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Abstract— In this paper we present a general decentralized
controller for a swarm of agents with a dynamic topology
to move in a given environment. The controller utilizes the
hypothesis of Attraction/Alignment/Repulsion (A/A/R) interac-
tions which is widely used to model fish schools in mathematical
biology community. We assume that during the swarm’s motion,
each agent can sense and interact with its neighbors via mutual
A/A/R interactions, while following the gradient force of the
environment. The environment is assumed to have identical
effects on all agents. With the assumption of connected graph,
we show that the controller makes the velocities of all swarm
members asymptotically converge to a common value. The
contributions of this paper are two folds. First, the controller
is general and works for any specific function of the A/A/R
interactions. In other words, this paper analytically proves the
common A/A/R model of fish schools in the literature. Second,
all the information needed by the controller can be locally
sensed, therefore, communication modules and associated prob-
lems (such as communication noise and time delay) are avoided.
Simulation results are presented to verify the controller.

I. INTRODUCTION

The natural phenomena of swarming, such as fish school-

ing, have invoked intensive research interests in diverse

areas over decades. Some interesting phenomena were first

observed and analyzed by biologists [1]-[9]. For example,

tuna shoals are observed to school together with a separation

of 0.16-0.25 body length in shapes of 1D “soldier”, 2D

“surface”, and 3D “ball” [2].

In the mathematical biology community two main ap-

proaches are used to model and analyze these collective

behaviors. In reference to the Lagrangian and Eulerian de-

scriptions of fluid motion, they are referred to as Eulerian

and Lagrangian approaches. The Eulerian approach applies

partial differential equations to describe the evolving swarm

density [1][4]; while the Lagrangian approach uses certain

individual-based interaction rules or the classical Newtonian

mechanics law to study each member’s motion [1][3][9][10].

The typical individual-based rules used by most models of

fish schools include short-distance repulsion, long-distance

attraction and middle-range alignment (also called “parallel

orientation”) [8]-[11]. It is commonly believed that individual
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fish senses and adjusts its motion according to certain neigh-

bors through the Attraction/Alighment/Repulsion (A/A/R)

interactions [8]-[11]. Many different functions have been pre-

sented for the mutual A/A/R interactions [1][3][9][10]. Also

many efforts have been made to propose a more reasonable

or “perfect” set of functions for the A/A/R interactions by

comparing the simulation results with the experimental data

from real fishes [9] [11].

In [12] Jadbabaie et al. presented a discrete kinematic

model and a decentralized controller to prove the conver-

gence of agents’ headings. In their later work [13]-[15], a

continuous dynamic model and a decentralized controller

are proposed for fixed and dynamic swarm topologies. The

controller includes heading and velocity adjustment compo-

nents, both of which are based on nearest neighbors’ states.

Further theoretical extensions of this work were presented in

[21]. However, the controllers in [12]-[15] do not explicitly

consider the environmental effects.

In [17] Gazi and Passino used a continuous kinematic

model and proposed a decentralized controller for swarm

aggregation. The results in [17] were extended to a class of

virtual force functions in [18]. Their later works [19]-[20]

demonstrated the collective behavior of swarms in different

environments. In [16], Liu et al. used a second-order dynamic

model to study the stable foraging of swarms in certain noisy

environments. However, all the controllers proposed in [16]-

[20] require each agent to know the global states of all other

members.

In this paper, we present a general decentralized controller

for a swarm of agents with dynamic topology to move in a

given environment. We assume that each agent can sense and

interact with its neighbors via A/A/R interactions. Moreover,

according to the biological fact that many species can take

advantage of the environment for their movements, for

example, reef fishes can school along ocean currents [6][7]

and migrating birds flock to the south by the guidance of

the earth’s magnetic field [5], we assume that each agent can

perceive and follow the gradient force of the environmental

potential during the swarm’s motion. The environment is

assumed to have identical effects on all agents. We assume

that the swarm’s topological graph is always connected. By

nonsmooth stability analysis [22]-[26], we prove that the

controller enables all agents’ velocities to asymptotically

converge to a common value.

The contributions of this paper include two aspects. First,

the controller is general. No matter which specific functions

the A/A/R interactions take, the collective group behavior

of the swarm can be achieved. In other words, this paper

analytically proves the commonly used A/A/R model of fish
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schools in the literature. Second, all the information needed

by the controller can be locally sensed, therefore, commu-

nication modules are not needed for the swarm members.

Subsequently, all issues related to communication links (such

as time delay and communication noise) are avoided.

This paper is organized as follows. In section II we present

a simplified dynamic model for individual agent and a graph

representation for swarm’s dynamic topology. The controller

and its stability analysis are illustrated in section III. Section

IV includes a few simulation results. This paper ends with

some conclusions in section V.

II. MODELLING OF SWARMS WITH DYNAMIC TOPOLOGY

Consider a swarm of N agents moving in a 2D or 3D

Euclidean space. For simplicity, we do not consider each

agent’s dimension. We assume no disturbance upon each

agent. For the ith (i = 1, 2, ..., N ) agent in the swarm, its

dynamics is

ṙi = vi

v̇i = ui

(1)

where ri ∈ R
2 or R

3 is its position vector relative to ground

coordinates, vi is its velocity vector, and ui is the control

input.

Define

v̄ =
1

N

N∑

i=1

vi (2)

to represent the average velocity of all swarm members. We

will show that all agents’ velocities converge to v̄ by the

proposed controller.

Let

rij = ri − rj , (3)

and ‖rij‖ = ‖rij‖2 is the distance between agents i and j.

Let r = [rT
1 , rT

2 , ..., rT
N ]T and v = [vT

1 , vT
2 , ..., vT

N ]T

represent the position and velocity vector of the whole

swarm, respectively.

The swarm’s topology can be represented by algebraic

graph. According to how the information is exchanged

among the agents, the graph embodies either communication

or sensing relations of the swarm members. As shown in

this paper, since only local and relative sensing information

is needed by the proposed controller, we rather consider the

swarm’s topological graph as sensing graph. Also we assume

the sensing relations are undirected.

Definition 2.1 (Swarm’s Topological Graph) The topo-

logical graph of a swarm with dynamic topology is an

undirected graph, denoted as G = {V, E}, consisting of:

1) a set of vertices, V = {1, ..., N}, indexed by the agents

in the swarm;

2) a set of edges, E = {(i, j) ∈ V × V | ‖rij‖ ≤ d2},

in which the undirected edges represent the sensing

relations between unordered pairs of vertices.

We assume that during the swarm’s motion, the graph G is

always connected.

Define

Ni , {j | (i, j) ∈ E} ⊆ V \ {i} (4)

to represent the set of agent i’s neighbors. For a swarm with

dynamic topology, Ni is time-variant.

III. CONTROLLER AND STABILITY ANALYSIS

In this section, we illustrate the general decentralized

controller for swarms with dynamic topology, and prove that

it enables all agents’ velocities to asymptotically converge to

the average.

The hypothesis of mutual A/A/R interactions for fish

schools has been widely accepted in mathematical biology

community for decades [1][3][8]-[11]. A fish is generally

assumed to adopt different interactions (attraction, repulsion,

or alignment) according to the range where the perceived

neighbors are located. Fig.1 shows the diagram of two neigh-

bored agents and the mutual interaction between them. The

interaction vector −→g ij is along the direction of rij , where
−→g ij , g(‖rij‖)

rij

‖rij‖
. The interaction amplitude g(‖rij‖) is

a scalar function that only depends on ‖rij‖.

Depending on the relative distance ‖rij‖, the interaction

has different dominated effects. Fig.2 shows the three non-

overlapping interaction zones associated with each agent in

3D, in which d0, d1 and d2 are the respective radius. Since it

is not hard to implement a sensing or communication module

with an omnidirectional field of view by current technology,

we do not consider any blind angle with the agent as in some

models of fish schools in the literature [9]-[11].
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Fig. 1. Two neighbors (agent i and j) and their mutual interaction.

Many different functions have been presented for the

mutual A/A/R interactions in the literature [1][3][9][10].Also

many efforts have been made to propose a more reasonable

or “perfect” set of functions for the A/A/R interactions by

comparing the simulation results with the experimental data

from real fishes [9] [11]. In this paper, the proposed con-

troller is general and works for any set of A/A/R functions,

thus, it saves the trouble in looking for “better” functions.

In other words, this paper analytically proves the commonly

used A/A/R model of fish schools in the literature.

On the other hand, although each agent hardly has the

full knowledge about the environment, it is still reasonable

to assume that it knows about the local environment around
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Fig. 2. Interaction zones associated with agent i: zone of repulsion (ZOR),
zone of alignment (ZOAl), zone of attraction (ZOAt).

its current position. This assumption can be justified by

the observations in biological systems. For example, the

European robins and homing pigeons can sense the magnetic

field of the earth to determine their heading directions [5],

and some tropical reef fish can perceive and school along

the ocean currents [6][7]. We assume that the swarm moves

in an environment with a global potential function J(r). The

gradient of J(r) at ri is denoted by ∇ri
J(r). Although each

agent hardly knows J(r), but local information ∇ri
J(r) can

be assumed to be known. We assume that the environment

has identical effects on all agents, i.e., ∇ri
J(r) is the same

for i = 1, ..., N .

Based on the above discussion, we propose a general

decentralized controller for each agent as

ui = − kp[vi −∇ri
J(r)] +

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
, (5)

where kp > 0 is a design constant. The implication of

this controller is that each agent perceives and follows the

gradient force of the environment (∇ri
J(r)), and at the same

time interacts with its neighbors via A/A/R forces to adjust

its velocity.

For a swarm with dynamic topology, in order to avoid

collision among swarm members and keep the whole group

cohesive, the mutual interactions should satisfy

g(‖rij‖) =





> 0 0 ≤ ‖rij‖ < d0,
= 0 d0 ≤ ‖rij‖ ≤ d1,
< 0 d1 < ‖rij‖ ≤ d2,
= 0 ‖rij‖ > d2.

(6)

Moreover, for the Lipschitz condition, let g(‖rij‖) 6= ∞.

For simplicity, we assume g(‖rij‖) is continuous inside

each interaction zone; but for generality, it is not continuous

along the zone boundaries.

Note that the neighborhood defining distance in (Def.2.1)

has to be the same as the radius of attraction zone (d2). This

is because agents beyond this range will not have attraction

force with agent i and not be considered as its neighbors.

We will show that for any set of mutual interactions, as

long as the condition in (6) is satisfied, the general controller

(5) can make all agents’ velocity vectors converge to a

common value (v̄).

Define error state

evi
= vi − v̄. (7)

It is straight to have

v̇i−v̇ = −kp(vi − v̄) +
∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
+ kp[∇ri

J(r)

−
1

N

N∑

i=1

∇ri
J(r)] −

1

N

N∑

i=1

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
.

Since g(‖rij‖)
rij

‖rij‖
= −g(‖rji‖)

rji

‖rji‖
; and because the

graph G is assumed to be always connected and Ni is

symmetric, so
∑N

i=1

∑
j∈Ni

g(‖rij‖)
rij

‖rij‖
= 0.

Furthermore, since the environment is assumed to have

identical effects on all agents, i.e., ∇ri
J(r) = ∇rj

J(r),∀i 6=

j. For example [20], J(r) =
∑N

i=1 J(ri) =
∑N

i=1 aT ·ri +b,

where a ∈ R
n and b ∈ R. Then we have

v̇i − ˙̄v = −kpevi
+

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
. (8)

Because g(‖rij‖) is discontinuous along the interaction zone

boundaries, the error dynamics is nonsmooth. So we have the

following differential inclusion [23] for the error dynamics:

ėvi
∈a.e. K[evi

] = −kpevi
+

∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
. (9)

Define

Eij(‖rij‖) =

∫ d0

‖rij‖

g(τ)dτ. (10)

Clearly,

Eij =





‖rij‖ < d0 : =
∫ d0

‖rij‖
g(τ)dτ > 0,

d0 ≤ ‖rij‖ ≤ d1 : = 0,

d1 < ‖rij‖ ≤ d2 : = −
∫ ‖rij‖

d1

g(τ)dτ > 0,

‖rij‖ > d2 : = −
∫ d2

d1

g(τ)dτ = const.

(11)

It is not hard to see that Eij(‖rij‖) is discontinuous and

non-differentiable at d0 and d1, and continuous but not

differentiable at d2. In a word, Eij(‖rij‖) is continuously

differentiable except at d0, d1 and d2.

Therefore, we have its general gradient [22] as

∂Eij =





‖rij‖ < d0 : = −g(‖rij‖),
‖rij‖ = d0 : = co[−g(d−0 ), 0],
d0 < ‖rij‖ < d1 : = 0,
‖rij‖ = d1 : = co[−g(d+

1 ), 0],
d1 < ‖rij‖ < d2 : = −g(‖rij‖),
‖rij‖ = d2 : = co[−g(d2), 0],
‖rij‖ > d2 : = 0.

(12)

in which co[ · ] is the closed convex hull.

Theorem 3.1 Consider a swarm of N agents with dynamic

topology to move in an environment that has identical effects

on all agents. Assume the swarm’s topological graph G is al-

ways connected. Then with any set of mutual interactions that
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satisfy the condition in (6), the decentralized controller (5)

makes all agents’ velocity vectors asymptotically converge

to a common value (v̄).

Proof: Use candidate Lyapunov function

Vt =
1

2

N∑

i=1

eT
vi

evi
+

1

2

N∑

i=1

N∑

j=1

Eij(‖rij‖). (13)

Clearly Vt is a function of evi
and rij , and smooth about evi

.

But because Eij is nonsmooth about ‖rij‖, so is Vt. From

(11) we know Vt ≥ 0.

Because g(‖rij‖) 6= ∞, Eij is locally Lipschitz, then

Vt is also locally Lipschitz. From Rademacher’s Theorem

[22], we know that it is differentiable almost everywhere.

In order to use the chain rule [24] to derive the set-valued

Lie derivative of Vt [26][25], we need to show it is regular

everywhere [22].

Lemma 3.1 The function Vt is regular everywhere in its

domain.

Proof: Because eT
vi

evi
is convex, it is regular [26];

then we just need to prove Eij is regular in order to show

Vt is regular everywhere [26]. And since Eij is smooth

everywhere except at d0, d1 and d2, we only need to prove

it is regular at dk (k = 0, 1, 2). To show the regularity,

we need to prove E◦
ij(dk, w) = E′

ij(dk, w) [22], where

E′
ij(dk, w) = limh↓0

Eij(dk+hw)−Eij(dk)
h

, E◦
ij(dk, w) =

limy→dk
suph↓0

Eij(y+hw)−Eij(y)
h

, and k = 0, 1, 2.

For the sake of brevity, the rest of this proof is omitted.

One can refer to [15] for similar details. �

Since Vt(eij , ‖rij‖) is locally Lipschitz, we have its gen-

eralized gradient [22] as

∂Vt = co{lim∇Vt(evi
, ‖rij‖), ‖rij‖ /∈ ΩV , i, j = 1, ..., N},

in which ΩV is the set with zero measure where the gradient

of Vt is not defined. Specifically,

∂Vt = [eT
v1

, ..., eT
vN

,
1

2
∂E11, ...,

1

2
∂Eij , ...,

1

2
∂ENN ]T .

(14)

For simplicity, denote ζij = 1
2∂Eij , then

∂Vt = [eT
v1

, ..., eT
vN

, ζ11, ..., ζij , ..., ζNN ]T . (15)

From the chain rule [24] of the set-valued Lie derivative

of Vt, we know

dVt

dt
∈a.e. ˙̃

Vt, (16)

where

ėVt =
\

ξ∈∂Vt

ξ
T · {K[ev1

], .., K[evN
],

d‖r11‖

dt
, ..,

d‖rij‖

dt
, ..,

d‖rNN‖

dt
}T

.

Using (15) it becomes

˙̃
Vt =

⋂

ξ∈∂Vt

{
N∑

i=1

eT
vi
· K[evi

] +
N∑

i=1

N∑

j=1

ζij

d‖rij‖

dt
}. (17)

For simplicity, let

Γ =

N∑

i=1

eT
vi
· K[evi

] +

N∑

i=1

N∑

j=1

ζij

d‖rij‖

dt
. (18)

To find out
˙̃
Vt on the entire domain of ‖rij‖, we discuss

it piece-wisely. Note that the nonsmoothness of both error

dynamics (9) and ∂Eij (12) are originated from g(‖rij‖), so

K[evi
] and ζij share the same nonsmooth domains.

If for ∀i,‖rij‖ > d2 where j ∈ {1, ..., N} \ {i}, then

K[evi
] = −kpevi

and ζij = 0, so

Γ =
N∑

i=1

eT
vi
· (−kpevi

) +
N∑

i=1

N∑

j=1

0 ·
d‖rij‖

dt
= −kp

N∑

i=1

eT
vi

evi
.

(19)

If for ∀i, d1 < ‖rij‖ < d2 or ‖rij‖ < d0 where j ∈
Ni, i.e., in the domain of attraction and repulsion zones, we

have K[evi
] = −kpevi

+
∑

j∈Ni
g(‖rij‖)

rij

‖rij‖
and ζij =

− 1
2g(‖rij‖). Then,

Γ =
N∑

i=1

eT
vi
· {−kpevi

+
∑

j∈Ni

g(‖rij‖)
rij

‖rij‖
}

−
1

2

N∑

i=1

N∑

j=1

g(‖rij‖)
d‖rij‖

dt
. (20)

Since for j /∈ Ni, g(‖rij‖) = 0, we have

N∑

i=1

N∑

j=1

g(‖rij‖)
d‖rij‖

dt
=

N∑

i=1

∑

j∈Ni

g(‖rij‖)
d‖rij‖

dt
.

Then equation (20) becomes

Γ = −kp

NX

i=1

e
T
vi

evi
−

NX

i=1

X

j∈Ni

v̄
T
g(‖rij‖)

rij

‖rij‖
+

NX

i=1

X

j∈Ni

g(‖rij‖)v
T
i ·

rij

‖rij‖
−

NX

i=1

X

j∈Ni

g(‖rij‖)(v
T
i · ∇rij

‖rij‖)

= −kp

NX

i=1

e
T
vi

evi
. (21)

If for ∀i, d0 < ‖rij‖ < d1 where j ∈ Ni, i.e., in the domain

of alignment zone, we have K[evi
] = −kpevi

and ζij = 0,

so

Γ =

N∑

i=1

eT
vi
· (−kpevi

) +

N∑

i=1

N∑

j=1

0 ·
d‖rij‖

dt
= −kp

N∑

i=1

eT
vi

evi
.

(22)

If for ∀i, ‖rij‖ = d0 where j ∈ Ni, then

ζij ∈ co[− 1
2g(d−0 ), 0], and K[evi

] = −kpevi
+

co[g(d−0 ), 0]
∑

j∈Ni

rij

‖rij‖
. Then we have:

ėVt |d0
=

\

ζij∈co[− 1

2
g(d−

0
), 0]

{
NX

i=1

−kpe
T
vi

evi
+

NX

i=1

X

j∈Ni

co[g(d−

0 ), 0]
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(vi − v̄)T ·
rij

‖rij‖
+

NX

i=1

X

j∈Ni

ζij [
drij

dt
]T · ∇rij

‖rij‖}

=
\

ζij∈co[− 1

2
g(d−

0
), 0]

{
NX

i=1

−kpe
T
vi

evi
+ (co[g(d−

0 ), 0] + 2ζij)

NX

i=1

X

j∈Ni

v
T
i ·

rij

‖rij‖
} ⊆

NX

i=1

−kpe
T
vi

evi
+

\

ζij∈co[− 1

2
g(d−

0
), 0]

{(co[g(d−

0 ), 0] + 2ζij)
NX

i=1

X

j∈Ni

v
T
i ·

rij

‖rij‖
}.

Since

⋂

ζij∈co[− 1

2
g(d−

0
), 0]

{co[g(d−0 ), 0] + 2ζij} = {0}, (23)

then

˙̃
Vt |‖rij‖=d0

⊆ {

N∑

i=1

−kpe
T
vi

evi
}. (24)

For ‖rij‖ = d1 where j ∈ Ni, ζij ∈ co[− 1
2g(d+

1 ), 0], and

K[evi
] = −kpevi

+ co[g(d+
1 ), 0]

∑
j∈Ni

rij

‖rij‖
. Similarly to

the above, we have:

˙̃
Vt |‖rij‖=d1

⊆ {

N∑

i=1

−kpe
T
vi

evi
}. (25)

Similarly, for ‖rij‖ = d2 we can have

˙̃
Vt |‖rij‖=d2

⊆ {
N∑

i=1

−kpe
T
vi

evi
}. (26)

Therefore, on the whole domain, we have

˙̃
Vt ⊆ {α | α =

N∑

i=1

−kpe
T
vi

evi
≤ 0}. (27)

And since dVt

dt
∈a.e. ˙̃

Vt (16), then all d
dt

Vt ≤ 0. This means

evi
is stable for any agent. Furthermore, from the nonsmooth

version of Barbalat’s lemma, we know that (evi
, ‖rij‖)

approaches the largest invariant set in

S̄ = cl({(evi
, ‖rij‖) | 0 ∈

˙̃
Vt, i, j = 1, ..., N})

= cl({(0, ‖rij‖), i, j = 1, ..., N}). (28)

where cl(·) is the closure of a set. This means that the

velocity convergence is asymptotic. �

Remark: Note that all the information needed by the con-

troller (5) can be locally sensed.The advantage of this con-

figuration is that by the proposed controller, communication

modules are not needed for swarm members. Subsequently

all the issues related to communication setup (such as time

delay and communication noise) are relieved.

IV. SIMULATIONS

In this section simulation results are presented to demon-

strate the effectiveness of the proposed controller.

We select the mutual interactions to be piece-wise as:

for ‖rij‖ < d0: g(‖rij‖) = −30‖rij‖ + 320; and for

d2 ≥ ‖rij‖ > d1: g(‖rij‖) = −30‖rij‖ + 400, in which

d0 = 10, d1 = 14 and d2 = 24. The alignment zone

lies between d0 ∼ d1. Clearly g(‖rij‖) is not continuous

at d0, d1 and d2. We assume that the environment has

identical effect on all agents. Agents’ initial positions and

velocities are randomly given. The design constant kp = 5. In

the following figures, the stars and circles represent agents’

initial and final positions, respectively.

Fig. 3–5 show a swarm of agents (N = 25) moving

in a 2D linear environment. The potential profile of the

environment is ∇ri
J(r) = [−0.4, −0.4]T . Fig.3 shows

the agents’ trajectories on x − y plane, and Fig.4 shows

the convergence of their velocities. It is clear to see that

all agents’ velocities asymptotically converge to a common

value. The swarm’s steady topology is shown in Fig. 5.
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Fig. 3. Agents’ trajectories on x-y plane when the swarm moves in a 2D
linear environment (N = 25).
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Fig. 4. Agents’ velocity errors when the swarm moves in a 2D linear
environment (N = 25).

Fig.6–7 show a swarm (N = 50) moving in a 2D

environment with sinusoid wave profile. Fig.6 shows agent

trajectories, and fig.7 shows swarm’s steady topology. Note

that the steady pattern of swarm’s topology in Fig.7 has a
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Fig. 5. Swarm’s steady topology when the swarm moves in a 2D linear
environment (N = 25).
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Fig. 6. Agents’ trajectories on x-y plane when the swarm moves in a 2D
sinusoid environment (N = 50).

similar structure as in Fig.5. This is interesting to be studied

more.

V. CONCLUSIONS AND FUTURE WORKS

In this paper, we propose a general decentralized controller

that utilizes A/A/R interactions for a swarm of agents with

dynamic topology to move in given environments. With the

assumption of connected graph, We show that the controller

makes all agents’ velocities asymptotically converge to a

common value. Future work will focus on issues arising

from practical applications, such as disturbance, sensing

noise and fluctuation of the environment. The spacing among

swarm members and swarm’s steady pattern are some other

important issues to be studied.
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