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Abstract— In this paper, we focus on improving contour
tracking in precision motion control (PMC) applications
through the use of Cross-Coupled Iterative Learning Control
(CCILC). Initially, the relationship between individual axis
errors and contour error is discussed, including insights into the
different reasons for implementing CCILC versus individual
axis ILC. A Norm Optimal (N.O.) framework is used to
design optimal learning filters based on design objectives. The
general N.O. framework is reformatted to include the contour
error, as well as individual axis errors. General guidelines for
tuning the different weighting matrices are presented. The
weighting approach of this framework enables one to focus
on individual axis or contour tracking independently. The
performance benefits of N.O. CCILC versus ILC are illustrated
through simulation and experimental testing on a multi-axis
robotic testbed.

I. INTRODUCTION

In this paper we present a method for improving the

precision motion control (PMC) of multiple input multiple

output (MIMO) manufacturing systems that perform the

same task repetitively. PMC becomes increasingly important

for tracking contoured reference trajectories in multi-axis

systems [1]. Contoured trajectories require coordinated posi-

tioning between two or more axes. In these systems, shifting

the focus from individual axis tracking to contour tracking

may result in a final outcome that more closely resembles

the desired trajectory.

The general iterative learning control (ILC) approach

for PMC of contoured trajectories on multi-axis repetitive

systems has been to implement individual ILC controllers

on each axis. These controllers are designed to minimize

individual axis errors. This approach works well for trajec-

tories that lie well within the bandwidth of the individual

systems. However, for trajectories that contain frequency

content outside the bandwidth of the individual systems, the

performance of the multi-axis system may begin to degrade.

In [2]–[4], a novel ILC control design which focuses

on contour tracking was introduced. Cross-Coupled Itera-

tive Learning Control (CCILC) combines feedback Cross-

Coupled Control (CCC) [5]–[7] with ILC [8], [9] into a

learning control design which focuses on minimizing the

contour tracking of a given system. In order to place more

emphasis on the contour tracking, enhanced performance for

the individual axis tracking may need to be compromised.

While each of these learning controllers focus on one

aspect of the tracking errors, it has been shown that a

combined controller (CCILC & ILC) [3] may result in im-

proved overall tracking performance. One of the challenges

in combining the two learning controllers emerges when

trying to emphasize one learning design over the other. The

optimal learning controller depends on several factors, such

as the system requirements, the reference trajectory and the

design objectives. The goal of this work is to reformat this

combined learning controller into a Norm Optimal (N.O.)

framework [10]. The N.O. framework gives a structured

approach for focusing on contour tracking, which results in

a more intuitive design approach. The weighting approach of

this framework also enables one to focus on individual axis

or contour tracking as determined by the control designer.

The outline of this paper is as follows. Section II motivates

the use of contour control and provides the definition of

contour error with respect to individual axis errors. The

N.O. framework with regards to ILC will be discussed in

Section III, including guidelines for tuning the weighting

matrices and the formulation of a typical cost function.

The experimental setup and design of a CCILC controller

using the N.O. framework are described in Section IV.

Results from implementation of N.O.-CCILC and N.O.-ILC

controllers to a multi-axis robotic testbed are given in Section

V. Conclusions are given in Section VI.

II. MOTIVATION

In many multi-axis systems, the separate axes operate

independently from each other. This allows the controls

engineer to design individual controllers for each axis. The

individual controllers are designed to minimize the tracking

errors for each axis, respectively.

The MIMO systems considered in this work consist of two

or more uncoupled axes (see Fig. 1). While linear trajectories
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that only engage one axis at a time are still possible for these

systems, this research focuses on contoured trajectories that

require coupled movements from multiple axes in order to

achieve the desired trajectory.

Fig. 1. Multi-axis Robotic Testbed [11]

The tracking performance of MIMO systems when fol-

lowing contoured trajectories can be defined with respect

to individual axis and contour errors. Individual axis errors

describe the difference between the reference position and

the actual position of the axes with respect to the testbed

coordinate system. Contour error is defined as the distance

from the actual position to the closest point on the reference

trajectory.

Although the individual controllers focus on individual

axis errors, the contour error is also reduced due to the

relationship between contour and individual axis errors.

While this decoupled approach works well for trajectories

in which the reference trajectory does not contain high

frequency sections, the performance may begin to degrade

for trajectories which require high frequency movements

outside the bandwidth of the individual axes. For these tra-

jectories, the multi-axis system may benefit from a controller

which focuses on contour tracking, rather than individual axis

tracking.

A. Contour Error

Prior to formulating a controller which focuses on contour

tracking, the definition of contour error should be analytically

derived. Consider the curved trajectory of Fig. 2. The actual

position of the system can be described with respect to the

desired position in terms of individual axis errors, ex and ey ,

and contour error, ε.

Contour error is a function of individual axis errors and

time. As Fig. 2 illustrates, contour error can be defined as a

linear approximation of the closest distance from the actual

position to the instantaneous tangent line of the reference

trajectory with respect to time. Mathematically, this can be

Fig. 2. Contour versus individual axis errors

shown as

ε(k) = −cx(k) · ex(k) + cy(k) · ey(k) (1)

ε(k) = C(k) · e(k), (2)

where C(k) ∈ R
1×2, cx(k) and cy(k) are known as coupling

gains and are used to define the contour error with respect

to the individual axis errors, and k is the time interval from

k = 0, 1, . . . , N − 1. The coupling gains are generally time-

varying gains that change with respect to the trajectory.

Linearized coupling gains have the following format

cx(k) = sin θ(k); cy(k) = cos θ(k),

where θ is defined as the instantaneous angle of the reference

trajectory with respect to the x-axis of the testbed coordinate

system.

Previous work in [2], [3] introduced an iterative learning

control design termed CCILC which focuses on contour

tracking. The objective of this work is to reformat that

control structure into the N.O. framework. The generalized

individual axis ILC structure for this framework, along with

some guidelines for tuning the design of the N.O.-ILC

controller, is given in the following section. In Section IV, the

N.O. framework is reformatted to include contour tracking.

III. NORM OPTIMAL ILC

The ILC control problem in this paper is studied in the

lifted setting, [10], [12]. In this setting, the discrete-time

behavior of a linear time invariant (LTI) system P (k) for

time k = 0, 1, . . . , N − 1 is represented by its convolution

matrix P using impulse response data H(k), (3).

P =







H(0) 0
...

. . .

H(N − 1) · · · H(0)






. (3)

For MIMO systems, H(k) contains the impulse response

from each of the qi inputs to each of the qo outputs, (4).

H(k) =







H11(k) · · · H1qi(k)
...

...

Hqo1(k) · · · Hqoqi(k)






, (4)

with Hil(k) the impulse response from input l to output i.

Given H(k) ∈ R
qo×qi , system P ∈ R

Nqo×Nqi is a lower

triangular matrix with a block Toeplitz structure.
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During trial j, system P maps the input signal uj to the

measured output signal yj , i.e., yj = Puj , with uj and yj

defined in (5) and (6), respectively.

uj =
[

uT
j (0) uT

j (1) · · · uT
j (N − 1)

]T
(5)

yj =
[

yT
j (0) yT

j (1) · · · yT
j (N − 1)

]T
, (6)

with uT
j (k) =

[

u1
j (k) · · · u

qi

j (k)
]

and yT
j (k) =

[

y1
j (k) · · · y

qo

j (k)
]

.

The ILC controller for our contour tracking problem

results from a quadratic optimization problem, [13]. In this

problem, we want to minimize an objective function J , with

J corresponding to the sum of weighted norms of the error

||ej+1||Q, the command signal ||uj+1||S , and the rate of

change of the command signal ||uj+1 − uj ||R,

J = eT
j+1Qej+1+uT

j+1Suj+1+(uj+1−uj)
T R(uj+1−uj),

(7)

where ej = yr − yj , with yr as the reference signal

and (Q,R, S) symmetric positive definite matrices (often

(Q,R, S) =: (qI, rI, sI)). Note that in some cases (Q,R, S)
may be semi-definite matrices, as long as PT QP + S + R

is positive definite.

Applying yr = ej + Puj and ej+1 = yr − Puj+1 leads

to (8).

ej+1 = ej − P (uj+1 − uj). (8)

By placing (8) in (7) and subsequently differentiating J with

respect to uj+1 and setting this derivative equal to zero, we

find the norm-optimal ILC controller (9).

uj+1 = Quj + Lej (9)

Q = (PT QP + S + R)−1(PT QP + R)

L = (PT QP + S + R)−1PT Q.

Note the difference between the weight Q and the ILC

controller Q.

Although this ILC control strategy is relatively well

known, there is little in the available literature on how to

tune (Q,S, R). Therefore, we derive here some guidelines

by studying the properties of the ILC controlled system

with respect to convergence, performance, robust monotonic

convergence, and performance in the presence of stochastic

disturbances.

A. Convergence

Given the ILC controller (9) and the system dynamics

yj = Puj , the trial domain dynamics can be given by

uj+1 = (Q− LP )uj + Lyr. (10)

For this system to be convergent, the spectral radius

maxi |λi(Q − LP )| < 1. Furthermore, for monotonic con-

vergence, we require the relatively well known condition

||Q − LP ||i2 < 1 such that ‖uj+1‖2 < ‖uj‖2. Here

|| · ||i2 = σ(·) and σ(·) is defined as the largest singular

value of a given matrix. Note that maxi |λi(·)| ≤ || · ||i2.

For the norm-optimal ILC controller, we have Q−LP =
(PT QP +S+R)−1R. As a result, convergence is guaranteed

for any symmetric positive (semi-)definite (Q, S, R) with

PT QP + S + R positive definite. Moreover, convergence

speed, i.e. the rate κ =
‖uj+1‖2

‖uj‖2
, strongly depends on R. For

R = 0 (κ = 0) deadbeat control is achieved, as R → ∞
(κ → 1) the convergence speed can be arbitrarily slow.

B. Performance

For performance, we study the steady state error e∞ :=
limj→∞ ej . Consequently, we assume the ILC control system

to be convergent.

The steady state error is derived from the steady state

command signal uj+1 = uj = u∞.

u∞ = (Q−LP )u∞+Lyr → u∞ = (PT QP +S)−1PT Qyr.

(11)

With (11) and e∞ = yr − Pu∞, e∞ is given by

e∞ = (I − P (PT QP + S)−1PT Q)yr. (12)

From (12), we can now conclude the following: the

smallest attainable error, i.e., optimal performance, requires

S = 0 and hence PT QP to be positive definite. Furthermore,

e∞ is not a function of R, and hence performance is not a

function of convergence speed.

C. Robust monotonic convergence

In this subsection, we consider the true system Pt to

correspond to the nominal model P plus an uncertainty ∆P :

Pt = P (I + ∆P ), with the multiplicative uncertainty ∆P =
W∆ and ||∆||i2 ≤ 1. As a result, for robust monotonic

convergence we require

||Q − LPt||i2 < 1 ⇒ (13)

max
∆

||(PT QP + S + R)−1(R − PT QPW∆)||i2 < 1.

Lemma 1: Consider (13) with R = 0. Then a sufficient

condition for robust monotonic convergence is given by

||(PT QP + S)−1PT QPW ||i2 < 1.

Proof: Follows directly from (13) and the in-

equality ||(PT QP + S)−1PT QPW∆||i2 ≤ ||(PT QP +
S)−1PT QPW ||i2 · ||∆||i2.

Lemma 2: Consider (13) with ||(PT QP +
S)−1PT QPW ||i2 < 1, and assume PT QP + S symmetric

and positive definite. Then robust monotonic convergence is

guaranteed for all R = rI, r ∈ R ≥ 0.

Proof: See [14] for detailed proof.

From Lemma 2, we can conclude that for an ILC con-

trolled system which is robustly monotonically convergent

for R = 0, the design parameter R = rI does not influence

the robust monotonic convergence properties of the ILC

controlled system. S, on the other hand, should be designed

such that the robust monotonic convergence condition in

Lemma 1 holds.

D. Performance in the presence of stochastic disturbances

In this subsection, we extend performance aspects of

norm-optimal ILC of subsection III-B by including stochastic

disturbances dj , i.e., by considering ej = yr −yj −dj . As is

shown in [15], the influence of stochastic disturbances can
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be reduced by reducing the convergence speed. With R in

the N.O.-ILC controller the dominant factor in convergence

speed, the influence of dj on ej can be reduced by increasing

R.

E. Summary

Based on the previous subsections, the following tuning

guidelines for norm-optimal ILC control can be given.

1) Design Q to correspond to the desired weighting of

the error (see Section IV-B).

2) Design S such that the system is monotonically con-

vergent. Start with an S with ||S||i2 relatively large

compared to ||P ||i2. Subsequently, reduce S until the

system diverges.

3) Design of R: Start with ||R||i2 = 0 and increase

R until the steady state error fluctuations are within

desired bounds, or do not decrease anymore.

IV. IMPLEMENTATION

A. N.O.-CCILC

Up until this point we have been focusing on N.O.-ILC. In

order to explore the performance benefits of contour tracking

versus individual axis tracking, we now extend the N.O.-

ILC design to N.O.-CCILC, in which the controller seeks to

comply with contour tracking objectives. For this extension,

we first construct a cost function, J , of the form given in

Section III, with contour error, ε, replacing individual axis

errors, ex and ey . The reader is asked to compare (14) with

(7).

J = εT
j+1Qεj+1+uT

j+1Suj+1+(uj+1−uj)
T R(uj+1−uj).

(14)

Substituting (2) for the contour error and setting Q = aI

results in:

J = eT
j+1(a · Qccilc)ej+1 + uT

j+1Suj+1 (15)

+(uj+1 − uj)
T R(uj+1 − uj),

with Qccilc given by

Qccilc =







CT (0)C(0) 0
. . .

0 CT (N − 1)C(N − 1)







(16)

where

CT (k)C(k) =

[

cx(k)cx(k) −cx(k)cy(k)
−cy(k)cx(k) cy(k)cy(k)

]

. (17)

Contrary to the general practice of setting Q = qI in

N.O.-ILC [16], the modified matrix is singular, time-varying

and block-diagonal. The change in the structure of the Q

weighting matrix results in a controller that only penalizes

certain combinations of the individual axis errors, rather than

every combination equally. This provides flexibility within

the system by allowing combinations of the individual axis

errors which result in improved contour tracking. These

combinations may result in an increase of the individual

axis errors by effectively decoupling the position profile

from the time profile. This decoupling enables the system to

perform movements to improve the contour tracking while

subsequently decreasing the individual axis performance

without being penalized.

Combining (7) (with Q = bI) and (16), a combined

cost function capable of focusing on either individual axis

tracking, contour tracking or a combination of the two can

be derived.

J = eT
j+1(a · Qccilc + bI)ej+1 + uT

j+1Suj+1 (18)

+(uj+1 − uj)
T R(uj+1 − uj).

The gains a and b refer to the weighting gains applied to

the contour tracking or individual axis tracking, respectively.

In order to ensure an equivalent comparison between N.O.-

CCILC, N.O.-ILC, and N.O.-CCILC plus N.O.-ILC, the rela-

tionship a+ b = 1 must be satisfied. Using this relationship,

it can be shown that increasing a results in a decrease in

contour errors, while increasing b results in a decrease in

individual axis errors.

B. Experimental Setup

The experimental system used to verify the tracking per-

formance of the N.O.-CCILC and N.O.-ILC controllers is the

multi-axis robotic testbed of Fig. 1. For simulation purposes,

dynamics models of the x and y axes, along with stabilizing

feedback controllers, were developed in [11].

Pi(z) =
K(z + αi1)(z

2
− αi2z + αi3)(z

2
− αi4z + αi5)

(z − βi1)(z − 1)(z2
− βi2z + βi3)(z2

− βi4z + βi5)
.

(19)

kpi(z) =
k(z − αi1)(z − αi2)(z − αi3)

(z − βi1)(z − βi2)(z − βi3)
, i = x, y. (20)

The reference signal applied to the system is a raster scan-

ning trajectory (N = 1050), in which the motion consists

of long periods of low frequency content followed by short

periods of high frequency transitions from one direction to

another. This type of trajectory is commonly used in atomic

force microscopy (AFM), as well as other manufacturing

systems which require sharp transitions between signals. The

transition points, labeled A and B on Fig. 3, correspond to

locations within the trajectory where the desired trajectory

requires movements outside the bandwidth of the individual

axes. These areas indicate potential opportunities for N.O.-

CCILC to provide improved tracking capabilities as com-

pared to N.O.-ILC with respect to contour tracking.

Learning filters, (Q, L), of the form given in (9) were

designed using the combined cost function, (18),

Q = (a · Qccilc + bI)

Q = (PT QP + 1e−3I + 1e−3I)−1(PT QP + 1e−3I)

L = (PT QP + 1e−3I + 1e−3I)−1PT Q. (21)

where the weighting gains for the S and R tuning matrices

were found using the tuning rules summarized at the end of

Section III. By varying the values of a and b over the interval

[0, 1] while satisfying the relationship a + b = 1, controllers
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Fig. 3. Raster scan trajectory

with adjustable focus on individual axis or contour tracking

errors could be implemented on the testbed.

V. RESULTS

A. Simulation Results

Using the N.O. controllers (21), the models of the exper-

imental testbed (19) stabilized with (20), and the reference

trajectory described above, the following simulation results

were obtained. Figure 4 shows converged root mean square

(RMS) contour tracking errors for increasing values of a.

Increasing a corresponds to an increasing focus on the

contour errors versus the individual axis errors. As one would

expect, focusing on contour error results in decreasing values

of converged RMS contour error. A controller which focuses

entirely on contour errors versus individual axis errors results

in a 28% improvement in the converged RMS contour error.
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Fig. 4. Converged RMS Contour Error for Increasing a

Although the converged contour error has decreased, as

Fig. 5 illustrates, the improvement in contour tracking is

at the expense of individual axis tracking. The converged

individual axis errors increase as the value of a is increased.

This indicates that the enhanced flexibility in position and

time is directly related to a decrease in individual axis

errors. As long as position and time synchronization is not

a critical design objective, the reduction in individual axis

tracking may be an acceptable trade-off for improved contour

tracking.
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Fig. 5. Converged RMS Errors for Increasing a

Having seen that varying the values of a and b affects

the converged RMS tracking errors, we want to explore how

these differences translate to the actual position tracking as

a function of time. Figure 6 shows an enlarged image of

one raster corner in which the system is attempting to track

an instantaneous change in direction. As Fig. 6 illustrates, a

N.O.-ILC controller that focuses on individual axis tracking,

a = 0 and b = 1, deviates from the contoured trajectory

prior to the high frequency corner and performs oscillatory

behavior directly following the corner before settling back

onto the desired trajectory. On the other hand, an N.O.-

CCILC controller that focuses on contour tracking, a = 1
and b = 0, results in a system that more closely tracks the

reference trajectory throughout the time interval.
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Fig. 6. Trajectory tracking for N.O.-CCILC vs N.O.-ILC [Simulation]

B. Experimental Results

In order to validate the simulation results, the N.O.-

CCILC and N.O.-ILC controllers used in simulation were

implemented on the actual robotic testbed from Fig. 1.

Analogous to the simulation results, N.O.-CCILC resulted

in more precise contour tracking as compared to individual

axis N.O.-ILC. The simulation results are shown to closely

predict the behavior of the N.O. learning controllers on the

robotic testbed, as can be seen by comparing Fig. 6 and Fig.

7.
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Fig. 8. Control input signal for the x-axis [Experimental] Similar results

for the y-axis

Comparing the RMS converged error values for individual

axis and contour tracking, the trade-off between individual

axis tracking and contour tracking matches the trends shown

in Fig. 4 and Fig. 5. N.O.-CCILC results in a 27% improve-

ment in the converged RMS contour error versus N.O.-ILC.

This improvement results from decoupling time and position.

This decoupling effect shows up in the converged individual

axis RMS errors, in the form of higher RMS errors for the

N.O.-CCILC controller, and in the individual axis control

signals, in the form of lower input signals for the N.O.-

CCILC controller, as seen in Fig. 8. Although the individual

axis errors may be higher in the N.O.-CCILC case, these

results illustrate how the optimal contour controller yields

more precise tracking of this specific trajectory without the

expense of large control signals.

VI. CONCLUSION

In this paper we presented N.O.-CCILC, which focuses on

contour tracking for multi-axis systems. After examining the

concept of contour tracking versus individual axis tracking

and introducing CCILC, the N.O. framework was presented.

A detailed design approach, including tuning guidelines, was

provided. Using this approach, N.O.-CCILC and N.O.-ILC

controllers were designed for comparison on a multi-axis

robotic testbed. The results showed that N.O.-CCILC results

in an alternative technique for improving the contour tracking

of multi-axis systems.
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