can be solved to obtain:

w(x) =
∑

y

αP(x, y)w(y) + I{x=1} (21)

This fixed point equation which can be solved to obtain:

w = (I − αP)−1




0
...

0
1




2L×1

(22)
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where w is a 2L × 1 vector whose elements are the values

of the function w(x) evaluated at the 2L different possible

values of the vector state x of the system in time slot −1.

Again, the ith element of vector w is w(x) where x is the

L-bit binary representation of i − 1. Thus J̃ can now be

evaluated by using relation (19) and the expected reward for

this problem under the QMDP assumption can be calculated

by evaluating JU = JQ(p∗1) via equation (19). This optimal

value yields an analytical upper bound on the optimal reward

of the original problem (14).

IV. THE CASE OF UNKNOWN DISTRIBUTIONS

In practice, the secondary users are typically unaware of

the primary’s signalling scheme and channel conditions [9]

and have to rely on some form of non-coherent detection

such as energy detection while sensing the primary signals.

Furthermore, they are also unaware of their locations relative

to the primary and hence the shadowing and path loss

from the primary to the secondary. Hence the secondary

users are often unaware of the exact distributions of the

observations under the primary-present hypothesis, although

they may know the distribution of the observations under the

primary-absent hypothesis. We model this scenario by using

a parametric description of the pdf’s of the received signal

under the primary-present hypothesis as follows:

Sa(k) = 0 : Ya(k) ∼ fθ0

Sa(k) = 1 : Ya(k) ∼ fθa

where θa ∈ Θ, ∀a ∈ A (23)

where the parameters {θa} are unknown for all channels a,

and θ0 ∈ R and Θ ⊂ R are known. We use Lθ(.) to denote

the log-likelihood function under fθ defined by:

Lθ(x) := log

(
fθ(x)

fθ0
(x)

)
, x ∈ R, θ ∈ Θ (24)

In this section, we study two different approaches for

dealing with such a scenario, restricting ourselves to greedy

policies for channel selection. For ease of illustration, in this

section we consider a secondary system comprised of a single

user, although the same ideas can be applied also for a system

with multiple cooperating users.

A. Worst-case design for non-random θa

When the parameters {θa} are non-random and unknown,

we will have to meet the constraint on the interference

probability for all possible realizations of θa. We also need

to find some means to perform the belief updates in (11).

We show in [6] that for parametric families that satisfy a

particular ordering condition, it is always possible to find

some θ∗ ∈ Θ such that designing the policy assuming

θa = θ∗ is optimal for this problem.

B. Modeling θa as random

Our simulations in [6] show that the worst-case design

leads to a severe decline in performance relative to the

scenario where the distribution parameters in (23) are known

accurately. In practice it may be possible to learn the value of

these parameters online. In order to learn the parameters {θa}
we model the parameters {θa} as random variables, which

are i.i.d. across the channels and independent of the channel

states as well as the observation noise. We also assume that

the cardinality of set Θ is finite1 and let |Θ| = N . Let {µi}
N
1

denote the elements of set Θ. The prior distribution of the

parameters {θa} is known to the secondary users. The beliefs

of the different channels no longer forms a sufficient statistic

for this problem. Instead, we keep track of an L × N × 2
array Q(k) containing the following a posteriori probabilities

which we refer to as joint beliefs:

Qa,i,j(k) = P({(θa, Sa(k)) = (µi, j)}|Ik) (25)

These joint beliefs are initialized using the product distribu-

tion of the stationary distribution of the Markov chain and

the prior distribution on the parameters {θa}. Now define:

Ha,i,j(k) =
∑

ℓ∈{0,1}

P (ℓ, j)Qa,i,ℓ(k − 1)

Again, the values of the array H(k) represent the a posteriori

probability distributions of the parameters {θa} and the

channel states in slot k conditioned on Ik−1. The new update

equations are:

Qa,i,j(k) =

{
κHa,i,0(k)fθ0

(Ya(k)) if j = 0
κHa,i,1(k)fµi

(Ya(k)) if j = 1

when channel a was accessed in slot k, and Qa,i,j(k) =
Ha,i,j(k) otherwise. Here κ is just a normalizing factor.

In [6] we show that, for each channel a, the a posteriori

probability mass function of parameter θa conditioned on

the information up to slot k, converges to a delta-function

at the true value of parameter θa as k → ∞, provided we

sense channel a frequently enough. This observation suggests

that we could use this knowledge learned about parameters

{θa} in order to be more liberal in our access policy than in

Section IV-A. With this in mind, we propose the following

algorithm for making access decisions in each slot.

Assume channel a was sensed in slot k. We first arrange

the elements of set Θ in increasing order of the a pos-

teriori probabilities of parameter θa conditioned on Ik−1.

We partition set Θ into an ‘upper’ partition, Θa(k), and a

‘lower’ partition, Θa(k)c, such that all elements in Θa(k)
have higher a posteriori probability values than all elements

not in Θa(k). The partitioning is done such that the number

of elements in Θa(k)c is maximized subject to the constraint

that the a posteriori probabilities of the elements in Θa(k)c

add up to a value lower than ζ. The elements of Θa(k)c can

be ignored while designing the access policy since the sum

of their a posteriori probabilities is below the interference

constraint. We then design the access policy such that we

meet the interference constraint conditioned on parameter θa

taking any value in Θa(k). The mathematical description of

the algorithm is given in [6]. The access decision on channel

a in slot k is given by:

δ̃a(k) = I{uk=a}

∏

θ∈Θa(k)

I{Lθ(Ya(k))<τθ} (26)

1We do discuss the scenario when Θ is a compact set in [6].
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where τθ satisfies:

P({Lθ(Ya(k)) < τθ}|{Sa(k) = 1, θa = θ}) = ζ

The access policy given above guarantees that

P({δ̃a(k) = 1}|{Sa(k) = 1}, Ik−1) < ζ (27)

whence the same holds without conditioning on Ik−1. Hence,

the interference constraint is met on an average, averaged

over the posteriori distributions of θa. We show in [6] that

the a posteriori probability mass function of parameter θa

converges to a delta function at the true value of parameter

θa almost surely. Hence the constraint is asymptotically

met even conditioned on θa taking the correct value. This

follows from the fact that, if µi∗ is the actual realization of

the random variable θa, and bi∗
a (k) converges to 1 almost

surely, then, for sufficiently large k, (26) becomes: δ̃a(k) =
I{uk=a}I{Lµi∗

(Ya(k))<τµi∗
} with probability one and hence

the claim is satisfied.

It is important to note that the access policy given in (26)

need not be optimal for this problem. Unlike in Section II,

here we allow the access decision in slot k to depend on the

observations in all slots up to k via the joint beliefs. Hence,

it is no longer obvious that the optimal test should be a

threshold test on the likelihood ratio of the observations in

the current slot even if parameter θa is known. However, this

structure for the access policy is justified since it is simpler

to implement in practice than some other policy that requires

us to keep track of all the past observations. This scheme also

shows substantial performance improvement over the worst-

case approach in simulations, further justifying this structure

for the access policy.

Under this scheme the new greedy policy for channel

selection is to sense the channel which promises the highest

expected instantaneous reward which is now given by:

ũ
gr

k = argmax
a∈A

{
N∑

i=1

Ha,i,0(k)(1 − ǫa(k))

}
(28)

where

ǫa(k) = P


 ⋃

θ∈Θa(k)

{Lθ(Ya(k)) > τθ}

∣∣∣∣{Sa(k) = 0}




V. RESULTS AND DISCUSSION

The performance of the schemes proposed in this paper are

shown in Table I for a scalar Gaussian observation model

with a single secondary user. Detailed description of the

simulation setup is given in [6]. The observations have unit

variance under both states of the channel. When the channel

is free, the mean is 0 and when it is occupied the mean is

given by the θa parameters in (23). The transition probability

matrix was chosen to be:

P =

[
0.9 0.1
0.2 0.8

]

TABLE I

SNR UB G1 G2 Worst case Learn θa

1 93.87 85.5 76.7 85.5 85.8

6 304.28 291.6 249.1 89.5 243.4

10 656.07 647.3 535.5 91.2 593.8

with first and second rows corresponding to transitions from

states 0 and 1 respectively. The set Θ is chosen with three

elements such that the SNR values in dB lie in {1, 6, 10}.

False alarm constraint ζ = 0.01, discount factor α = 0.999,

and L = 2 with observations on both channels having equal

means in the simulations.

Values under G1 in Table I correspond to the case where

the mean is known while those under UB give the analytical

upper bound. Clearly, when parameters θa are known our

greedy policy achieves performance close to the upper bound

and hence is nearly optimal. For the scenario where θa are

unknown, worst-case design can lead to a big drop in perfor-

mance over G1 when SNR is high. Much better performance

is obtained by using our scheme that learns the θa. The

caveat is that the learning procedure requires knowledge of

a reliable model for the state transition process if we need to

give probabilistic guarantees of the form (27) and to ensure

convergence of the beliefs about the θa parameters. From

Table I, we also see that for the problem with known mean,

our greedy policy (G1) that uses analog observations for

learning channel occupancies gives significant performance

gains over a scheme that uses only ACK signals proposed in

[4] whose values are shown under G2.
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