
Congestion control for small queues:

analysis and evaluation of a new protocol

Niels Möller Karl Henrik Johansson

Abstract— A new congestion control protocol is presented,
analyzed and experimentally evaluated. It consists of the stan-
dard inner-loop ACK-clock and a novel outer-loop adjusting the
window size based on congestion signaling from the network.
The aim of the new protocol is to maintain the efficiency
and fairness properties of TCP, but with significantly smaller
bottleneck queues and thereby it takes the sharing with real-
time traffic into account. Stability properties of the protocol
is proved using a recent fluid-flow traffic model. Experimental
comparisons with New Reno and Vegas illustrate the advan-
tages of the new protocol with respect to throughput, delay,
utilization, and fairness.

I. INTRODUCTION

To a first approximation, Internet traffic can be divided

into two types: TCP traffic and real-time traffic. The TCP

traffic includes services such as web-browsing and peer-to-

peer file sharing, and it is dominating the current Internet.

In a recent study of the traffic mix in Deutsche Telekom’s

ADSL network [1], more than 90% of the traffic was using

TCP, and a significant proportion thereof was peer-to-peer

file-sharing. Real-time traffic includes services such as voice

over IP and online gaming. The quality of real time services

degrade severely if they share a bottleneck link with TCP

traffic, which is based on additive–increase multiplicative–

decrease (AIMD), since TCP makes the queues grow and

thereby causes a queuing delay on the order of 200 ms.

The main objectives of congestion control are to avoid

network overload, ensure that bottlenecks are fully utilized,

share resources between flows in a fair manner, and react to

changes in network load as well as in the network topology.

TCP New Reno usually achieves these objectives, with some

well-known utilization problems for network paths with

very large capacity or delay, and for wireless links that

are characterized by a significant packet loss probability

unrelated to congestion, or highly variable delay. To the

list of objectives, we add in this paper the requirement that

queuing delays should be kept small at all links, including

bottlenecks. TCP New Reno does not attempt to minimize

the queue size. Bottleneck routers will drop packets due to

overflow of the router buffer. Furthermore, the buffer size

is usually large, the old rule of thumb for buffer sizing

corresponds to a queuing delay on the order of 200 ms when

the buffer is close to full [2].

This work was supported by the Swedish Research Council and the
Swedish Strategic Research Foundation.

N. Möller and K. H. Johansson are with the ACCESS Linnaeus Centre,
School of Electrical Engineering, Royal Institute of Technology, SE-100 44
Stockholm, Sweden. {niels|kallej}@ee.kth.se

Window

control

w(t)
+

seqno. Packet

transm.

r(t)
Internet

ACK

ACK seqno.

Congestion mark bit

Fig. 1. Control structure for the congestion control protocol. The window
size w(t)is a control signal which determines the difference between the
sequence numbers of transmitted packets (seqno.) and the sequence numbers
in received ACKs (ACK seqno.), i.e., the amount of in-flight data. The
sending rate r(t) is determined indirectly via the ACK-clock inner-loop.

The main contribution of this paper is a new congestion

control mechanism that takes the sharing with real-time traf-

fic into account. We aim for much smaller queues than TCP,

resulting in smaller queuing delays and delay fluctuations. In

addition, we are able to almost eliminate packet losses due

to congestion. We describe the effect that real-time cross

traffic has on the queuing dynamics, and take this effect

into account when analyzing the stability of the congestion

control mechanism.

A simple approach to reducing queuing delay is to reduce

the buffer size by one or a few orders of magnitude,

compared to the old rule of thumb [3], [4]. Small buffers

may however lead to lead to high packet loss rates and high

variability in TCP throughput [5]. Another, more sophisti-

cated, approach is to use AQM, where RED is the most widely

implemented scheme. Good tuning of the parameters of AQM

schemes, and RED in particular, is challenging [6], [7]. Both

these approaches work best when there are a large number

of TCP flows sharing the bottleneck, and they are less useful

when there are only one or a couple of flows, e.g., in a

scenario where two users share an ADSL line.

The protocol proposed in this paper uses the cascaded

control structure shown in Fig. 1. The signaling structure is

the same as when using AQM together with ECN [8]. With the

standard ECN mechanism, sources are required to treat the

arrival of a congestion mark in the same way as a packet loss,

and react by halving the window size. The new protocol uses

a softer, additive, update to the window size in response to a

congestion mark. Using a feedback signal from the network

that is added to the source’s window size is similar in spirit

to XCP [9], although we use much lighter signaling.

The new protocol is also related to delay-based congestion

control, in particular TCP Vegas [10], in that small queue

sizes are a design objective. However, delay feedback is used

only in the inner-loop, i.e., the ACK-clock, while the outer-

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuC06.4

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 1416

loop adjusts the window size based on explicit feedback

from the network. So in the cascaded control structure, the

two loops use different feedback signals. Another important

difference is that the new protocol has a per-link tuning knob.

If a particular link needs a higher average queue size, e.g.,

due to a traffic mix with larger fluctuations in the arrival

rate, or a time varying capacity, the average queue size can

be increased by local tuning.

A cascaded control structure is also used in [11]: The con-

troller adjusts the window size, and then the corresponding

sending rates and queue sizes are determined by the window

sizes. The novelty in this paper is that we take into account

the dynamic properties of the relationship between window

sizes and queue sizes. The control structure is similar also

to that in primal-dual congestion control schemes, although

our approach is window-based rather than rate-based. One

important difference is that we have two different signals

that are fed back from the network to the sources: delay

and congestion indication. For this reason, the protocol

does not fit easily into the utility maximization framework.

This problem is shared with the family of loss-delay based

congestion control protocols [12]–[14].

The outline of the paper is as follows. Section II describes

the new protocol. A fluid-flow model for the protocol in a

single bottleneck scenario is developed in Section III. It is

showed in Section IV that the closed-loop model is well-

posed and that it has a unique asymptotically stable equi-

librium. Fairness is also discussed. Experimental evaluation

through ns2 simulations is presented in Section V, where

the performance of the new protocol is compared with TCP

New Reno and TCP Vegas. Section VI gives the conclusions

and some further work.

II. PROTOCOL DESIGN

We are looking for a new congestion control mechanism,

which addresses the main shortcoming of TCP, i.e., the large

queuing delays at bottlenecks. We intend to have no packet

losses in normal operation, and instead rely on congestion

feedback generated by the network. The proposed scheme

is structurally very similar to standard TCP/AQM, with some

subtle but crucial differences in the handling at both end

hosts and routers.

The new protocol is window-based. The ACK-clock is

a simple and efficient per-packet rule which controls the

sending rate. Since this inner-loop is stable, for arbitrary

propagation delay in the network [15], [16], we keep the

ACK-clock inner-loop, and just modify the window control.

This gives the cascaded control structure in Fig. 1.

The proposed protocol is fairly simple. For each received

ACK, ∆w is added to the current window size, where ∆w
depends on the congestion mark bit in that ACK:

∆w :=

m2

w
if congestion bit clear

m2

w
− m if congestion bit set

where m is the packet size. Each router sets the congestion

mark bit of forwarded packets stochastically with probability

p(t) =
q(t)

q(t) + q0
(1)

where q(t) is the queue size and q0 a design parameter. In

the following we describe the motivation for the additive

increase, additive decrease, and congestion feedback in some

more detail.

A. Additive increase

The lack of feedback in the absence of congestion, and the

desire to have efficient utilization of resources, requires some

mechanism that increases the sending rates in the absence of

congestion. This growth rate is going to be one of the system

parameters, and for stability reasons, it makes sense to scale

it down with the RTT. Hence, we keep the additive increase

part of TCP in our new protocol: in the absence of congestion,

increase the window size by m bytes per RTT.

With the flow analogy in mind, additive increase can be

thought of as a pressure applied by the sources, which forces

more fluid into the system, filling up the pipes, and when

the pipes are full, the pressure causes queues to grow. For

an effective congestion control, we must design a way for

the queues to impose a back-pressure on the fluid.

B. Additive decrease

With the multiplicative decrease mechanism of TCP New

Reno, feedback is a relatively rare event, and the response

to each feedback event is strong.

The long interval between feedback events is a conse-

quence of the AIMD mechanism, and the average interval is

long also when using AQM and ECN in routers. We aim for

more frequent signalling in the new protocol, with an average

of one feedback event per RTT. To get there, we need a softer

response to each event: For each received ACK carrying a

congestion indication, the window size is decreased by one

packet. With this rule, senders will no longer operate in open-

loop for long time periods.

Under the one-packet decrease rule, when a router decides

to set a mark bit, the effect is that one packet less will be

arriving an RTT later. For comparison, with multiplicative

decrease, the corresponding flow will halve its window. Since

the window size is unknown, in this case both the timing

and the magnitude of the effect is unknown. With the one-

packet decrease rule, only the RTT is uncertain. This makes

the system more predictable, from a router’s point of view.

For this reason, we expect that using additive decrease will

make it easier to design a protocol that is robust.

C. Congestion feedback

The amount of signalling that can be sent from the network

to the sources is limited. We will assume that we have one

bit of information in the packet header, analogous to the

standardized ECN bits. The difference to ECN is that the

response we are defining for the sender is different, and also

the rules for setting the bit are different.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC06.4

1417

One consequence of feedback based on packet marking is

that the congestion signal generated by a bottleneck, i.e.,

the mark probability p, is distributed to flows using that

bottleneck in proportion to the rate of each flow. For loss-

based congestion control, such as TCP New Reno, the signal

loss rate per unit time has the same property. We use the

marking probability Eq. (1). We let the marking probability

be determined by the instantaneous queue size, since that is

the state variable we want to control. The queue dynamics

provides about the right amount of low-pass filtering of the

arrival rate: The queue absorbs small fluctuations, and only if

a disturbance is large enough to result in a significant change

in the queue size, it is relevant for congestion control.

We have one design parameter, q0. We will see that q0

should be chosen to be of the same order as the bandwidth-

delay product cτ , and that the equilibrium size of the queue

will be significantly smaller than q0.

III. SYSTEM MODEL

In this section we develop a fluid-flow model for the new

protocol in a scenario with a single bottleneck. The model

analyzed in next section. The capacity of the bottleneck is

c and the roundtrip propagation delay (excluding queuing

delay) is τ . The bottleneck is shared with constant rate real-

time cross traffic, such that a proportion γc of the capacity is

available, with 0 < γ ≤ 1. The state variables are the queue

size q(t) and the window size w(t).
We first consider the inner-loop, the ACK-clock. In Fig. 1,

open up the outer-loop, and view the window size w(t) as an

input to the system, and the queue size q(t) at the bottleneck

as the system output. Let r(t) denote the sending rate. Before

its relation to window size and queue size is discussed, we

write down the queue dynamics:

q̇(t) =

{
r(t) − γc q(t) > 0

max(0, r(t) − γc) q(t) = 0
(2)

To capture the influence of the parameter γ, we use the joint

link model

r(t) =
w(t − τ)

τ + q(t − τ)/c
+ ẇ(t)

The first term can be interpreted as the rate at which data

is ACKed, while the second terms are additional packets that

are sent or omitted following a change of the window size.

Substituting into (2) we get

q̇(t) =
w(t − τ)

τ + q(t − τ)/c
+ ẇ(t) − γc (3)

This model unifies the integrator model which puts r =
w/(τ +q/c), which is used in much of the TCP literature [7],

[17], and the static model q(t) = w(t)− cτ , which takes the

ACK-clock into account [18], but which does not handle real-

time cross traffic.

It is important that (3) is stable. Both the static gain and

the convergence time constant grow as γ is decreased, i.e.,

if the level of real-time cross traffic is increased. To capture

this influence is the main advantage of the joint link model.

We refer to [16], [19], for further discussion and validation.

The outer-loop, i.e., the window controller, is derived from

the window update law together with the router’s marking

probability (1). Additive increase contributes a growth m per

RTT. The rate of ACKed data is w(t − τ)/(τ + q(t − τ)/c),
with a proportion p(t−τ) of ACKs being marked. This gives

ẇ(t) =
1

τ + q(t − τ)/c

(
m −

q(t − τ)w(t − τ)

q0 + q(t − τ)

)
(4)

Substitution into (3) gives the closed-loop queue dynamics

q̇(t) =

{ w(t−τ)
τ+q(t−τ)/c + ẇ(t) − γc q(t) > 0

max
(
0, w(t−τ)

τ+q(t−τ)/c + ẇ(t) − γc
)

q(t) = 0
(5)

This system of non-linear time-delayed differential equations

for w and q is further analyzed in the next section.

IV. ANALYSIS

Due to the non-negativity constraint q(t) ≥ 0, the right

hand side of (5) is discontinuous at the border, and hence

not Lipschitz. Since the standard results on existence and

uniqueness of solutions does not hold in this setting, we

derive the following result.

Theorem 1: Assume that f : [0,∞) × R
n → R

n is

continuous, and that φ : [−1, 0] → R
n is non-negative,

bounded, measurable, and right-hand continuous. Then there

exists a unique non-negative function x : [−1,∞) → R
n,

continuous and right-hand differentiable for t ≥ 0, such that

for each k = 1, . . . , n,

ẋk(t) =

{
fk(t, x(t − 1)) xk(t) > 0

max(0, fk(t, x(t − 1))) xk(t) = 0

for t ≥ 0, with initial condition x(t) = φ(t) for −1 ≤ t ≤ 0.

Proof: See [16].

It is clear that if the initial conditions for q and w are

sufficiently regular, Theorem 1 can be applied to Eqs. (4), (5),

and hence our congestion control model is well posed.

For any positive parameters, Eq. (5) has a unique equilib-

rium, given by the solution w∗ and q∗ of the equations

mq0 = q∗(w∗ − m) w∗ = γ(q∗ + cτ) (6)

It is clear that q∗ > 0 and w∗ > max(m, γcτ). These

equilibrium equations can be solved explicitly. Both q∗ and

w∗ grow with q0, asymptotically as O(
√

q0). The choice

q0 = cτ gives w∗ = γcτ + m and q∗ = m/γ.

Next we study the system behavior close to the equilib-

rium. We will use the following lemma.

Lemma 2: Let A, B, C, and D be positive constants.

Assume that B < C ≤ D < 1, A ≤ 1 and that A+B < π/2.

Then the dynamical system

ẋ(t) = −
(

A B
A − D B + C

)
x(t − 1)

is globally asymptotically stable.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC06.4

1418

Proof: The idea of the proof is to consider the eigen-

values of the matrix

M =

(
A B

A − D B + C

)

It can be shown that they are real, distinct, and in the interval

0 < λ < π/2. Then M can be diagonalized, reducing

stability to the stability of two scalar systems. The details

will appear in [20].

The stability of the closed-loop system is stated next.

Theorem 3: Let c > 0 be the total capacity of the

bottleneck, and let γc, 0 < γ ≤ 1, be the available capacity.

Let τ > 0 be the propagation delay, and m > 0 the packet

size. If q0 ≥ cτ , then the system (4) and (5), describing the

queueing and window dynamics, is asymptotically stable.

Proof: Let q∗ and w∗ denote the equilibrium values,

i.e., the solutions to Eq. (6). Put q(t) = q∗+ q̃(t) and w(t) =
w∗ + w̃(t), and assume that q̃ > −q∗, so that the queue does

not underflow. Ignoring higher order terms, the linearized

system is

˙̃w(t) =
1

τ + q∗/c

(
−

q∗w̃(t − τ)

q0 + q∗
−

q0w
∗

(q0 + q∗)2
q̃(t − τ)

)

˙̃q(t) =
1

τ + q∗/c

(
q0w̃(t − τ)

q0 + q∗

−
(

γ +
q0w

∗

(q0 + q∗)2

)
q̃(t − τ)

)

Scale time, by the change of variables

x(t) =

(
w̃(τ t)
q̃(τ t)

)

Then the system is of the form

ẋ(t) = −
(

A B
A − D B + C

)
x(t − 1)

where

A =
τ

τ + q∗/c

q∗

q0 + q∗
B =

τ

τ + q∗/c

q0w
∗

(q0 + q∗)2

C = γ
τ

τ + q∗/c
D =

τ

τ + q∗/c

All four constants are in the open interval (0, 1), and we see

that C ≤ D. Since w∗ = γ(cτ +q∗), the assumption q0 ≥ cτ
implies that

B = γ
τ

τ + q∗/c

q0

q0 + q∗
cτ + q∗

q0 + q∗
≤ γ

τ

τ + q∗/c

q0

q0 + q∗

Then B < C and that A + B ≤ D < 1. Asymptotic

stability of the linearized system now follows from Lemma 2.

Then the equilibrium of the non-linear system is locally

asymptotically stable (see [21], Theorem 4.6).

On fairness of the new protocol, note that when generalizing

the model to several flows and bottlenecks, it is worth noting

that if several flows share the same set of bottlenecks, they

will all experience the same mark probability p. The window

update law implies that in equilibrium mk − w∗

kp∗ = 0 for

each flow k. Hence w∗

k = mk/p∗, so the window sizes

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

Q
u

e
u

e
 s

iz
e

 [
p

a
c
k
e

ts
]

t [s]

100
70
40
10

Fig. 2. The evolution of the queue size, for q0 = 10, 40, 70, and 100.
The behavior agrees well with the presented stability analysis.

of all flows, measured in number of packets, is the same.

This equilibrium property is shared with TCP New Reno, and

implies that in this case, the rate of flow k is proportional to

mk/RTTk. This indicates that fairness properties of the new

protocol will be close to those of TCP New Reno. Fairness

for a general network topology is analyzed in more detail

in [16].

V. EXPERIMENTAL EVALUATION

Experimental evaluation through ns2 simulations is pre-

sented in this section. The performance of the new protocol

is compared with TCP New Reno and TCP Vegas. First,

however, tuning of the protocol parameter q0 is discussed

through simulation of the model developed in Section III.

A. Fluid-flow simulation

To get a better understanding of the dynamics, and the

design parameter q0, we have performed a series of simula-

tions based on the fluid-flow system model (5). We consider a

10 Mbit/s link, with a roundtrip propagation delay of 50 ms,

and with 30% non-responsive cross-traffic (i.e., γ = 0.7).

The packet size is 1500 bytes. The bandwidth delay product

is 42 packets. The initial conditions are q(t) = 0 and

w(t) = w∗ for t ≤ 0.

In Fig. 2, we see the evolution of the queue size for some

values of the design parameter q0. By Theorem 3, the system

is stable when q0 ≥ 42 packets. We see that increasing q0

makes the system less oscillatory, and the equilibrium queue

size gets larger. For q0 = 40 packets, the system converges

slowly. For the smallest value, q0 = 10 packets, the system is

unstable and converges to a limit cycle. The amplitude of this

limit cycle is quite small, in comparison to the transients for

stable choices of q0. So from a practical perspective, the main

problem caused by this instability is a waste of resources,

since the queue gets empty which implies underutilization

of the bottleneck link, not large delay and delay fluctuations

degrading the quality of real-time applications.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC06.4

1419

New Reno Vegas New protocol

Loss rate (%) 4.27 0.00 0.02
Utilization (Mbit/s) 1.64 1.88 1.90
TCP throughput (Mbit/s) 1.02 1.39 1.40
Queue average (packets) 7.26 2.90 3.77

std. dev. (packets) 7.12 2.46 3.41
Forward delay average (ms) 114.66 75.78 80.84

std. dev. (ms) 40.11 13.74 19.61

TABLE I

RESULTS FOR THE SINGLE LINK, SINGLE FLOW SCENARIO.

B. Comparison with other TCP versions

The fluid flow model neglects important packet-level fea-

tures of the proposed mechanism, in particular, it does not

capture the limited information about the mark probability p.

To see how the mechanism behaves at the packet level, it has

been implemented in the ns2 simulator. The implementation

has a few small changes to a standard implementation:

• Two new bits in the ns2 packet header, analogous to

the ECN and ECN echo bits, have been added.

• The Agent/TCPSink class is extended to copy the

new bit from data packets to the corresponding ACKs.

• The Queue/DropTail class is extended to mark

packets according to Eq. (1).

• The Agent/TCP/Newreno class is modified to ex-

amine the echoed mark bit in each received ACK and

implement the new additive decrease rule.

Neither the slow start phase or New Reno’s reaction to

packet losses is modified at all. To force the TCP sender to

leave the slow start phase, the initial slow start threshold in

all the simulations were set to a value close to the product

of the RTT and the fair share.

We compare the results to TCP New Reno and TCP Vegas.

We are interested both in end-to-end properties, such as

throughput and delay, and per-link properties such as queue

size, utilization and loss rate.

1) Single link, single flow: The first scenario uses a single

TCP flow over a single bottleneck, with c = 2 Mbit/s, τ =
100 ms, and a bandwidth delay product of 16 packets. The

buffer size is 21 packets, and q0 is 32 packets. The simulation

runs for 60 s, with a file transfer starting at t = 0.1 s. The

bottleneck is shared with Poisson cross-traffic, 20% of the

capacity, increased to 40% during the interval 20–40 s. The

response to this step is illustrated in Fig. 3.

Table I shows average properties. Compared to TCP New

Reno, the new mechanism almost eliminates packet losses,

while at the same time the TCP throughput is increased and

the queueing delay is reduced. The performance is similar

to the performance with TCP Vegas.

2) “Parking-lot” topology: In the next scenario, we have

three bottleneck links in series. The links are still 2 Mbit/s,

with both the buffer size and q0 set to 20 packets. Over each

link, there is one TCP flow, and 20% Poisson cross-traffic.

These short flows have 20 ms RTT excluding queueing. We

also add one long RTT flow, traversing all three bottlenecks,

with an RTT of 150 ms excluding queueing.

New Reno Vegas New protocol
Flow #0 #1 #0 #1 #0 #1

Throughput 0.11 1.49 0.88 0.71 0.12 1.48
Window 4.49 13.05 25.48 4.40 2.94 7.06

dev. 2.01 3.57 10.08 0.75 0.75 1.26
Delay 323.05 91.29 270.83 62.56 181.30 44.63

dev. 46.30 26.29 51.95 24.14 23.59 12.49

TABLE III

RESULTS FOR THE “PARKING-LOT” TOPOLOGY, PER-FLOW VALUES.

Average per-link quantities are summarized in Tab. II. We

see that Vegas reduces queueing delay a bit compared to

New Reno. While it reduces packet losses, there is still a

significant packet loss (different for the three links). The

new mechanism reduces queueing further, and it eliminates

packet losses. Average per-flow quantities are summarized

in Tab III. Flow #0 is the long flow, and flow #1 is one of

the short flows. We see that the end-to-end delay and delay

jitter is reduced considerably. If we compare the throughput

between the long flow and the short flows, we see that the

sharing is similar for the new protocol and New Reno; a

short flow gets ≈ 13 times the throughput of the long flow.

For Vegas, the picture is very different. Vegas aims to give

all flows the same throughput, and in this example, the long

flow gets slightly larger throughput than a short flow.

VI. CONCLUSIONS

We have proposed a new congestion control protocol,

consisting of the standard ACK-clock based inner-loop, and a

novel outer-loop that adjusts the window size. Routers mark

packets with a probability depending on their instantaneous

queue size. In the absence of congestion, sources use additive

increase. When a marked ACK is received, the source reduces

its window size by the size of the corresponding data packet.

The rule of reducing window size by one packet on

the reception of a marked ACK is a subtle change from

standard ECN processing, which has two important benefits:

The frequency of packet marks can be much higher than

with standard AQM/ECN schemes, on average, a flow in

equilibrium will get receive one marked ACK per RTT. In

this way, sources are provided with more information about

the network state. Furthermore, from a router’s point of view,

the effect of the decision to mark a packet becomes much

more predictable, since it does not depend on the unknown

window size of the corresponding flow.

The proposed marking scheme uses a single parameter,

q0, per link. The value should be on the same order as the

expected value of the bandwidth-delay product of flows using

the link. Tuning of this parameter appear to be fairly easy.

Larger values result in a larger equilibrium queue size and

a more stable system. For small values of q0, the system is

unstable, but this instability corresponds to small oscillations

of the queue size and queue underflow, which indicates that

the penalty for choosing a too small q0 is reduced link

utilization, not large queue oscillations.

The proposed protocol has been implemented in ns2, and

simulated over a single link topology, and over a “parking-

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC06.4

1420

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 19 19.5 20 20.5 21 21.5 22

P
a

c
k
e

ts

t [s]

w
q

 0

 5

 10

 15

 20

 19 19.5 20 20.5 21 21.5 22

P
a

c
k
e

ts

t [s]

w
q

 0

 5

 10

 15

 20

 19 19.5 20 20.5 21 21.5 22

P
a

c
k
e

ts

t [s]

w
q

Fig. 3. Window size (w) and bottleneck queue size (q) for a short segment of a simulation with a single bottleneck and a congestion controlled flow
sharing the bottleneck with Poisson cross-traffic. At t = 20 s, the cross-traffic intensity is increased from 20% to 40% of link capacity. Left to right: New
Reno, Vegas, and the new protocol. Note the different scale on the vertical axis.

New Reno Vegas New protocol

Loss 1.96 1.99 1.67 0.25 0.14 0.09 0.00 0.00 0.00
Util. 2.00 2.00 2.00 1.99 1.99 1.99 1.99 1.99 1.99
Queue 11.98 12.07 11.94 8.78 8.45 8.58 4.37 4.43 4.33

dev. 4.32 4.37 4.35 4.02 3.92 3.71 2.15 2.16 2.09

TABLE II

RESULTS FOR THE “PARKING-LOT” TOPOLOGY, PER-LINK VALUES.

lot” topology with several bottlenecks. The simulations show

that the proposed protocol maintains full utilization and small

queueing delays. Furthermore, sharing of capacity between

flows is close to what flows would get with TCP New Reno.

The fundamental difference from common TCP/AQM

schemes is that the feedback from the network is applied

additively to the window. This is a promising approach for

making congestion controlled traffic, including peer-to-peer

file-sharing of large files, coexist nicely with real-time traffic.

The development of the new congestion control protocol

is not complete, but suggests some further work. Interesting

problems include the equilibrium and dynamical properties

when a large number of flows share a bottleneck. In TCP

New Reno, the first transition from the slow start state to

congestion avoidance state happens at the first packet loss.

With no packet losses, we need a slow-start that grows the

window size quickly when the network is uncongested, and

uses received packet marks to switch to congestion avoidance

before the bottleneck queue grows large.

REFERENCES

[1] G. Haßlinger, J. Mende, R. Geib, T. Beckhaus, and F. Hartleb,
“Measurement and characteristics of aggregated traffic in broadband
access networks,” in Proceedings of International Teletraffic Congress:

Managing Traffic Performance in Converged Networks, ser. LNCS,
vol. 4516. Ottawa: Springer, June 2007, pp. 998–1010.

[2] R. Bush and D. Meyer, “Some Internet architectural guidelines and
philosophy,” RFC 3439, December 2002.

[3] G. Appenzeller, I. Keslassy, and N. McKeown, “Sizing router buffers,”
in SIGCOMM. Portland: ACM, September 2004.

[4] Y. Ganjali and N. McKeown, “Update on buffer sizing in Internet
routers,” Computer Communication Review, vol. 36, no. 5, pp. 67–70,
October 2006.

[5] A. Dhamdhere, H. Jiang, and C. Dovrolis, “Buffer sizing for congested
Internet links,” in Proceedings of IEEE INFOCOM, 2005.

[6] C. Chrysostomou, A. Pitsillidesa, L. Rossidesa, M. Polycarpoub,
and A. Sekerciogluc, “Congestion control in differentiated services
networks using fuzzy-RED,” Control Engineering Practice, vol. 11,
no. 10, pp. 1153–1170, October 2003.

[7] C. Hollot, V. Mistra, D. Towsley, and W. B. Gong, “A control theoretic
analysis of RED,” in IEEE Infocom 2001, 2001.

[8] K. Ramakrishnan, S. Floyd, and D. Black, “The addition of explicit
congestion notification (ECN) to IP,” RFC 3168, September 2001.

[9] D. Katabi, M. Handley, and C. Rohrs, “Internet congestion control for
future high bandwidth-delay product environments,” in ACM Sigcomm,
August 2002.

[10] L. S. Brakmo and L. L. Peterson, “TCP Vegas: end-to-end congestion
avoidance on a global Internet,” IEEE Journal on Selected Areas in

Communications, vol. 13, no. 8, pp. 1465–1480, 1995.
[11] J. Mo and J. Walrand, “Fair end-to-end window-based congestion

control,” IEEE/ACM Transactions on Networking, vol. 8, no. 5, pp.
556–567, October 2000.

[12] K. Tan, J. Song, Q. Zhang, and M. Sridharan, “A compound TCP
approach for high-speed and long distance networks,” in Proceedings

of IEEE INFOCOM, Barcelona, April 2006.
[13] S. Liu, T. Basar, and R. Srikant, “TCP-Illinois: A loss and delay-based

congestion control algorithm for high-speed networks,” in Proc. First

International Conference on Performance Evaluation Methodologies

and Tools (VALUETOOLS), Pisa, October 2006.
[14] R. King., R. Baraniuk, and R. Riedi, “TCP-Africa: an adaptive and

fair rapid increase rule for scalable TCP,” in Proceedings of IEEE

INFOCOM, vol. 3, March 2005, pp. 1838–1848.
[15] N. Möller, K. H. Johansson, and K. Jacobsson, “Stability of window-

based queue control with application to mobile terminal download,”
in Mathematical Theory of Networks and Systems, Kyoto, July 2006.

[16] N. Möller, “Window-based congestion control—modeling, analysis
and design,” Ph.D. dissertation, KTH, Stockholm, January 2008.

[17] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
IEEE Control Systems Magazine, pp. 28–43, February 2002.

[18] J. Wang, D. X. Wei, and S. H. Low, “Modelling and stability of FAST
TCP,” in Proceedings of IEEE Infocom, Miami, March 2005.

[19] K. Jacobsson, H. Hjalmarsson, and N. Möller, “ACK-clock dynamics
in network congestion control – an inner feedback loop with implica-
tions on inelastic flow impact,” in IEEE Conference on Decision and

Control, 2006.
[20] N. Möller and K. H. Johansson, “Congestion control for small queues:

analysis and evaluation of a new protocol,” Extended paper submitted
for journal publication, 2008.

[21] A. Halanay, Differential equations—Stablity, Oscillations, Time Lags,
ser. Mathematics in Science and Engineering. Academic press, 1966,
vol. 23.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC06.4

1421

