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Abstract— We study large population stochastic dynamic
games with agent specific cost coupling where each agent assigns
nonuniform weights to other agents to indicate locality related
interactions. The Nash Certainty Equivalence (Mean Field)
methodology is generalized to this framework to give decen-
tralized individual strategies. The key step is the specification
of a family of consistent individual controls which depend upon
each agent’s state and upon the aggregate effect of the other
agents as locally received by that agent. This methodology has
close connections with the mean field models studied by Lasry
and Lions (2006, 2007) and the notion of oblivious equilibrium
proposed by Weintraub, Benkard, and Van Roy (2005, 2007)
via a mean field approximation.

I. INTRODUCTION

For noncooperative games with mean field coupling, the

Nash Certainty Equivalence (NCE) methodology developed

in our past work [11], [14], [15], [12], [13] provides an

effective analytical tool for obtaining decentralized individual

strategies. The key idea of this methodology is to specify

a certain consistency relationship between the individual

strategies and the mass effect (i.e., the overall effect of the

population on a given agent) within the population limit,

and each decision-maker can ignore the fine details of the

behavior of any other individual player by only focusing on

the overall impact of the population. This procedure leads

to decentralized strategies for the individual players in a

large but finite population. For this class of game problems,

a closely related approach has recently been independently

developed by Lasry and Lions [19], [20], while for models of

many firm industry dynamics, Weintraub, Benkard, and Van

Roy proposed the notion of oblivious equilibrium by use of

a mean field approximation [24], [25]. For the analysis of

mean field models in the setting of mathematical physics,

see [7], [23]. To see the rich economic backgrounds of

noncooperative games with many players, the reader is

referred to [17], [9], [8], [18] and references therein.

Although mean field models in their usual uniform aggre-

gation form have a broad scope of application [3], [6], [18],

[20], [11], they may be unable to capture structural properties

in certain problems. For instance, in a vaccination mean field

model, each person assesses his or her infection risk and as

a rough approximation may simply refer to the vaccination
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coverage of the overall population [3], [6], but in reality, the

different sub-populations around the respective individuals

may differently impact each person. It is obvious that an

individual’s close friends, colleagues (or classmates) have a

much higher immediate influence than those more distant

in a social and physical sense. A similar situation arises in

economic models. In a crowded business area, a service unit

(such as a retail store, restaurant) and its nearby neighbors

may strongly interact while the level of such interactions

decreases with distance.

It is worthwhile briefly reviewing the extent to which

game theory has dealt with the issue of locality. Blume

[5] considered strategic interactions on lattice models as

motivated by retailing services. Schelling [22] presented a

simple line topology to examine social segregation phenom-

ena when each agent attempts to move to a more favorable

location. Despite the fact they involve very different contexts,

a common feature of the above works is their investigation

of the relationship between microscopic local behavior of

individual agents and the resulting macroscopic phenomena

(also see, e.g., [10], [21], [4]).

Motivated by these problems, we present here a general-

ized mean field version of the Nash Certainty Equivalence

theory of our previous work (see [11], [14], [15], [16], [12])

which now takes into account the possibility of the local

nature of agent interactions. Our approach still relies on

identifying a certain consistency relationship between each

individual and the mass effect but the latter may now be

specific to individual agents.

The organization of the paper is as follows. The individual

dynamics and costs are introduced in Section II where the

uniform aggregate cost coupling [11], [12] is also briefly

reviewed for comparison purposes. Section III presents the

equilibrium analysis for the set of control laws calculated

via the NCE equation system, and we also identify some

novel features for such locality based interactions by showing

an interaction radii collapse effect when the population size

increases in a lattice locality model. In Section IV, we

extend the NCE equation system and the equilibrium analysis

to models with different sub-populations where the cost

involves inter- and intra-group coupling. Finally, Section V

concludes the paper.

II. THE STOCHASTIC DYNAMIC GAME MODEL

In a population of N agents, consider the dynamics for an

individual agent

dzi(t) = (azi(t)+ bui(t))dt + σdWi(t), 1 ≤ i ≤ N, t ≥ 0,
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where b 6= 0 and {Wi,1 ≤ i ≤ N} denotes N independent

standard Wiener processes. The initial states {zi(0),1 ≤
i ≤ N} are mutually independent and also independent of

{Wi,1 ≤ i ≤ N}. In addition, E|zi(0)|2 < ∞. Denote the state

configuration z = (z1, · · · ,zN), and the population average

state z(N) = (1/N)∑N
i=1 zi.

A. The NCE Principle with Mean Field Cost Coupling

We begin by giving a brief review of our previous mod-

eling of cost coupling. The cost function is given as

J0
i = E

∫ ∞

0
e−ρt

{
[zi −Φi(z

(N))]2 + ru2
i

}
(t)dt, (1)

where ρ > 0 is a discount factor, Φi = γ(z(N) + η), z(N) =
(1/n)∑N

i=1 zi, γ > 0, r > 0 and η is a constant. It should

be noted that for this mean field coupling of the uniform

aggregation form, Φi does not distinguish the ordering of

the entries z j, 1 ≤ j ≤ N, within z.

Let Πa > 0 be the solution to the algebraic Riccati

equation:

ρΠ = 2aΠ−
b2

r
Π2 + 1. (2)

Denote

β1 = −a +
b2

r
Πa, β2 = −a +

b2

r
Πa + ρ .

To simplify the aggregation procedure we assume zero

initial mean for all agents, i.e., Ezi(0) = 0, i ≥ 1. Also, we

assume we are in the uniform case where all agents have

the same dynamic parameter a in their dynamics. The NCE

consistency requirement leads to the equation system:

ρsa =
dsa

dt
+ asa −

b2

r
Πasa − z∗, (3)

dz̄a

dt
= (a−

b2

r
Πa)z̄a −

b2

r
sa, (4)

z∗ = γ(z̄a + η), (5)

where z̄a(0) = 0 corresponds to the zero initial mean as-

sumption. See [11], [12], [14] for details on the construction

of this equation system in an LQG context. In fact, the

NCE equation system may take a more general form where

a varies across the population and possesses an empirical

distribution; see [12].

Under some mild assumptions, the equation system (3)-(5)

admits a unique bounded solution (sa(·), z̄a(·)). The function

sa(t) is uniquely determined by its boundedness condition

and it is unnecessary to state the initial condition sa(0)
separately. In fact, z̄a(t) and sa(t) may be given in an explicit

form (see [14]). Let u0
i denote the control law

u0
i = −

b

r
(Πazi + sa), (6)

which may be interpreted as the optimal tracking control

law with respect to z∗ in place of Φi(z
(N)) in (1). It has been

shown that the set of control laws {u0
i , 1 ≤ i ≤ N} results in

an ε-Nash equilibrium where the offset ε → 0 when N → ∞.

The formal definition of an ε-Nash equilibrium will be given

in Section III; also see [2].

B. The NCE Principle with Agent Specific Cost Interactions

We now generalize the basic NCE equation system to

the case of agent specific cost coupling. To this end, we

assign each agent with a “locality” (or “spatial”) index rather

than just use an integer i to label its state variable zi. The

dynamic parameter a and the locality parameter α are

completely independent of one another, and for simplicity,

in the initial case discussed in this paper, explicit mention

of a is suppressed. Note that this locality index may have

different interpretations and is not necessarily restricted to be

a physical location. For instance, it may be used to measure

to what extent the player in question is distanced from other

players, and it may be used in a social interaction context

[1]. We assume agent i within the N agents is assigned the

locality parameter pi.

Let the cost for the ith agent be given by

Ji = E

∫ ∞

0
e−ρt

{
[zi − Φ̃i]

2 + ru2
i

}
dt, (7)

where Φ̃i = γ(∑N
j=1 ω

(N)
pi p j

z j +η) and ρ > 0, γ > 0, r > 0. The

set of weight coefficients ω
(N)
pi p j satisfies the condition

ω
(N)
pi p j ≥ 0, ∀i, j,

N

∑
j=1

ω
(N)
pi p j = 1, ∀i. (8)

For each fixed i, it is seen from (8) that the total weight of

unit is allocated to all the N agents. In order to simplify the

notation, the summation in (8) includes the index i itself.

Whether or not this self-weight is included has no impact on

our asymptotic analysis when N → ∞.

We take a representative agent and let its locality parame-

ter be denoted by α which takes a value from a compact

interval [α,α]. The state process of this agent may be

denoted by zα(t), and we denote its mean trajectory by

zα(t) = Ezα(t), where t ≥ 0. For illustration, suppose agent

i has pi = α; then zi(t) may be identified as zα(t).
For the agent associated with the parameter α (this agent

may be referred to as an α-agent), let its limiting weight

allocation for α ′ ∈ [α,α ] be described by a probability

distribution Fα(α ′) when the number N of agents goes to

infinity. Thus, Fα(α ′) is intended to reflect the following

approximation within a large population:

N

∑
j=1,p j∈[c,c′]

ω
(N)
pi p j ≈

∫

α ′∈[c,c′ ]
dFpi

(α ′),

for any [c,c′] ⊂ [α ,α] such that c,c′ are continuity points of

Fpi
(·). Later on we will specify related conditions.

(A1) Fα(α ′): [α,α ] × R → [0,1] satisfies: i) Fα(·)
is a probability distribution function for each fixed α ,∫

α ′∈[α ,α ] dFα(α ′) = 1; ii)
∫

α ′∈B dFα(α ′) is a measurable

function of α for each Borel subset B of R; iii) Fα ′′(·)
converges to Fα(·) weakly when α ′′ → α , where α and α ′′

are in [α,α ].
(A2) The constant β1 > 0 and (γb2)/(rβ1β2) < 1.
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For the given α-agent, it faces the aggregate effect of other

agents described by

r̄α(t) =

∫

α ′∈[α ,α]
zα ′(t)dFα(α ′),

which is intended to approximate ∑N
j=1 ω

(N)
pi p j z j in the popu-

lation limit.

Now, based on the individual and weighted mass inter-

action consistency relationship, we can derive the following

new Nash Certainty Equivalence (Mean Field) (NCE) equa-

tion system

ρsα =
dsα

dt
+ asα −

b2

r
Πasα −Rα , (9)

dz̄α

dt
= (a−

b2

r
Πa)z̄α −

b2

r
sα , (10)

r̄α(t) =
∫

α ′∈[α ,α ]
zα ′(t)dFα(α ′), (11)

Rα = γ(r̄α + η). (12)

The interesting observation is that when the distribution

function Fα(·) does not change with α , the equation system

(9)-(12) reduces to (3)-(5) with standard mean-field coupling

without differentiation between neighbors. This holds since

in this case r̄α and hence Rα are both independent of α (see

Acknowledgements).

The system (9)-(12) is constructed such that an α-agent

makes optimal tracking of the local mass effect Rα which, in

turn, depends on locality related coupling. Equation (10) is

obtained by taking expectation of the closed-loop equation

of the α-agent. A consistent solution to the NCE equation

system consists of a parameterized triple (sα(·), z̄α (·), r̄α (·))
where α ∈ [α ,α]. Each entry in the triple (sα(·), z̄α (·), r̄α (·))
will be viewed as a function from [α,α ]×R

+ to R.

Let I = [α ,α]. Define the function class: Cb[I ×R
+] =

{ f (α,t)| f ∈C[I ×R
+], | f | , supα ,t | f (α,t)| < ∞}. The two

expressions f (α,t) and fα (t) will be used interchangeably.

For each α , if r̄α is given, we may solve a unique bounded

sα from (9) to obtain:

sα(t) = −eβ2t

∫ ∞

t
e−β2τ Rα(τ)dτ

= −eβ2t

∫ ∞

t
e−β2τ γ(r̄α(τ)+ η)dτ.

We also write r̄α(t) = r̄(α,t). Next,

z̄α ′(t) =
b2

r

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ γ(r̄α ′(τ)+ η)dτds

, (Γ0r̄α ′)(t)

where Γ0 is viewed as an operator acting on bounded

continuous functions on [0,∞). Finally,

(Γr̄)(α,t) ,

∫

α ′
(Γ0r̄α ′)(t)dFα(α ′).

Note that for a general function f (α,t) ∈ Cb[I ×R
+], Γ0 fα

and Γ f are defined in an obvious manner.

In order to solve the NCE equation system (9)-(12), a key

step is to find a fixed point r̄ in a suitable function space for

the operator recursion corresponding to the equation

(Γr̄)(α,t) = r̄(α,t). (13)

Lemma 1: Under (A1), Γ is a mapping from Cb[I ×R
+]

to Cb[I×R
+].

Proof: See appendix.

Theorem 2: Under (A1)-(A2), there exists a unique

bounded solution (sα (·), z̄α (·),rα (·)) to the NCE equation

system (9)-(12).

Proof: By Lemma 1, we see that Γ is a linear operator

from Cb[I ×R
+] to itself, and Cb[I×R

+] is a Banach space

under the norm | f | = supα ,t | f (α,t)|.
We take f1, f2 ∈ Cb[I ×R

+]. By straightforward calcula-

tion, we obtain the estimates

|Γ f1 −Γ f2| ≤
γb2

rβ1β2

| f1 − f2|.

By (A2) it follows that Γ is a contraction. So there is a

unique solution r̄ ∈Cb[I×R
+] satisfying equation (13). Once

the above r̄(= r̄α(t)) is obtained, it is straightforward to

get the other two entries in the triple (sα (t), z̄α(t), r̄α (t)).
Uniqueness of the solution can be easily verified by using

uniqueness of the fixed point to equation (13).

III. THE EQUILIBRIUM ANALYSIS

For equilibrium analysis, we need the assumptions:

(A3) The weight allocation satisfies the condition

εω
N , sup

1≤i≤N

N

∑
j=1

|ω
(N)
pi p j |

2 → 0,

as N → ∞.

(A4) For each pi, the empirical distribution

F
(N)
pi

(x) = ∑
p j<x

ω
(N)
pi p j

, x ∈ R,

is associated with a distribution function Fpi
(x) (specified in

(A1)) such that for any δ > 0, there exists a compact subset

DN
pi

of I = [α ,α] with Lebesgue measure meas(DN
pi
) < δ , and

limN→∞ sup1≤i≤N supx∈I\DN
pi
|F

(N)
pi

(x)−Fpi
(x)| = 0.

Remark: Roughly, the last part of (A4) implies that

|F
(N)
pi (x)− Fpi

(x)| tends to zero with a speed independent

of pi on I excluding a small subset DN
pi

(which may depend

on pi,N). Notice that (A4) is satisfied if ω
(N)
pi p j = 1/N.

Example 1: Let pi, 1 ≤ i ≤ N, denote N locations, con-

secutively and uniformly spaced from left to right, on the

interval [0,1] where p1 = 0 and pN = 1. Take ω
(N)
pi pi = 0 for

each i and

ω
(N)
pi p j

= | j− i|−λ /ci, 1 ≤ i 6= j ≤ N, (14)

where λ ∈ [0,1] and ci = ∑N
j=1, j 6=i | j− i|−λ is the normalizing

factor.

With such a choice of λ in Example 1, (A3) can be

verified by elementary calculations. The mean field model of

the uniform aggregation form corresponds to taking λ = 0
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for which case the weight assignment does not distinguish

locations. If λ = 1, we can also show that (A4) is satisfied

and in this case Fpi
(x) = 1 if x > pi, Fpi

(x) = 0 if x ≤ pi.

We have the key approximation lemma.

Lemma 3: Assume (A4) holds. For any given bounded

and continuous function g(α) on R, we have

lim
N→∞

sup
1≤i≤N

|
∫ ∞

−∞
g(α)dF

(N)
pi

(α)−
∫ ∞

−∞
g(α)dFpi

(α)| = 0.

Proof: See appendix.

A. Discussion on the “Interaction Radii Collapse” Effect

It appears that by use of the simple weight allocation

model (14) some very intriguing phenomena may be shown

to be possible. We fix p1 = 0. By simple calculation we

can see that the associated function Fp1
(as a weak limit)

will have very different nature. When λ = 1, Fp1
is just a

Heaviside function with a unit jump at x = 0. If we go back to

the NCE equation system, it means in the limit model, only

the agents in an infinitesimally small neighborhood matter

for the agent in question. Consequently and surprisingly, we

can retrieve the usual NCE equation. When λ ∈ [0,1), we can

show that Fp1
is a continuous function connecting (0,0) and

(1,1) via its graph. This means the effect of agents in a large

range can be registered by this limit distribution function Fp1

and then utilized in the NCE equation system.

So, λ can be interpreted as some kind of critical parameter.

B. Properties of the NCE Based Control Laws

Within the context of a population of N agents, for

any 1 ≤ k ≤ N, the kth agent’s admissible control set

Uk consists of all feedback controls uk adapted to the

σ -algebra σ(zi(τ),τ ≤ t,1 ≤ i ≤ N) (i.e., uk(t) is a function

of (t,z1(t), · · · ,zN(t))) such that a unique strong solution to

the closed-loop system of the N agents exists on [0,∞). Note

that Uk itself is not restricted to be decentralized. Denote

u−i = (u1, · · · ,ui−1,ui+1, · · · ,uN).
Definition 4: A set of controls uk ∈ Uk,1 ≤ k ≤ N, for N

players is called an ε-Nash equilibrium with respect to the

costs Jk,1 ≤ k ≤ N, where ε ≥ 0, if for any i, 1 ≤ i ≤ N, we

have

Ji(ui,u−i) ≤ Ji(u
′
i,u−i)+ ε,

when any alternative u′i ∈ Ui is applied by the ith player.

Theorem 5: Under (A1)-(A4), given any ε > 0, there

exists Nε such that for all N ≥Nε , the set of control strategies

{ûi,1 ≤ i ≤ N} is an ε-Nash equilibrium where

ûi = −
b

r
(Πazi + spi

)

and spi
is given by (9)-(12) via the substitution α = pi in sα .

Proof: Let z̄α be given by (9)-(12). Denote

R
(N)
pi (t) = γ[

N

∑
j=1

ω
(N)
pi p j z̄p j

(t)+ η ],

∆
(N)
i (t) = γ

N

∑
j=1

ω
(N)
pi p j(z̄p j

− z j).

We first write the individual cost in the form

Ji(ui) = E

∫ ∞

0
e−ρt{[(zi −R

(N)
pi )+ ∆

(N)
j )]2 + ru2

i }(t)dt.

Suppose all the N agents apply the controls ûi, 1 ≤ i ≤ N.

Then it is straightforward to find a constant Ĉ such that

sup
N

sup
1≤i≤N

E

∫ ∞

0
e−ρt(ẑ2

i + û2
i )(t)dt ≤ Ĉ,

and Ji(ûi, û−i) ≤ Ĉ, where we denote the state process

associated with ûi by ẑi and û−i = (û1, · · · , ûi−1, ûi+1, · · · , ûN).
In the below, when we consider alternative strategies for

agent i, we may restrict that ui satisfies

E

∫ ∞

0
e−ρt |zi −Φ(z(N))|2dt ≤ Ĉ, E

∫ ∞

0
e−ρtu2

i dt ≤ Ĉ/r.

(15)

This restriction causes no loss of generality since, otherwise,

ui will generate a cost higher than Ji(ûi, û−i). Based on (15),

we may further show that E
∫ ∞

0 e−ρt |zi|
2dt ≤ Ĉ1 for some

Ĉ1 < ∞ independent of N.

By using (A1) to show that z̄α(t) has equicontinuity in α
(w.r.t. all t), we can apply Lemma 3 to check that

lim
N→∞

sup
pi,t

|R
(N)
pi (t)−Rpi

(t)| = 0. (16)

Also, for all ui satisfying the prior bound (15), we use (A3)

to show the convergence relation

lim
N→∞

sup
ui,t,i

E|∆
(N)
i (t)|2 = 0, (17)

when all other agents’ strategies are given by û−i.

Finally, for ui satisfying (15), by use of (16)-(17) it is

straightforward to show that

Ji(ui, û−i) ≥ Ji(ûi, û−i)− εN (18)

where 0 ≤ εN = o(1). By the choice of Ĉ, we see that (18)

is automatically true when ui does not satisfy (15). This

completes the proof.

IV. COST COUPLING WITH HETEROGENOUS

SUB-POPULATIONS

In this section, we adapt the general cost structure (7)

to model the interaction of agents from K groups within

the population. The locality parameter pi indicates which

group the ith agent belongs to, and the cost interaction for

a pair of agents is determined by either the inter-group or

the intra-group coupling parameters. Suppose there is a finite

set Θ , {θ 1, · · · ,θ K} (of distinct elements) such that each

pi, 1 ≤ i < ∞, takes values from Θ. The coupling weight

assignment will be constructed by using the K ×K matrix

ωΘ = (ωθ iθ j )K×K

which satisfies ωθ iθ j ≥ 0 and ∑K
j=1 ωθ iθ j = 1 for each i.

Denote

N

∑
i=1

1(pi=θ k) = Nk, 1 ≤ k ≤ K.
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If pi = θ k and pi′ = θ k′ , then we define ω
(N)
pi pi′

= ωθ kθ k′/Nk′ ,

which ensures the unit total weight condition

N

∑
j=1

ω
(N)
pi p j

= 1. (19)

(A5) The sequence {pi,1 ≥ 1} has the limit empirical

distribution

lim
N→∞

(1/N)
N

∑
i=1

1(pi=θ k) = πθ k

where θ k ∈ Θ.

The probability vector (πθ 1 , · · · ,πθ K ) shows the relative

frequency of each of the K groups.

Now the NCE equation system takes the form:

ρsθ =
dsθ

dt
+ asθ −

b2

r
Πasθ −Rθ , (20)

dz̄θ

dt
= (a−

b2

r
Πa)z̄θ −

b2

r
sθ , (21)

r̄θ (t) = ∑
θ ′∈Θ

πθ ′ωθθ ′ z̄θ ′(t), (22)

Rθ = γ(r̄θ + η). (23)

where θ ∈ Θ and, again, sθ (t) is restricted to be a bounded

function without the necessity of separately specifying an

initial condition sθ (0).

Theorem 6: If the two conditions (i) ∑θ ′∈Θ πθ ′ωθθ ′ = 1,

(ii) γb2/(rβ1β2) < 1 hold, the equation system (20)-(23) has

a unique bounded solution (sθ k (·), z̄θ k (·), r̄θ k (·)), 1 ≤ k ≤ K.

Proof: The theorem may be proved using a fixed point

argument.

Theorem 7: Under (A5) and the assumptions of Theorem

6, given any ε > 0, there exists Nε such that for all N ≥ Nε ,

the set of control strategies {ûi,1 ≤ i ≤ N} is an ε-Nash

equilibrium where

ûi = −
b

r
(Πazi + spi

)

and spi
is given by (20)-(23) via the substitution θ = pi in

sθ .

Proof: The proof is similar to that of Theorem 5.

V. CONCLUSION

In this paper we generalize our previous Nash Certainty

Equivalence methodology with uniform coupling to models

with locality interactions. We show that under reasonable

decay rates for the interaction strength, a consistency rela-

tionship between individual strategies and local deterministic

mass effects can still be specified, and this procedure leads to

decentralized Nash strategies for the individual players. We

also discuss how the weight allocation in the cost coupling

affects the spatial spreading ability of interactions in the

population limit, and we illustrate a novel interaction radii

collapse phenomenon when the weight decay approaches a

critical rate.

APPENDIX

Proof of Lemma 1. Given fα (t) ∈Cb[I ×R
+], we have

(Γ0 fα)(t) =
b2

r

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ γ( fα (τ)+ η)dτds.

By the boundedness of fα(t), there exists C < ∞ such that

sup
α ,t

|(Γ0 fα )(t)| ≤C sup
α ,t

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ dτds

≤C/(β1β2).

Subsequently,

sup
α ,t

|(Γ f )(α,t)| ≤ sup
α ,t

∫

α ′
|(Γ0 fα ′)(t)|dFα(α ′)

≤C/(β1β2)sup
α ,t

∫

α ′
dFα(α ′)

= C/(β1β2).

Now we prove the continuity of Γ f . We note the relation:

(Γ0 fα )(t) =
b2

r

∫ t

0
e−β1(t−s)eβ2s

∫ ∞

s
e−β2τ γ( fα (τ)+ η)dτds

=
b2γ

r
e−β1t

∫ t

0
eβ1s

∫ ∞

s
e−β2(τ−s) fα (τ)dτds

+
γb2η

rβ1β2

(1− e−β1t).

Define

G0(α,t) =

∫ t

0
eβ1s

∫ ∞

s
e−β2(τ−s) fα (τ)dτds,

G(α,t) =
∫

α ′

∫ t

0
eβ1s

∫ ∞

s
e−β2(τ−s) fα ′(τ)dτdsdFα(α ′).

Now it suffices to show the continuity of G(α,t) with

respect to (α,t). Letting (α,t) be fixed, we pick (α1,t1) in

a neighborhood of (α,t). Then

|G(α1,t1)−G(α,t)| ≤ |G(α1,t1)−G(α1,t)|

+ |G(α1,t)−G(α,t)|.

We have

|G(α1,t1)−G(α1,t)|

≤

∫

α ′

∣∣∣∣
∫ t1

t
eβ1s

∫ ∞

s
e−β2(τ−s) fα ′(τ)dτds

∣∣∣∣dFα1
(α ′)

≤
∫

α ′
C|eβ1t1 − eβ1t |dFα1

(α ′)

=C|eβ1t1 − eβ1t |, (A.1)

where we may take C = (supα ,t | fα (t)|)/(β1β2).
We have

|G(α1,t)−G(α,t)|

≤

∣∣∣∣
∫

α ′
G0(α

′,t)dFα1
(α ′)−

∫

α ′
G0(α

′,t)dFα(α ′)

∣∣∣∣ .

For each fixed t, supα ′ |G(α ′,t)| < ∞ and by elementary

estimates we can show that G0(α
′,t) is a continuous function

of α ′. Hence it follows from (A1) that

lim
α1→α

|G(α1,t)−G(α,t)| = 0. (A.2)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC14.2

5543



Finally, the continuity of G(α,t) follows from (A.1) and

(A.2). The lemma follows.

Proof of Lemma 3: It suffices to prove

sup
1≤i≤N

|

∫ B

A
g(α)dF

(N)
pi

(α)−

∫ B

A
g(α)dFpi

(α)| → 0,

as N → ∞, where −∞ < A < α < α < B < ∞. Then clearly,

after replacing I = [α ,α] by IAB = [A,B], we still have

lim
N→∞

sup
1≤i≤N

sup
x∈IAB\DN

pi

|F
(N)
pi (x)−Fpi

(x)| = 0. (A.3)

Let ε > 0 be any given constant. Since g is bounded and

continuous, it is uniformly continuous on [A,B] and hence

there exists δ > 0 such that |g(x)−g(x′)| ≤ ε if |x−x′| ≤ δ ,

x,x′ ∈ [A,B]. Note that (A.3) holds for appropriately chosen

DN
pi

satisfying meas(DN
pi
) < δ . Let A = x1 < x2 < · · ·< xl+1 =

B be a partition of [A,B] such that each xk is a continuity

point of Fpi
and belongs to IAB\DN

pi
and that max1≤k≤l |xk+1−

xk| ≤ δ . We may ensure l ≤ 2(B−A)/δ .

By straightforward calculation we can show that

∆N ,

∫ B

A
g(α)dF

(N)
pi

(α)−
∫ B

A
g(α)dFpi

(α)

=
l

∑
k=1

{∫ xk+1

xk

[g(α)−g(xk)]dF
(N)
pi (α)

+
∫ xk+1

xk

[g(xk)−g(α)]dFpi
(α)

+ g(xk)[F
(N)
pi (xk+1)−F

(N)
pi (xk)−Fpi

(xk+1)+ Fpi
(xk)]

}
.

Denoting Cg = supx |g(x)|, hence

|∆N | ≤ 2ε +Cg

l

∑
k=1

2|F
(N)
pi (xk)−Fpi

(xk)|.

On the other hand, for the above fixed pair of (ε, l), there

exists Nε,l > 0 depending on (ε, l) such that

sup
1≤i≤N

sup
x∈IAB\DN

pi

|F
(N)
pi (x)−Fpi

(x)| ≤ ε/(2lCg + 1)

when N ≥ Nε,l . Therefore, for all N ≥ Nε,l , we have

|∆N | ≤ 3ε.

By the arbitrariness of ε , the lemma follows.

ACKNOWLEDGEMENTS

We are indebted to Arthur Lazarte for the observation

following equations (9)-(12)

REFERENCES

[1] G. A. Akerlof. Social distance and social decisions. Econometrica,
vol. 65, no. 5, pp. 1005-1027, Sept. 1997.
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