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Abstract— This paper proposes distributed control laws for
maintaining the shape of a formation of mobile autonomous
agents in the plane for which the desired shape is defined in
terms of prescribed distances between appropriately chosen
pairs of agents. The formations considered are directed and
acyclic where each given distance is maintained by only one of
the associated pair of agents and there is no cycle in the sensing
graph. It is shown that, except for a thin set of initial positions,
the gradient-like control law can always cause a formation to
converge to a finite limit in an equilibrium manifold for which
all distance constraints are satisfied. The potential applicability
of a control law using target positions is also discussed.

I. INTRODUCTION

With the fast development of mobile sensor networks,
intensive study has been carried out on the design of
distributed control laws for the coordination of collective
motion of a team of mobile autonomous agents [1], [2]. A
problem of particular interest is how to maintain the overall
shape of a formation given that each agent has only limited
sensing capability and thus can only use information that
is sensed locally [3]. Ideas from rigidity graph theory [4]
have been introduced to study the formation maintenance
problem for the case where each distance between chosen
pairs of agents is maintained by both of the agents making
up the pair [5], [6]. Since in real applications, different
agents may have different sensing capabilities, the formation
to be controlled might be directed. We say a formation is
directed if each agent i can sense only the relative position
of its neighbors. Agent i’s neighbors are all other designated
agents in the formation whose distances from agent i are
maintained only by agent i. The notion of rigidity was
generalized for directed graphs [7] to deal with directed
formations, and then used to study distance constrained
formation maintenance problem for directed formations [8],
[9]. However, the results in [8] and [9], as well as [10], have
shown that, under the proposed control laws, a formation
can be guaranteed to restore its shape in the presence of
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only small distortions from its nominal shape. In contrast
to previous work, it is the goal of this paper to analyze the
characteristics of global convergence properties of a directed
rigid formation. Although such global convergence analysis
has been done for a directed, cyclic, triangular formation
under a gradient-like control law [11], [12], it is known that
directed formations containing cycles are, in general, difficult
to control partly because of the possible instability as a result
of positive feedback around cycles [10]. This paper focuses
on analyzing acyclic directed formations. We refer the reader
to [9] and [13] for local stability analysis for acyclic directed
formations of point masses and nonholonomic robots.

The rest of the paper is organized as follows: In section II,
we present a gradient-like control law for an agent with two
neighbors and show convergence of the agent’s position. This
result is then used in section III to give global analysis of
the geometry of an acyclic triangular formation and further
utilized in section IV to describe the convergence behaviors
of general acyclic formations in which each agent, except for
the leader and the first follower, has exactly two neighbors. In
section V we consider the situation when an agent has three
or more neighbors and discuss a control law that makes use
of target positions.

II. AN AGENT WITH TWO NEIGHBORS

We consider a formation in the plane, shown in Figure
1, consisting of three mobile autonomous agents labelled
1, 2, 3 in which agent 3 is required to maintain distances
d1 and d2 from agents 1 and 2. In the sequel we write
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Fig. 1. Directed Triangular Point Formation

xi for the Cartesian coordinate vector of agent i in some
fixed global coordinate system in the plane, and yij for
the position of agent j in some fixed coordinate system
of agent i’s choosing. Thus for i ∈ {1, 2, 3}, there is a
rotation matrix Ri and a translation vector τi such that
yij = Rixj + τi, j ∈ {1, 2, 3}. We assume that agent i’s
motion is described by a simple kinematic point model of
the form

ẏii = ui, i ∈ {1, 2, 3}
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where ui is agent i’s control input. Thus in global coordi-
nates,

ẋi = R−1
i ui, i ∈ {1, 2, 3} (1)

We assume that agent 3 can measure the relative positions
of agents 1 and 2 in its own coordinate system. This means
that agent 3 can measure the signals R3z1 and R3z2 where

z1 = x1 − x3, z2 = x2 − x3 (2)

As control, similar to those used in [11], [8], [9] which are
gradient control laws for rigid formations, we consider

u3 = R3z1e1 + R3z2e2, i ∈ {1, 2, 3} (3)

where
ei = ||R3zi||2 − d2

i , i ∈ {1, 2}
Note that the rotation matrix R3 does not affect the definition
of the ei in that

ei = ||zi||2 − d2
i , i ∈ {1, 2} (4)

Moreover R3 cancels out of the update equation, so the
motion of agent 3 is given by

ẋ3 = e1z1 + e2z2 (5)

Suppose that:
Assumption 1: There exist fixed points x̄1 and x̄2 such

that as t →∞, there holds ‖x1− x̄1‖ → 0, ‖x2− x̄2‖ → 0,
ẋ1 → 0 and ẋ2 → 0, with all convergence rates exponentially
fast.

Assumption 2: The triangle inequalities are satisfied by the
three distances d1, d2 and d3 = ||x̄1 − x̄2||:

d1 < d2 + d3 d2 < d1 + d3 d3 < d1 + d2 (6)

We make two remarks on these two assumptions:
Remark 1: Assumption 1 holds in particular if agent 1

is a leader and agent 2 is a first follower with any sort of
reasonable control law. We will discuss this situation in detail
in section III.

Remark 2: There are two distinct triangular formations
with desired distances di, i = 1, 2, 3. The first is as shown
in Figure 1 and is referred to as a positively-oriented triangle.
The second, called a negatively-oriented triangle, is the
triangle which results when the triangle shown in Figure 1
is flipped over.

The main result we prove in this section is the following:
Theorem 1: Suppose Assumptions 1 and 2 are satisfied

and consider the motion of agent 3 described by (5). Then x3

converges to an equilibrium x̄3. Moreover, at the equilibrium,
there holds

e1(x̄1 − x̄3) + e2(x̄2 − x̄3) = 0 (7)

which implies that either x̄1, x̄2, x̄3 are collinear or that e1 =
e2 = 0. In the event that e1 = e2 = 0, convergence is
exponentially fast.

Before providing the proof of Theorem 1, we state a
simple lemma.

Lemma 1: With notation as above, and in particular with
x1(t), x2(t) bounded and ||x3|| sufficiently large, there holds

e1z1 + e2z2 = −2||x3||2x3 + o(||x3||3) (8)
Proof of Lemma 1: It is trivial to see that

e1z1 + e2z2

= (||x1 − x3||2 − d2
1)(x1 − x3)

+(||x2 − x3||2 − d2
2)(x2 − x3)

and the result is immediate.
With this in hand, we can tackle the theorem:

Proof of Theorem 1: Because the equation for x3 is nonlinear
(and forced) existence has to be demonstrated. There is
clearly a local Lipschitz property. So what must be demon-
strated is that there is no finite escape time. To do this, we
shall argue that solutions are bounded, and the tool for this
will be a Lyapunov function. Indeed, we form a Lyapunov-
like function for the motion of x3 using ideas in [9]. Thus

V =
1
2
(e2

1 + e2
2) (9)

It is straightforward to obtain the time derivative using the
motion definition above:

V̇ = e1ė1 + e2ė2

= 2e1z
T
1 ẋ1 + 2e2z

T
2 ẋ2 − 2‖e1z1 + e2z2‖2

For large ||x3||, in view of Lemma 1, the last term on
the right behaves as O(||x3||6) and the first two behave as
O(||x3||3). Therefore for all sufficiently large ||x3||, it is
clear that V̇ is negative, which implies that V and therefore
e1, e2 cannot be unbounded, and therefore x3 is bounded. It
follows then that we have

V̇ = α(t)− 2‖e1z1 + e2z2‖2 (10)

where α(t) is exponentially decaying to zero. Because of the
positive definite nature of V , it follows then that e1z1 +e2z2

is square integrable:

V (t)− V (0) =
∫ t

0

α(s)ds− 2
∫ t

0

||e1z1 + e2z2||2ds

Since V (t) is bounded below by zero, the square integrability
property is immediate. Since also e1z1+e2z2 is bounded and
continuous and its derivative has the same property, from
Barbalat’s Lemma [14], this implies that e1z1 +e2z2 goes to
zero. One possibility is obviously e1 and e2 going to zero,
which would position agent 3 at correct distance from the
end positions to which agents 1 and 2 converge. The second
possibility is that e1, e2 do not go to zero; since e1z1 +
e2z2 is a vector in IR2, this means that z1 and z2 must be
asymptotically collinear, i.e. agent 3 tends to a position that
is collinear with agents 1 and 2.

Let us now argue that the number of such positions is
necessarily finite. Suppose for convenience that x̄1 is the
origin, and x̄2 lies at (1, 0). Let γ denote the x-coordinate
of agent 3. Then we require

lim
t→∞

(γ(t)2− d2
1)(−γ(t))+ ((γ(t)− 1)2− d2

2)(1− γ(t)) = 0
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Clearly there is a limiting value, denoted by γ̄, which satisfies

f(γ̄) = 2γ̄3 − γ̄2 − (d2
1 + d2

2 − 3)γ̄ − 1 + d2
2 = 0 (11)

Since f(γ̄) →∞ as γ̄ →∞ and f(γ̄) → −∞ as γ̄ → −∞,
from the continuity of f(γ̄), there must exist a solution to
equation (11). At the same time, since f(γ̄) is cubic in γ̄,
there are at most three possible solutions of γ̄ to equation
(11). The number of possible values of γ̄ depends on the
values of d1 and d2.

In terms of the claim of the theorem, the existence of
γ̄ is equivalent to the existence of x̄3. Exponentially fast
convergence is provable when the errors go to zero. Since
asymptotically, z1, z2 are not collinear, it follows that for
large enough t and for some constant δ, one has

||e1z1 + e2z2||2 ≥ δ(e2
1 + e2

2) = δV

so that
V̇ ≤ α(t)− 2δV

and exponential convergence of V is immediate. This com-
pletes the proof of Theorem 1.

Theorem 1 indicates that it might be possible for an acyclic
triangular formation to converge to a collinear formation.
Detailed study has been carried out in the past on when and
how a cyclic triangle converge to a prescribed non-collinear
triangular formation [11]. In the next section, we will present
similar results for the acyclic triangular formation shown in
Figure 1.

III. ANALYSIS FOR THE GEOMETRY OF ACYCLIC
TRIANGULAR FORMATION

In the last section we have shown the convergence of
the position of an agent with two neighbors. In this section
we study the dynamics of the formation shown in Figure 1
consisting of agents 1, 2 and 3 as a whole. To simplify the
analysis, we assume that agent 1 stays still, namely

ẋ1 = 0. (12)

This assumption can be relaxed, but we use it here for the
sake of clarity as will become apparent later on. Let

z3 = x1 − x2 (13)

and
e3 = ‖z3‖2 − d2

3 (14)

Consider the control law for agent 2:

u2 = z3e3 (15)

Then the closed loop system of interest is the smooth, time-
invariant, dynamical system described in global coordinates
by the equations

ẋ1 = 0 (16)
ẋ2 = (x1 − x2)(||x1 − x2||2 − d2

3) (17)
ẋ3 = (x1 − x3)(||x1 − x3||2 − d2

1)
+(x2 − x3)(‖x2 − x3‖2 − d2

2) (18)

In the sequel we shall refer this system as the overall
system. We will show later that the overall system satisfies
Assumption 1. Our aim is to study the geometry of the
overall system defined by (16)-(18). Towards this end let

e =




e1

e2

e3


 x =




x1

x2

x3


 z =




z1

z2

z3


 (19)

First note that as a consequence of the definitions of the zi

in (2),
−z1 + z2 + z3 = 0 (20)

and

ż1 = −z1e1 − z2e2 (21)
ż2 = z3e3 − z1e1 − z2e2 (22)
ż3 = −z3e3 (23)

Next observe that the equilibrium points of the overall system
are those values of the xi for which

z3e3 = 0 and z1e1 + z2e2 = 0 (24)

Let E and Z denote the manifolds

E = {x : e = 0} Z = {x : z = 0} ∪ Q (25)

where

Q = {x : z3 = 0, z1 6= 0, e1 + e2 = 0}
∪{x : e3 = 0, e1 or e2 6= 0, z1e1 + z2e2 = 0}

It is clear from (24) that every point in the manifold Z ∪ E
is an equilibrium point of the overall system. The following
proposition asserts that the converse is also true.

Proposition 1: The manifold Z ∪ E is the set of equilib-
rium points of the overall system.
Proof of Proposition 1: Since it is clear that all points in Z∪E
are equilibrium points of the overall system, it is enough to
prove that there are no others. Towards this end, consider
any equilibrium point x̄. Then from (24) it must be true that
at x̄ either e3 = 0 or z3 = 0.

Now suppose e3 = 0. We consider the following two
cases. (Case a:) e1 = 0. From z1e1 + z2e2 = 0, we know
z2e2 = 0. Then either e2 = 0 or z2 = 0. If the former is
true, then x̄ ∈ E ; if on the other hand, the latter is true, then
x̄ ∈ {x : e3 = 0, e2 6= 0, z1e1 + z2e2 = 0} ⊂ Q. (Case b:)
e1 6= 0. Then z1 = − e2

e1
z2. If z1 = 0, then z2 = 0, and thus

x̄ ∈ Z; if on the other hand, z1 6= 0, then e2 6= 0, and thus
x̄ ∈ {x : e3 = 0, e2 6= 0, z1e1 + z2e2 = 0} ⊂ Q. So when
e3 = 0, x̄ is always in E ∪ Z .

Now suppose z3 = 0. Then from (20), we know z1 = z2.
Then z1e1+z2e2 = 0 implies that z1(e1+e2) = 0. If z1 = 0,
then x̄ ∈ {x : z = 0} ⊂ Z . If on the other hand, z1 6= 0 and
e1+e2 = 0, then x̄ ∈ {x : z3 = 0, z1 6= 0, e1+e2 = 0} ⊂ Q.

Combining the above discussion, we have proved that the
equilibrium points of the overall system are exactly the set
of points in Z ∪ E .

It is easy to see that Z and E are disjoint sets. In the
sequel it will be shown that E is attractive. It is thus not un-
reasonable to conjecture that all trajectories starting outside
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of Z might approach E . However, we will show that this is
not the case. On the other hand, the good news is that there
is another manifold containing Z , but still not large enough
to intersect E , outside of which all trajectories approach E .
The manifold to which we are referring corresponds to those
formations which are collinear. To explicitly characterize this
manifold, we need the following fact.

Lemma 2: The points at x1, x2, x3 are collinear if and
only if

rank
[
z1 z2 z3

]
< 2.

The simple proof is omitted.
To proceed, let N denote the set of points in IR6 corre-

sponding to agent positions in the plane which are collinear.
In other words

N = {x : rank
[
z1 z2 z3

]
< 2, −z1 + z2 + z3 = 0}

(26)
Note that N is a closed manifold containing the Z . Although
N contains Z , it is still small enough to not intersect E :

Lemma 3: N and E are disjoint sets.
Proof of Lemma 3: Let x ∈ N . Since Z and E are disjoint,
it is enough to show that E and the complement of Z in N
are disjoint. Therefore suppose that x 6∈ Z in which case
zi 6= 0 for some i ∈ {1, 2, 3}. Then there must be a number
λ such that zj = λzi for some j ∈ {1, 2, 3} − {i}. Hence
zk = −(1 + λ)zi for k ∈ {1, 2, 3} − {i, j}. Suppose x ∈
E ; then ||zi|| = di, i ∈ {1, 2, 3}. Thus |λ|di = dj and
|1+λ|di = dk. Then di +dj = dk when λ ≥ 0, di +dk = dj

when λ ≤ −1, and dj + dk = di when −1 < λ < 0. All
of these equalities contradict (6). Therefore N and E are
disjoint sets.

That N might be the place where formation control will
fail is further underscored by the fact that N is an invariant
manifold. Said differently, formations which are initially
collinear, remain collinear forever. To understand why N
is invariant, first note that for any two vectors p, q ∈ IR2,
det

[
p q

]
= p′Gq where

G =
[

0 1
−1 0

]

From this, (20) and the definition of N in (26), it follows
that

N = {x : det
[
z1 z2

]
= 0} (27)

But along any solution to (21) – (23) for which (20) holds,

d

dt
det

[
z1 z2

]
= −(e1 + e2 + e3) det

[
z1 z2

]
(28)

Thus if det
[
z1 z2

]
= 0 at t = 0, then det

[
z1 z2

]
= 0

for all t > 0. Therefore N is invariant as claimed.
It is interesting to note that |det

[
z1 z2

] | is equal to
twice the area of the triangle with vertices at x1, x2, x3 and
for a triangle of positive area, sign{det

[
z2 z3

]} is the
triangle’s orientation. A proof of these elementary claims
will not be given.

The dimension of N is less than 6 which means that
“almost every” initial formation will be non-collinear. The
good news is that all such initial formations will converge to

one with the desired shape and come to rest, and moreover,
the convergence will occur exponentially fast. This is in
essence, the geometric interpretation of our main result on
triangular formations.

Theorem 2: Every trajectory of the overall system (16) -
(18) starting outside of N , converges exponentially fast to a
finite limit in E .
The set of points IR6−N consists of two disjoint point sets,
one for which det

[
z1 z2

]
> 0 and the other for which

det
[
z1 z2

]
< 0. Once this theorem has been proved, it

is easy to verify that formations starting at points such that
det

[
z1 z2

]
> 0, converge to the positively-oriented trian-

gular formations in E whereas formations starting at points
such that det

[
z1 z2

]
< 0, converge to the corresponding

negatively-oriented triangular formation in E .
The proof of Theorem 2 involves several steps. The first

is to check that the conditions in Theorem 1 are satisfied.
Lemma 4: For the overall system (16)-(18) starting out-

side of N , e3 → 0 exponentially fast.
Proof of Lemma 4: Since x(0) /∈ N , we know z3(0) 6= 0.
Note that ė3 = −2||z3||2e3. If e3(0) = 0, then e3(t) = 0
for all t ≥ 0, so the conclusion holds trivially. If e3(0) > 0,
then for t ≥ 0, e3(t) > 0 and thus ‖z3‖ > d3, so e3(t)
converges to 0 as fast as e−2d3t, and thus the conclusion
holds. If e3(0) < 0, then for t ≥ 0, e3(t) < 0, and thus
||z3(t)|| ≥ ||z3(0)||, so e3(t) converges to 0 as fast as
e−2||z3(0)||t. So we have proved that e3(t) always converges
to 0 exponentially fast.

Lemma 4 implies that ẋ2 → 0 exponentially fast and there
exists a fixed point x̄2 ∈ IR2 with x̄2−x1(0) = d3 for which
||x2 − x̄2|| → 0 exponentially fast. So one can check that
conditions in Theorem 1 are satisfied for the overall system
(16)-(18) starting outside of N . By applying Theorem 1 we
know that any trajectory starting outside of N converges
to a point in E exponentially fast if x̄1, x̄2 and x̄3 are not
collinear. Prompted by this, let

M = {x : x ∈ N , e3 = 0, z1e1 + z2e2 = 0}
Note that M and E are disjoint because N and E are. In
view of Theorem 1, in order to prove Theorem 2, we need
to prove that the trajectories of the overall system starting
outside of N do not approach a limit point in M.

We now turn to the problem of showing that all trajectories
starting outside of N must be bounded away from M, even
in the limit as t →∞. As a first step toward this end, let us
note that

det[z1(t) z2(t)] =

e−
∫ t

τ
(e1(s)+e2(s)+e3(s))ds det[z1(τ) z2(τ)], t ≥ τ ≥ 0 (29)

because of (28). In view of (27) it must therefore be true that
any trajectory starting outside of N cannot enter N {and
therefore M} in finite time. It remains to be shown that any
such trajectory can also not enter M even in the limit as
t →∞. To prove that this is so we need the following fact.

Lemma 5: For any x ∈M, it must be true that

e1 + e2 + e3 < 0
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Proof of Lemma 5: Since for x ∈ M, we have e3 = 0. So
we only need to prove e1 + e2 < 0 for x ∈ M. It follows
from z1e1 + z2e2 = 0 that

||z1|||e1| = ||z2|||e2|. (30)

We consider five cases:
Case 1: ‖z1‖ = ||z2||+‖z3‖ and ||z2|| 6= 0. In view of (30),
we know in this case |e1| < |e2|. Combining with (6), we
know e1 > 0 and e2 < 0. Thus e1 + e2 < 0.
Case 2: ‖z2‖ = ||z1||+ ||z3|| and ‖z1‖ 6= 0. Then from (30),
we know |e1| > |e2|. Again combining with (6), we have
e1 < 0 and e2 > 0. So e1 + e2 < 0.
Case 3: ||z1||+‖z2‖ = ||z3||, ||z1|| 6= 0 and ‖z2‖ 6= 0. From
(6), it must be true that e1 < 0 and e2 < 0. So e1 + e2 < 0.
Case 4: ‖z1‖ = 0. Then e1 < 0 and ||z2|| 6= 0. From
z1e1 + z2e2 = 0 we know e2 = 0. So e1 + e2 < 0.
Case 5: ‖z2‖ = 0. Then e2 < 0 and ||z1|| 6= 0. From
z1e1 + z2e2 = 0, we know e1 = 0. So e1 + e2 < 0.
Considering the discussion of all these five cases, we con-
clude e1 + e2 + e3 < 0.

We are now ready to show that any trajectory starting
outside of N , cannot approach M in the limit as t → ∞.
Suppose the opposite is true, namely that x(t) is a trajectory
starting outside of N which approaches M as t →∞. Then
in view of (29), (27), and the fact that M⊂ N ,

lim
t→∞

| det
[
z1 z2

] | = 0 (31)

We will now show that this is false.
In view of Lemma 5, there must be an open set V con-

taining M on which the inequality in the lemma continues
to hold. In view of Lemma 3 and the fact that M ⊂ N , it
is possible to choose V small enough so that in addition to
the preceding, V and E are disjoint. For x(t) to approach M
means that for some finite time T , x(t) ∈ V, t ∈ [T,∞).
This implies that e1 + e2 + e3 < 0, t ≥ T . In view of (29),
| det

[
z1 z2

] | ≥ | det
[
z1(T ) z2(T )

] |, t ≥ T . But

| det
[
z1(T ) z2(T )

] | =
e−

∫ T
0 (e1(s)+e2(s)+e3(s))ds| det

[
z1(0) z2(0)

] |
Moreover, | det

[
z1(0) z2(0)

] | > 0 because z starts outside
of N . Therefore | det

[
z1 z2

] | > |det
[
z1(T ) z2(T )

] | >
0, t ≥ T which contradicts (31). This completes the proof
of Theorem 2.

The preceding proves among other things that any tra-
jectory starting outside of N can never enter N . Further
study reveals that equilibrium points in M are not stable,
and thus no trajectory converges to a point in M in the
presence of noise. Another view of the main result of this
section is as follows. Disregard the fact that there are an
infinity of equilibria in the set E , which is the union of two
sets of congruent and like-oriented triangles, and assume that
one can regard E as comprising two points only, perhaps in
some quotient space. These points are asymptotically stable
equilibria. It then follows by arguments set out in e.g [15],
that the region of attraction for each of these equilibria is
an open set, the boundary of which is itself an invariant

manifold. The preceding analysis then identifies the two
regions of attraction as positively and negatively oriented
triangles, and the boundary of the regions of attraction as
collinear formations. After gaining insight into the geometry
of acyclic triangular formations, we are ready to study the
geometric features of general acyclic formations in which
each agent has two or fewer neighbors.

IV. GENERAL ACYCLIC FORMATION

We can generalize our discussion on acyclic directed
triangles to a class of directed, acyclic, rigid formations
consisting of n ≥ 3 agents in which each agent has two
or fewer neighbors. For such formations, using topological
sorting algorithms [16], it is possible to order the agents as
1, 2, . . . , n in such a way so that agent 1 is a leader without
neighbor, agent 2 is a first follower and has agent 1 as its
single neighbor, and the neighbors of any agent i, 3 ≤ i ≤ n,
comprise exactly two agents for which the indices are all less
than i. For i ≥ 3, we write [i] and 〈i〉 for the labels of agent
i’s two neighbors, and denote the desired distance between
agents i and [i] by di[i] and that between agents i and 〈i〉
by di〈i〉. Similarly, we denote the desired distance between
agents 1 and 2 by d21. We assume that the desired shape
of the formation, defined by prescribed distances between
agents and their neighbors, is realizable in the plane. Suppose
there exists fixed point x̄1 such that as t → ∞, there holds
||x1 − x̄1|| → 0 and ẋ1 → 0 with both convergence rates
exponentially fast. Now consider the gradient-like control
laws that we discussed in the previous two sections, then

ẋ2 = (x1 − x2)(||x1 − x2||2 − d2
21)

ẋi = (x[i] − xi)(||x[i] − xi||2 − d2
i[i])

+(x〈i〉 − xi)(||x〈i〉 − xi||2 − d2
i〈i〉), 3 ≤ i ≤ n

Using an argument similar to that in the proof of Lemma 4,
one can check that there exists a fixed point x̄2 with ||x̄2 −
x̄1|| = d21 such that as t →∞, there holds ||x2 − x̄2|| → 0
and ẋ2 → 0 with both convergence rates exponentially fast.
Then using ideas similar to those in the proof of Theorem 2,
one can check that if agents 1, 2 and 3 are initially in non-
collinear positions, then there exists a fixed point x̄3 with
||x̄3− x̄1|| = d31 and ||x̄3− x̄2|| = d32 such that as t →∞,
there holds ||x3−x̄3|| → 0 and ẋ3 → 0 with both covergence
rates exponentially fast. Use similar arguments iteratively,
one can check that for 3 < i ≤ n, if agents i, [i] and 〈i〉 are
initially in non-collinear positions, then there exists a fixed
point x̄i with ||x̄i− x̄[i]|| = di[i] and ||x̄i− x̄〈i〉|| = di〈i〉 such
that as t →∞, there holds ||xi− x̄i|| → 0 and ẋi → 0 with
both covergence rates exponentially fast. A formal discussion
of these ideas will be presented in the full length version of
this paper.

In fact, the requirement that each agent has two or fewer
neighbors can be relaxed. Towards this end, we introduce a
different type of control laws in the next section.

V. AN AGENT WITH THREE OR MORE NEIGHBORS

In previous sections, we assumed that each agent in the
formation has less than 3 neighbors. However, in an acyclic
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graph, it may be that an agent has three or more neighbors. In
this section, we will analyze this possibility. Suppose for the
sake of convenience that agent 3 is required to maintain its
distance from three agents 0, 1 and 2. Further, we suppose
that these three agents move to fixed points x̄0, x̄1, x̄2 as
t → ∞, with convergence rates exponentially fast, and
with the derivatives of x0, x1, x2 also converging to zero
exponentially fast. Suppose that agent 3 is required to take
up a position at distances d0, d1, d2 from these three agents,
and these distances are consistent with the points x̄0, x̄1, x̄2.
With the definition of e0 = ||z0||2−d2

0 where z0 = x3−x0,
and in view of the control law (3), we first take a look at
the applicability of the gradient-like control law

ẋ3 = e0z0 + e1z1 + e2z2 (32)

An analysis very like that of Section II suggests that an
equilibrium will be attained at which

e0z0 + e1z1 + e2z2 = 0 (33)

Analyzing the equilibrium points apart from e0 = e1 = e2 =
0 is evidently not straightforward.

On the other hand, there is a different approach than that
is used in Sections II and III to design control laws for
bringing agent 3 to its correct position. Given instantaneous
positions of agents 1 and 2, it is possible for agent 3 to
use the relative position information and the knowledge of
d1, d2 to determine a target position, i.e. a point x∗3 which
is at the correct distance from the current values of x1, x2,
and given that there are in general two such points, is the
closer of those points to x3. Of course, if all three agents
are collinear, there will not be a closer such point. Also, if
agents 1 and 2 are initially a long way apart, there may be
no such point. In this last instance, one can adopt as a target
point that is on the line joining x1 and x2 whose join to x3

is perpendicular to the line.
Notice that because x1, x2 are in generally changing with

time, the target point will change with time. Notice further
that after some finite time which may be time zero, and we
call it t0, there will certainly be at least one point, and in
general two target points, which are at the correct distance
from x1, x2. These will converge exponentially fast to the
two points which are at distance d1, d2 from x̄1, x̄2. Assume
that at this time, x3 is not collinear with x1, x2. Then one can
expect that x∗3 will converge exponentially to one of these
points, call it x̄∗3.

The law governing the motion of agent 3 is

ẋ3 = k(x∗3 − x3) for fixed k > 0 (34)

and evidently we will have x3 → x̄∗3 exponentially fast.
For the case when agent 3 has agents 0, 1 and 2 as its

neighbors, for any time t, one can obtain a point x∗3 with the
following defining property:

x∗3 = argminx3{(e2
0−d2

0)
2 +(e2

1−d2
1)

2 +(e2
2−d2

2)
2} (35)

The solution of this equation will be unique provided agents
0, 1 and 2 are not collinear, and it is reasonable to presume

that their positions as t → ∞ obey this property. Accord-
ingly, for all suitably large t, collinearity will not occur. As
t →∞, there holds x∗3 → x̄∗3, and we use the law

ẋ3 = k(x∗3 − x3) for fixed k > 0 (36)

as before. Such type of control laws have the potential to be
applied to any directed, acyclic, rigid formation.

VI. CONCLUDING REMARK

In this paper we have discussed control laws that maintain
the shape of a directed formation of autonomous agents. The
geometric characteristics of the overall system’s convergence
behavior, under the proposed gradient-like control law, have
been studied in detail for the case in which each agent has
two, or fewer, neighbors. In fact, such a gradient-like control
law can be further generalized as we have previously done for
cyclic triangular formations [17]. When an agent has more
than two neighbors, we have shown the implementation of a
control law that makes use of target positions.
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