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Abstract— We study the problem of pricing uplink power
in wide-band cognitive radio networks under the objective
of revenue maximization for the service provider and while
ensuring incentive compatibility for the users. User utility is
modeled as a concave function of the signal-to-noise ratio
(SNR) at the base station, and the problem is formulated
as a Stackelberg game. Namely, the service provider imposes
differentiated prices per unit of transmitting power and the
users consequently update their power levels to maximize their
net utilities. We devise a pricing policy and give conditions for
its optimality when all the users are to be accommodated in
the network. We show that there exist infinitely many Nash
equilibrium points that reward the service provider with the
same revenue. The pricing policy charges more from users that
have better channel conditions and more willingness to pay for
the provided service. We then study properties of the optimal
revenue with respect to different parameters in the network.
We show that for regimes with symmetric users who share the
same level of willingness to pay, the optimal revenue is concave
and increasing in the number of users in the network. We
analytically obtain achievable SNRs for this special case, and
finally present a numerical study in support of our results.

I. INTRODUCTION

Given the recent reports on scarcity of available frequency

bands and inefficiency in spectrum utilization [1], the impor-

tance of cognitive radio paradigm has emerged for allocating

valuable wireless resources. Unlike traditional wireless de-

vices, cognitive radio nodes are aware of their capabilities,

environment, and intended use, and can also learn new

waveforms, models, or operational scenarios [2]. See for

example [3] for a comprehensive text on cognitive radio

technology. Such smart characteristics of cognitive nodes

can also help implementing various operational features of

telecommunication networks that have always suffered from

lack of flexibility on the operator and user sides. In this

context, pricing is one important topic that can be revived

by the virtue of cognitive radio technology.

Pricing for telecommunication networks has been em-

braced in the literature as an effective tool for creating poli-

cies to share network resources. Efficient pricing techniques

not only increase the performance, but also improve network

utilization in light of the rapid growth and variety of network

demand. Objectives for pricing communication networks
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have varied in the literature between social welfare maxi-

mization [4], [5], fairness guarantees [6], [7], and revenue

maximization [8], [9]. In this context, non-cooperative game

theory has proved useful, especially for modeling selfish

behavior of network users and introducing utility based

pricing techniques. See [10] for a good survey on applying

game theory principles on resource allocation problems in

communication networks.

We consider a revenue maximization version of the pricing

problem with focus on systems that apply spread spectrum

technology in the physical layer. Similar systems appear in

wireless networks that employ CDMA as the spectrum access

mechanism. The problem involves a service provider that ac-

commodates cognitive radio users transmitting on the uplink

channels. User utility is modeled as a concave function of the

SNR. The user is charged per unit of transmitting power and

therefore adapts its power level to maximize the difference

between its utility and the cost. The net utility depends on the

price imposed by the service provider and the power levels

exercised by the other users. We study the problem from

the perspective of the service provider under the objective of

maximizing revenue from the network.

We formulate the problem as a Stackelberg game. Namely,

we use a leader-follower game formulation where the service

provider (leader) imposes differentiated prices per unit of

transmitting power on the different users in the network.

Consequently, the users (followers) update their power levels

to maximize their net utilities. The Stackelberg game pro-

vides incentive compatibility for the users while maximizing

revenue for the service provider. We devise a pricing policy

for accommodating all the users in the network and give

optimality conditions. The pricing policy suggests charging

the users proportional to their uplink channel conditions

and willingness to pay for the provided service. We show

that participation of all the users in the game is subject

to having a large enough spreading factor for the wide-

band network. We show properties of the optimal revenue

for the service provider with respect to different parameters

in the network. We then study the case where the users

have identical appreciation for their utilities and analytically

obtain achievable SNRs for the suggested pricing policy.

A. Related Work

Designing revenue-maximizing network policies based on

user-follower game modeling has got considerable attention

in the literature. For example, an Internet packet-pricing

scheme is devised in [9] for monopolistic service providers

with large number of users. Notions like differentiated pric-
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ing and incomplete game information are introduced to the

problem and studied in [11] and [12]. The authors consider

utility functions for the users to be concave in the flow rates

exercised. In addition to the amount charged by the service

provider, the user bears an additional cost of delay due to

congestion on the links. In our power pricing problem there

is no congestion cost to be considered as in classical Internet

flow control problems. Moreover, we consider user utility to

be a function of the SNR which, unlike flow rate in the cited

works, it admits an explicit formula in terms of the actions

(power levels) of the other users in the network. This form

of the utility functions proved to be insightful for an optimal

pricing policy as will be shown later.

Pricing for revenue maximization in wireless networks has

been studied jointly with power control. For example, in [13]

the authors adopt a utility function in terms of the ratio of

throughput to transmitting power. The authors assume that

users are charged the same price for unit throughput, and

give an approximate form of the revenue-maximizing price.

User utility function is taken to be quasi-concave when the

bit error rate decays exponentially in the SNR.

This work can be considered as an extension to [14]. While

we adopt somehow similar power control game for the users,

the game in [14] is solved for arbitrary prices set by the

service provider. In this work, we give the problem another

dimension by considering revenue-maximizing prices in a

Stackelberg formulation.

B. Paper Organization

The rest of the paper is organized as follows: In Section II

we define the revenue for the service provider and the utility

functions of the users, give the problem setup, and formulate

the Stackelberg game. In Sections III and IV we analyze

the game and devise an optimal pricing strategy for the

problem along with the rest of the results. Numerical results

that support our analysis are given in Section V. Finally,

conclusions and remarks for future work are provided in

Section VI.

II. PROBLEM SETUP

Consider a wide-band wireless network that employs

CDMA as the spectrum access mechanism and has N cog-

nitive radio nodes numbered 1, · · · ,N. The service provider

charges the ith user the amount λi per unit of transmitting

power on the uplink channel. Namely, if the transmitting

power of user i is pi, then the amount charged is λi pi. The

total revenue for the service provider is then given by

R(λλλ , ppp) =
N

∑
i=1

λi pi, (1)

where λλλ = (λ1,λ2, · · · ,λN) and ppp = (p1, p2, · · · , pN).
The SNR at the base station for the ith user can be

represented by the formula

γi(ppp) =
Lpihi

∑N
k=1,k 6=i pkhk +σ2

, (2)

where

L: the spreading gain of the CDMA network, L > 1.

hk: the uplink channel gain of the kth user, 0 < hk < 1.

σ2: the ambient noise in the network.

We consider user utility to be logarithmic, hence concave,

in its SNR. In particular, by accounting for the amount

charged by the service provider, the net utility for the ith

user is given by

Ui(ppp,λi) = αilog(1+ γi(ppp))−λi pi, (3)

where the constant αi > 0 is a factor that converts utility

units to currency. Therefore, the higher αi is the more the

user is willing to pay for a unit utility.

The problem involves a non-cooperative setup where each

user in the network is interested in maximizing its net utility.

In specific, for a given price λi, and a vector of power

levels of all users except the ith user, denoted by ppp−i, user i

objective is to find p∗i that solves the following problem:

max
pi≥0

Ui(pi, ppp−i,λi). (4)

Now consider the problem of the service provider for max-

imizing revenue characterized by (1). The service provider

aims to impose optimal prices on the users given their selfish

behavior as represented by (4). The problem in this context

can be considered from a game theoretical perspective and

formulated as a Stackelberg game. We study a leader-

follower game where the service provider, the leader in this

case, sets the prices, and consequently the users, or followers,

update their power levels in accordance with their own

preferences or utilities. The objective of the service provider

is to find λλλ ∗ = (λ ∗
1 ,λ ∗

2 , · · · ,λ ∗
N) that solves the problem

max
λλλ>0

R(λλλ , ppp∗(λλλ )), (5)

where ppp∗(λλλ ) = (p∗1(λλλ ), p∗2(λλλ ), · · · , p∗N(λλλ )) such that p∗i (λλλ )
is a solution for the ith user’s problem (4) for a given vector

λλλ .

In pursuing a solution for the Stackelberg game, our objec-

tive is to find Nash Equilibrium (NE) point(s) where neither

the service provider nor any of the users have incentive to

deviate unilaterally from that point. We formally state the

following NE definition:

Definition 1: (Nash Equilibrium) Let λλλ ∗
be a solution for

the service provider’s problem (5) and p∗i be a solution for

the ith user’s problem (4). Then the point (λλλ ∗
, ppp∗) is a NE

for the Stackelberg game if for any (λλλ , ppp):

Ui(p∗i , ppp∗−i,λλλ
∗) ≥ Ui(pi, ppp∗−i,λλλ

∗) ∀i, and

R(λλλ ∗
, ppp∗) ≥ R(λλλ , ppp∗).

III. ANALYTICAL FRAMEWORK

We base our analysis on networks that have high SNR

so that ambient noise is sufficiently small and can be

neglected; i.e. σ2 ≃ 0. A pricing policy in this case has an

appealing form and gives additional insight. Also to avoid

any trivialities from dividing by 0 in (2) we assume N ≥ 2.
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In order to solve for the Stackelberg game we use a

backward induction technique. We start with the game of

the users and derive the best response for each user as a

function of the price set by the service provider and the

power levels exercised by the other users in the network.

Namely, for a given λi and ppp−i, the first and second order

optimality conditions of the ith user’s problem (4) suggest

the following best response:

Φi(λi, ppp−i) =







1
hi

[

αihi

λi
− y−i

L

]

if 0 <
1
hi

[

αihi

λi
− y−i

L

]

0 if 1
hi

[

αihi

λi
− y−i

L

]

≤ 0,
(6)

where y−i = ∑N
k=1,k 6=i pkhk for all i. Notice that the second

choice is due to the non-negativity constraint on the trans-

mitting power in (4).

We state the following proposition by adopting the results

in [14]:

Proposition 1 (Unique NE for the users’ game): The

power game of the users admits a unique NE for any

vector of prices λλλ > 0 assigned by the service provider. In

particular, index the users such that if αihi

λi
<

α jh j

λ j
, then i > j

with the ordering to be picked arbitrarily if αihi

λi
=

α jh j

λ j
. Let

M̂(λλλ ) be the largest integer M ≤ N for which the following

condition is satisfied

αMhM

λM

>
1

L+M−1

M

∑
j=1

α jh j

λ j

. (7)

The game admits a unique NE which has the property that

users M̂(λλλ )+1, · · · ,N have zero power levels, i.e. p∗j(λλλ ) = 0

for j ≥ M̂(λλλ )+1. The equilibrium power levels of the first

M̂(λλλ ) users are positive and obtained uniquely by

p∗i (λλλ ) =
L

L−1

(

αi

λi

− 1

hi(L+ M̂(λλλ )−1)

M̂(λλλ )

∑
j=1

α jh j

λ j

)

, (8)

for i = 1, · · · ,M̂(λλλ ).
Notice that it is always the case that M̂(λλλ )≥ 1 since at least

one user should pass condition (7).

Formula (6) suggests that, besides the price, the best

response of any user depends on the actions of the other users

in the network. As suggested by [14], some discrete time

iterative update algorithms converge to the NE point. For

example, an algorithm where all the users update their power

levels with probability 1 in each time slot can be shown

to converge provided that condition N−1
L

< 1 is satisfied.

In computing the best response, the user does not need to

communicate with any peer in the network. The quantity
∑N

k=1,k 6=i
pkhk

L
can be computed at the base station and provided

to user i along with the price value λi. Therefore, assuming

the quantity L to be of common knowledge, the user has all

the information required to compute its best response in a

decentralized fashion.

So far we have the NE point for the game of the users as

a function of the imposed price vector λλλ , as given by (8).

We are striving to find an optimal price vector λλλ ∗
that solves

the problem of the service provider (5). In other words, for

a given λλλ , M̂(λλλ ) users satisfy condition (7), and therefore

have positive power levels given by (8). The revenue for the

service provider (1) can then be given by the formula

R(λλλ , ppp∗(λλλ )) =

L

L−1

M̂(λλλ )

∑
i=1

(

αi −
1

(L+ M̂(λλλ )−1)

λi

hi

M̂(λλλ )

∑
j=1

α jh j

λ j

)

. (9)

Definition 2: Let (ppp∗,λλλ ∗) be a NE point for the Stackel-

berg game. Then the point is inner if p∗i > 0 and λ ∗
i > 0 for

all i = 1, · · · ,N. Otherwise it is a boundary point.

In the following theorem we state our main result for a

pricing policy for inner NE points:

Theorem 1 (Optimal Prices for Inner NE Points):

Consider the Stackelberg game with N followers. Let the

indexing of the users be done such that
√

αi <
√

α j =⇒ i > j,

with the ordering to be picked arbitrarily if
√

αi =
√

α j. If

the following condition is satisfied for all M ∈ {1, · · · ,N}
√

αM >
1

L+M−1

M

∑
j=1

√
α j, (10)

then the Stackelberg game admits an infinite number of inner

NE points (λλλ ∗
, ppp∗) such that

λ ∗
i

hi
√

αi

=
λ ∗

j

h j
√

α j

, ∀i, j = 1, · · · ,N, (11)

and

p∗i =
L

(L−1)

1

λ ∗
i

(

αi −
√

αi

(L+N −1)

N

∑
j=1

√
α j

)

. (12)

Proof: The proof of the theorem is deferred to the

Appendix.

The theorem characterizes optimal pricing for accom-

modating all the users in the network and shows that

condition (10) is a sufficient condition. The formula of

optimal prices (11) has an interesting proportional structure.

It suggests charging more the users that have better channel

conditions, i.e. higher h’s, and who are more willing to pay

for their utilities, i.e. higher α’s.

Notice that if L is large enough, then condition (10) is

satisfied for all M ∈ {1, · · · ,N}. Intuitively, by the formula

of the SNR given by (2), the higher the spreading gain L is,

the better the SNR for the user and the lesser the external

effect due to the other users in the network. This way there

will be more incentive for the users to have non-zero power

levels.

It can be shown by substituting optimal prices from (11)

in the revenue formula (9) that the revenue at any inner NE

point is fixed and given by

R(λλλ ∗
, ppp∗(λλλ ∗)) =

L

L−1

N

∑
i=1

(

αi −
√

αi

(L+N −1)

N

∑
j=1

√
α j

)

. (13)

Moreover, SNR values that are achieved at the base station

are independent of the price. In particular, by using (8) in (2)

γ̂i =
L
(√

αi − 1
(L+N−1) ∑N

j=1

√
α j

)

∑N
k=1,k 6=i

(√
αk − 1

(L+N−1) ∑N
j=1

√
α j

) . (14)
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The utilities for the users are also independent of the assigned

optimal price and can be directly computed by the previous

formula and equation (12).

Theorem 2: If condition (10) is satisfied for all M ∈
{1, · · · ,N}, then the revenue from any boundary point is

always less than the revenue from inner NE points, that is,

prices that give a boundary point are less profitable than

prices that satisfy (11).

Proof: The proof of the theorem is omitted due to space

constraints and is given in [15]

IV. SYMMETRIC USERS CASE

In the case when condition (10) is not satisfied for all

the users, optimality of prices in (11) is not guaranteed by

Theorem 1. However, such problem requires more rigorous

analysis and can be considered for an extended version of

this paper.

In fact, it has been discussed in the previous section that

for networks with large enough spreading factor L, condi-

tion (10) is always satisfied. The condition is also satisfied

when all the users are symmetric in the sense that they have

the same willingness to pay factor. In this case any solution

for the Stackelberg game must be inner by Theorem 1.

Besides being insightful, such cases are interesting since they

arise in situations when cognitive radio users target specific

applications offered by the wireless network, like the case

for services offered by Mobile Virtual Network Operators

MVNOs.

To shed light on some features of the symmetric users

case, let αi = α j = α ∀i, j = 1, · · · ,N. By Theorem 1 optimal

prices satisfy

λ ∗
i

hi

=
λ ∗

j

h j

, ∀i, j = 1, · · · ,N.

It can be also shown that optimal power levels exercised by

the users satisfy the following criteria

hi p
∗
i = h j p

∗
j , i, j = 1, · · · ,N. (15)

The optimal revenue for the service provider can be written

in the following form using (13):

R(λλλ ∗
, ppp∗(λλλ ∗)) =

αNL

L+N −1
.

Now define the mapping ρ(·) : R 7→ R as

ρ(N) =
αNL

L+N −1
. (16)

It is not hard to see that the mapping (16) is increasing and

concave in the number of users N. Moreover

lim
N−→∞

ρ(N) = αL.

The limit gives an upper bound on the revenue for the

service provider. It shows that the more users the network

accommodates, the better revenue the service provider gains

up to a multiplicative value of the spreading gain L.

For the SNR that can be achieved in the symmetric users

case, it can be shown from (14) to be

γ̂i =
L

N −1
, i = 1, · · · ,N. (17)

Now, if γmin is taken to be the minimum acceptable SNR

at the base station, then it follows that N should be chosen

such that

N ≤ L

γmin

+1.

The form gives an upper bound on the number of users that

can be accommodated by the network to guarantee a certain

threshold for the SNR.

V. NUMERICAL RESULTS

In this section we numerically verify the results in The-

orem 1. For the sake of clarity of demonstration in the

subsequent figures, we study a simple network with two

users; N = 2. In this case the revenue for the service provider

when the two users have positive power levels can be written

using formula (9) as follows

R(λλλ , ppp∗(λλλ )) =

L

L2 −1

(

Lα1 +Lα2 −
(

λ1

h1

α2h2

λ2
+

λ2

h2

α1h1

λ1

))

.

We first consider the symmetric users case where α1 = α2.

We assume the gain of the channel for the first user to be

twice that for the second user; i.e. h1 = 2h2. Theorem 1

suggests that an inner NE point can be achieved by charging

the first user; i.e. the user with higher channel gain, double

what the second user is charged. Namely, by (11) optimal

prices satisfy the following line equation

λ ∗
1 = 2λ ∗

2 . (18)

For each value (λ1,λ2) we test condition (7) for users 1 and

2. A user that passes the condition has positive power level

given by (8) and 0 otherwise. The revenue for the service

provider is directly computed by substitution in (1).

Figure 1(a) shows the revenue for the service provider

for different prices imposed on the users. We use unit price

increments up to 50 units. The values are computed for the

following parameters: L = 10, α1 = α2 = 4.0, h1 = 0.5, and

h2 = 0.25. The flat surface in the figure corresponds to price

values where only one user passes condition (7), and the

revenue in this case is fixed regardless of which user passes

the test. The maximum revenue value is 7.27 and is obtained

by exhaustive search on the computed values. It is verified to

be achieved by prices that satisfy optimal price formula (18).

In another example we consider the other case where the

users have the same channel gain but different willingness to

pay factors. We adopt the case where α1 = 4α2. We use the

parameters L = 10, h1 = h2 = 0.5, α1 = 16, and α2 = 4. The

two users in this case pass condition (10), and therefore the

optimal policy suggests charging the users according to (18).

In Figure 1(b) we show the revenue for the service provider

for different price values. The optimal revenue value is 18.59

and it is similarly verified to be achieved by prices that satisfy

the form (18).
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Fig. 1. revenue for the service provider for different prices in the setup given in Section V for the following cases a) Users with similar willingness to
pay factors α1 = α2 = 4.0, but different channel gains: h1 = 0.5 and h2 = 0.25. b) Users with similar channel gains h1 = h2 = 0.5, but different willingness
to pay factors: α1 = 16 and α2 = 4. In both cases optimal revenue values are achieved by prices that satisfy (18).

VI. CONCLUSIONS AND FUTURE WORK

We have studied pricing uplink power in wide-band cog-

nitive radio networks for revenue maximization. We have

formulated the problem as a Stackelberg game and presented

an optimal pricing policy for inner NE points. The formula

of optimal prices reveals that users with better channel con-

ditions and more willingness to pay should be charged more.

We have also studied properties for the optimal revenue and

shown that for the case when users have the same willingness

to pay the revenue is increasing and concave in the number

of users in the network. Since this might lead to unacceptably

small SNR values, we have also given an upper bound on

the number of users that can be accommodated so that a

minimum SNR is guaranteed.

Our future work involves investigating the problem when

condition (10), which classifies users based on their will-

ingness to pay for the service, is not necessarily satisfied.

Optimality of prices in (11) is then not guaranteed, and a

solution of the problem in this case hedges on more rigorous

mathematical analysis.

APPENDIX

In this section we give a proof of Theorem 1.

Proof: Consider the objective revenue function (9) for

any given vector λλλ such that M̂(λλλ ) = N. First we show that a

vector λλλ ∗
that satisfies (11) is a maximizer for the function.

In particular, take the first order derivative with respect to

λi, i = 1, · · · ,N

∂R(λλλ , ppp∗(λλλ ))

∂λi

=

−1

(L+N −1)

(

1

hi

N

∑
j=1, j 6=i

α jh j

λ j

− αihi

λ 2
i

N

∑
k=1,k 6=i

λk

hk

)

.

The first order optimality condition; i.e.
∂R(λλλ ,ppp∗(λλλ ))

∂λi
= 0, ∀i

suggests then

αih
2
i

λ 2
i

=
∑N

j=1, j 6=i

α jh j

λ j

∑N
k=1,k 6=i

λk
hk

, i = 1, · · · ,N. (19)

The previous system of equations admits an infinite number

of solutions characterized by (11). To show this, notice that

for any user i = 1, · · · ,N the expression ∑N
j=1, j 6=i

α jh j

λ j
can be

written in the equivalent form

N

∑
j=1, j 6=i

α jh j

λ j

=
∑N

j=1, j 6=i α jh j

(

∏N
l=1,l 6=i, j λl

)

∏N
m=1,m6=i λm

.

Therefore equations (19) become

αih
2
i

λ 2
i

=
∑N

j=1, j 6=i α jh j

(

∏N
l=1,l 6=i, j λl

)

∑N
k=1,k 6=i

λ 2
k

hk

(

∏N
m=1,m6=i,k λm

) .

Simple manipulations then lead to

λ 2
i

αih
2
i

N

∑
j=1, j 6=i

α jh j

(

N

∏
l=1,l 6=i, j

λl

)

−
N

∑
k=1,k 6=i

λ 2
k

hk

(

N

∏
m=1,m6=i,k

λm

)

= 0.

Summing up terms with the same indices and taking the

product as a common factor result in

N

∑
j=1, j 6=i

(

N

∏
l=1,l 6=i, j

λl

)(

λ 2
i

αih
2
i

α jh j −
λ 2

j

h j

)

= 0.

Now taking α jh j as a common factor in the second set of

parenthesis results in

N

∑
j=1, j 6=i

α jh j

(

N

∏
l=1,l 6=i, j

λl

)(

λ 2
i

αih
2
i

−
λ 2

j

α jh
2
j

)

= 0. (20)

Notice that α jh j

(

∏N
l=1,l 6=i, j λl

)

> 0 ∀i, j by the problem def-

inition. Therefore, unless λλλ ∗
is chosen such that relation (11)

is satisfied, the set of equations (20) cannot be satisfied.
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To test the second order optimality condition, consider the

N ×N Hessian matrix given by

HHH(λλλ ) =











∂ 2R(λλλ ,ppp∗(λλλ ))

∂λ 2
1

· · · ∂ 2R(λλλ ,ppp∗(λλλ ))
∂λ1∂λN

...
. . .

...
∂ 2R(λλλ ,ppp∗(λλλ ))

∂λN ∂λ1
. . .

∂ 2R(λλλ ,ppp∗(λλλ ))

∂λ 2
N











,

where

∂ 2R(λλλ , ppp∗(λλλ ))

∂λ 2
i

=
−1

(L+N −1)

(

2αihi

λ 3
i

N

∑
k=1,k 6=i

λk

hk

)

and

∂ 2R(λλλ , ppp∗(λλλ ))

∂λi∂λ j

=
1

(L+N −1)

(

α jh j

hiλ
2
j

+
αihi

h jλ
2
i

)

,

for i, j = 1, · · · ,N. Take also an arbitrary vector xxx =
(x1,x2, · · · ,xN) 6= 0 and notice that

xxxHHH(λλλ ∗)xxxT =
−1

(L+N −1)

(

N

∑
i=1

x2
i

(

2αihi

λ ∗3

i

N

∑
k=1,k 6=i

λ ∗
k

hk

)

−
N

∑
i=1

xi

N

∑
j=1, j 6=i

x j

(

αihi

h jλ ∗2

i

+
α jh j

hiλ ∗2

j

))

.

But λλλ ∗
satisfies (11). Therefore, the equality can be written

as

xxxHHH(λλλ ∗)xxxT =
−2

(L+N −1)
×

(

N

∑
i=1

x2
i

λ ∗2

i

N

∑
k=1,k 6=i

√
αiαk −

N

∑
i=1

xiαihi

λ ∗2

i

N

∑
j=1, j 6=i

x j

h j

)

.

By simple manipulations the equality can be further taken to

xxxHHH(λλλ ∗)xxxT

=
−2

(L+N −1)

N

∑
i=1

1

λ ∗2

i

(

x2
i

N

∑
k=1,k 6=i

√
αiαk − xiαihi

N

∑
j=1, j 6=i

x j

h j

)

=
−2

(L+N −1)

N

∑
i=1

N

∑
j=1, j 6=i

1

λ ∗2

i

(

x2
i

√
αiα j − xiαihi

x j

h j

)

=
−2

(L+N −1)

N

∑
i, j=1
i 6= j

(

x2
i

√
αiα j

λ ∗2

i

− xiαihi

λ ∗2

i

x j

h j

+
x2

j

√
α jαi

λ ∗2

j

−x jα jh j

λ ∗2

j

xi

hi

)

.

Now using (11) to write λ ∗
j in terms of λ ∗

i we get

xxxHHH(λλλ ∗)xxxT =
−2

(L+N −1)
×

N

∑
i, j=1
i 6= j

1

λ ∗2

i



x2
i

√
αiα j −2xix jαi

hi

h j

+ x2
j

(

hi

h j

)2 α
3
2

i

α
1
2
j



 .

The previous equality can be finally written in the following

form

xxxHHH(λλλ ∗)xxxT =
−2

(L+N −1)

N

∑
i, j=1
i 6= j

1

λ ∗2

i



xi (αiα j)
1
4 − x jhiα

3
4

i

h jα
1
4
j





2

.

Notice that

xxxHHH(λλλ ∗)xxxT

{

= 0 if xxx satisfies (11)

< 0 otherwise.

In fact, all the vectors that satisfy (11) follow a continuous

line, where for a given λλλ ∗
, any vector can be represented

by cλλλ ∗
such that c is a scalar > 0. They all give in the

same objective value; i.e. R(λλλ ∗
, ppp∗(λλλ ∗)) = R(cλλλ ∗

, ppp∗(cλλλ ∗)),
as given later in the text by (13).

Finally, if condition (10) is satisfied for all M ∈{1, · · · ,N},

then for a given λλλ ∗
condition (7) is satisfied for all M and

the solution (ppp∗,λλλ ∗) is inner. Finally, ppp∗ as given by (12)

follows by direct substitution in (8).
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