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Abstract— This paper seeks to extend Generalized Predictive
Control (GPC) to tracking of trajectories in a periodic nature.
The initial focus is on sinusoidal trajectories, but the work may
be extended later on to a signal with bandlimited frequencies.
In addition, this paper proposes strategies for optimizing the
prefilter in GPC to improve the transient performance in set-
point tracking.

I. INTRODUCTION

Far and away the large part of publications [12], [2] in

model predictive control (MPC) focus on either regulation

or tracking of constant set points (step changes), although

there are a few exceptions [11], [1]. This focus is a serious

limitation as some of the main purported advantages of MPC

are its ability to handle the multivariable case and constraint

handling. These advantages are still required in systems

where the set points may be quite complex and certainly

are not piecewise constant; essentially constant for times

well beyond the settling time. Of course one conundrum is

that MPC is a time based approach and thus is not ideally

suited to meet criteria that may be frequency domain based.

This includes consideration of robustness where methods

for adding this into the MPC framework tend to work

well only in the constraint free case [8], [6], [16], or are

computationally very demanding [7], [9], [10] and often

highly conservative.

This paper seeks to make an initial step in the field of

tracking non-standard trajectories. Although the reader may

think that seminal works e.g. [3] suggested that MPC auto-

matically took account of future set point trajectories within

the optimisation, it has been shown by subsequent works [5],

[12] that the default choice of pre-filter making use of this

information is often poor. The fundamental reason for this

is that the class of trajectories over which the performance

is optimised must include some which are close to the ideal

behaviour [14], [13], but this was not fully appreciated by

the community until the late 1990s. On the other hand, it

is well known through the internal model control principle

that in order to reject a periodic disturbance or following

a periodic reference signal with zero steady-state error, the

generator for the disturbance or the reference is included in

the stable closed-loop control system [4]. Recent work in

a continuous-time predictive control system has shown that

indeed the internal model control is required to achieve zero
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steady-state error [15]. This paper investigates the tracking

of periodic signals in discrete-time using the framework of

Generalized Predictive Control [3], where the special issues

about the prefilter design are examined.

A further motivation for this work is a specific case study,

that of a cutting tool. Initial work is focusing on scenarios

where the cutting tool must track sinusoids, with no offset

and subject to constraints. More discussion of this case study

and applications will be covered in future work, whereas this

paper focuses on development of the requisite theory.

In summary then, this paper makes two contributions.

First, after some background in section II, in section III

it shows how MPC can be set up to track sinusoids, with

no asymptotic offset and secondly, section IV shows how

the prefilter may be optimised in a systematic, but simple,

fashion. The paper is completed with numerical examples

and conclusions.

II. BACKGROUND ON CONVENTIONAL MPC

This section gives the MPC mathematical background

necessary to discuss the main issues in this paper. In order

to give a better context, first a conventional algorithm is

introduced so that the reader can see how the proposed

algorithm differs.

A. Properties of modelling, prediction and optimisation

Assume that the model takes the form

A(z)y = B(z)u +
C(z)

D(z)
ζ (1)

where D(z) contains the dynamics of the disturbances/set

points which we desire to reject; assume herein that C(z) =
1. For conventional MPC [3] assume that D(z) = 1 − z−1

and this models disturbances with a non-zero steady-state.

In order to get offset free tracking (asymptotically) it is

necessary for both the predictions and the performance index

to be unbiased in the presence of the expected set points

and disturbances. Using the proposed model for prediction

achieves this if modified to the following incremental form:

A(z)D(z)y = B(z)D(z)u + ζ (2)

as ζ is a zero mean random variable. It is usual to combine

the D(z) and u terms to define an ’incremental’ input as

∆u = D(z)u or ∆uk = uk − uk−1. In this case it can be

observed that:

lim
k→∞

∆uk = 0 ⇒ lim
k→∞

uk = uk−1 (3)

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThTA09.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4079



Thus the asymptotic input contains the requisite dynamics

(a steady value) to reject disturbances and track piecewise

constant setpoints, when the incremental term converges

to zero. Also, ∆u = 0 implies from (2) that ∆y = 0
which allows for y to have a non zero steady-state. Let the

performance index be similar to a standard GPC form:

J =

ny∑

k=1

(rk − yk)2 +

nu−1∑

k=0

(∆uk)2 (4)

Again, this can be seen to be unbiased asymptotically in that

a zero tracking error implies r = y and can also be achieved

with Du = 0, ∆y = 0; thus a zero cost and zero control

increments are consistent with the desired objective.

So in summary, conventional MPC algorithms such as

GPC achieve offset free tracking of constant set points and

disturbance rejection of constant disturbances by including

two requirements in the algorithm set up.

1) Predictions must be unbiased in the steady-state, so

that if the system is already at steady-state the pre-

diction model predicts it remains at that steady-state.

Using model (2) achieves this.

2) The performance index J must be such that, if the

system is at the correct steady-state, then minimising

J gives an optimum control trajectory that causes the

system to remain at that steady-state. This is achieved

by using offset terms, e.g. (rk − yk)2, ∆u2
k, (uk −

uss)
2, where uss is an unbiased expected steady value

of the input.

B. Predictions and control law

Many details are omitted here as standard in the literature

[12]. In summary the predictions take the form:

y
−→

k = H∆u−→k−1 + P∆u←−k−1 + Q y
←−

k (5)

where the matrices H, P,Q depend on the model parame-

ters and horizons and the arrow notation (right for future,

left for past) is defined as follows (dimensions are always

appropriate to the usage):

x−→k =






xk+1

xk+2

...




 ; x←−k =






xk

xk−1

...




 (6)

Substitution into the performance index J gives:

J = ‖ r−→k − y
−→

k‖
2
2 + λ‖Du−→k−1‖

2
2 (7)

Minimising with respect to the future control increments

(assuming ∆uk+nu+i = 0, i ≥ 0) gives:

∆u−→k−1 = (HT H +λI)−1HT [ r−→k −P∆u←−k−1−Q y
←−

k] (8)

The control law is given from only the first component of

∆u−→k−1, that is ∆uk and can easily be represented in transfer

function form as:

Dk(z)∆u = Pr(z)r − Nk(z)y; u =
1

D(z)
∆u (9)

where Pr(z) is anti-causal.

Remark 2.1: The closed-loop poles are given from

Pc(z) = A(z)D(z)Dk(z) + b(z)Nk(z). (10)

and the reader is reminded that often, for a GPC type law,

the Pr is not well designed and is often better replaced by

its gain.

III. MODEL PREDICTIVE CONTROL FOR TRACKING

SINUSOIDS

This section focuses on what is different when the dis-

turbances and/or set point are of sinusoidal form. For the

context of this paper these could be described as e.g. rk =
R sin(wk + θ) or in transfer function form:

r(z) =
α(z)

D(z)
; D(z) = 1 − 2z−1 cos w + z−2 (11)

where α(z) = α0 + α1z
−1 defines the gain and phase and

w is the frequency (rad/sample).

The previous section summarised the two key points for

offset free tracking as both the predictions and the perfor-

mance index must be be unbiased in the presence of the

expected set points and disturbances. This was achieved by

basing predictions on an appropriate incremental model and

using appropriate terms in the performance index.

Consider the incremental model:

A(z)y = B(z)u +
C(z)

D(z)
ζ; D(z) = 1 − 2z−1 cos w + z−2

(12)

which implicitly allows for disturbances with a specific

sinusoidal component. Change this into incremental form:

A(z)D(z)y = B(z)D(z)u + ζ; (13)

where ζ is a zero mean random variable and make the

usual combination of the D(z) and u terms to define an

’incremental’ input as ∆u = D(z)u. In this case it can be

observed that:

lim
k→∞

∆uk = 0 ⇒ lim
k→∞

uk = E sin(wk + φ) (14)

for some, as yet unknown, constants E, φ. Thus the asymp-

totic input contains the requisite sinusoidal dynamics when

the incremental term converges to zero. A similar statement

can be made for the output. Thus the use of model (13)

for prediction incorporates the required sinusoidal dynamics

while also having limk→∞ ∆uk = 0; it allows for unbiased

prediction!

Let the performance index be similar to a standard GPC

form:

J =

ny∑

k=1

(rk − yk)2 +

nu−1∑

k=0

(∆uk)2 (15)

Again, this can be seen to be unbiased asymptotically in that

a zero tracking error implies r = y and can also be achieved

with ∆u = 0; thus a zero cost and zero control increments

are consistent with the desired objective.

Remark 3.1: So far the only difference between the pro-

posed algorithm and standard GPC is the use of a different

D(z), that is we use D(z) = 1 − 2z−1 cos w + z−2 as
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opposed to the more common D(z) = 1− z−1 used for step

type targets. The algebra for the predictions and control law

take the same form as section II-B except that the matrices

H,P, Q will be different as the prediction model is now (13).

Remark 3.2: The reader should note that the design will

only give offset free tracking if frequency is known exactly

and hence, if the frequency were to change, new controller

parameters would be needed. This should not be surprising

as the conventional algorithm only gave offset free tracking

for the zero frequency case. If there are multiple frequencies,

one could include all of these in D(z), but this may introduce

sensitivity issues and is not considered here. Sinusoidal type

of disturbance with a known frequency can also be rejected

without steady-state errors.

IV. PREDICTABILITY OF FUTURE SET POINT: REDESIGN

OF FEED FORWARD STAGE 1

One purported advantage of predictive control strategies

is that, where available, information about future set point

changes can be incorporated systematically. This information

enters through the feedforward compensator Pr(z) which is

anti-causal of order ny . Hence typical terms in the control

law are:

Pr(z)r ≡ [P1, P2, ...., Pny
] r−→k (16)

In the case of sinusoidal set points (and disturbances) one

major difference is necessary; as mentioned in the previous

remark it is allowable, if not essential, to assume that the

frequency is known. Without this assumption it would not

be possible to enter the requisite controller poles into D(z)
to give offset free tracking. However, given this, it is also

possible to predict exactly the future set point trajectory from

any two values; moreover given this is a provided signal

there are no issues to do with sensitivity/noise. A neat way

of doing this which greatly simplifies the implementation of

Pr(z) is given next.

Algorithm 4.1: Reducing Pr(z) to its simplest equivalent

form:

1) Assume that r(k) = R sin(wk +θ) where R, θ are not

provided explicitly, but instead rk is provided.

2) By definition, [1 − 2z−1 cos w + z−2]rk = 0 = rk −
[2 cos w]rk−1 + rk−2.

3) One can determine all future set points from the two

most recent values using an iteration:

rk+2 = [2 cos w]rk+1 − rk

rk+3 = [2 cos w]rk+2 − rk+1

...
...

(17)

4) Simple algebra can present this in compact form as:

r−→k+1 = M

[
rk+1

rk

]

︸ ︷︷ ︸

r
←−

k+1

(18)

for suitable M .

5) It is possible to reconstruct the full r−→k vector from:

r−→k =

[
1 0
M

]

︸ ︷︷ ︸

M̂

r←−k+1 (19)

6) The operation of the original ny-order anti-causal pre-

filter is reduced to a 1st order filter using the upcoming

and past values of the set point.

[P1, P2, ...., Pny
] r−→k = [P1, P2, ...., Pny

]M̂
︸ ︷︷ ︸

P̂r

r←−k+1

(20)

In summary, the coefficients of the modified Pr(z) are

related to the coefficients of the original Pr as

P̂r = PrM̂ = [P̂0, P̂1] (21)

and the feedforward term in the predictive control law is

exactly equivalent to:

P̂r r←−k+1 (22)

Again, the reader is reminded that this analysis assumes the

frequency is known.

Remark 4.1: It is interesting to note that, in the case of

sinusoidal set points, there is no advantage from anti-causal

terms in Pr(z) because these can all be subsumed into an

equivalent dependence on rk+1 and rk.

V. IMPROVING TRANSIENTS: REDESIGN OF FEED

FORWARD STAGE 2

This section considers how we can make better use of

the flexibility in the feedforward compensator Pr(z). As

mentioned earlier, the claim that conventional GPC handles

future input systematically is more limited than immediately

obvious ([5]) and the default strategy is suboptimal due

to the use of finite horizons. However, earlier work also

demonstrated very clearly that transient performance during

set point changes could be improved much further still

by adopting a more systematic design for Pr. This paper

develops a simple means of doing this for sinusoidal tracking

which can be coded on elementary processors and without

recourse to optimal control theory where the full trajectory

would need to be modelled and embedded.

In essence this section exploits the freedom in the design

of the prefilter Pr(z) and shows how this freedom can be

used in a very simple two stage design; thus easy to manage

and implement. First a brief subsection derives the conditions

on Pr(z) for offset free tracking and then the next subsection

shows how the freedom is exploited.

A. Conditions for asymptotic tracking

It is well known that in the case of tracking step wise

set points and disturbances, the required conditions on the

controller are that:

1) An integrator is placed in the forward loop (i.e.

1/D(z), D(z) = 1 − z−1).
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2) The steady-state gains of Pr(z), Nk(z) must match

(i.e. Pr(1) = Nk(1)). Alternatively one could state

that

Nk(z) − Pr(z) = [1 − z−1]γ(z) (23)

with γ(z) any polynomial.

In the case of requiring no offset to sinusoidal signals, very

similar conditions apply:

1) The two poles modelling the sinusoid are placed in the

forward loop (i.e. 1/D(z), D(z) = 1− 2 cos wz−1 +
z−2). [This happens automatically with control law (9).

2) The gains of Pr(z), Nk(z) must match at the specified

frequency or, more simply stated:

Nk(z)−Pr(z) = [1−2z−1 cos w+z−2]γ(z) = D(z)γ(z)
(24)

with γ(z) any polynomial.

Thus, Pr(z) can be modified as the user pleases, without

affecting the asymptotic tracking, as long as condition (24)

holds. However, these modifications will clearly have an

impact on transient behaviour. In fact this flexibility is akin

to a Youla parameterisation [8].

Lemma 5.1: The flexibility in the prefilter can be sum-

marised by the equation

Pr(z) → Pr(z) + D(z)Q(z) (25)

for Q(z) any stable (causal1) function.

Proof: Assume that Pr(z) satisfies condition (24) with

γ(z) = γ0(z). Next substitute in the modified Pr(z) into

(24) to give:

Nk(z) − Pr(z) − D(z)Q(z) = D(z)γ0(z) − D(z)Q(z)
= D(z) [γ0(z) − Q(z)]

︸ ︷︷ ︸

γ(z)

(26)

Clearly the condition is still satisfied. ⊔⊓
Hence, the user can modify Q(z) to meet any objectives

they wish. The next subsection explores how this could be

used to reduce transient errors.

B. Optimising the free parameter in the prefilter

A simple objective would be to choose Q(z) to minimise

the transient errors when tracking a sinusoid which may

occur at start up. For the simplicity of presentation this paper

we assume a pure sinusoid signal of the form:

r(k) = sin wk, k > 0; r(k) = 0, k < 0 (27)

It will be obvious from the algebra that one could also deal

with signals that have a smoother transition of gradients

should that be desirable. However, the ’optimal’ design

for transient behaviour is specific to the set point signal

provided so the user would be advised to update the prefilter

dynamically each time a new trajectory is required. As the

reader will see, the algebra is trivial so this extra computation

would not be an obstacle.

1In fact this restriction is not necessary, but pragmatic.

Lemma 5.2: The nominal error dynamics are given as

follows:

e(z) =
β0(z)

Pc(z)
; e(z) = r(z) − y(z) (28)

where β0(z) = [b(z)P̂r(z) − Pc(z)]/D(z) for the P̂r(z)
determined in section 3 and r(z) = 1/D(z).

Proof: The closed-loop output response is defined from

y(z) =
b(z)P̂r(z)

Pc(z)
r(z) (29)

However, because we have asymptotic tracking, we also

know that the output breaks down to the set point signal

plus some other transients, where those transients therefore

form the error e(z):

y(z) =
b(z)P̂r(z)

Pc(z)
r(z) = r(z) +

β0(z)

Pc(z)
︸ ︷︷ ︸

e(z)

(30)

for some β to be determined. For r(z) = 1/D(z), a simple

rearrangement of the output formulae (30) gives b(z)P̂r(z) =
Pc(z) + D(z)β0(z) or

β0(z) =
b(z)P̂r(z) − Pc(z)

D(z)
(31)

There must be an exact cancellation of D(z) so β0(z) is

polynomial. ⊔⊓
Lemma 5.3: The flexibility in the error dynamics in rela-

tion of parameter Q(z) is given as follows:

e(z) =
β0(z) + b(z)Q(z)

Pc(z)
; e(z) = r(z) − y(z) (32)

Proof: The nominal solution β0 was derived from

b(z)P̂r(z) = Pc(z) + D(z)β0(z) (33)

Substituting in P̂r(z) → P̂r(z) + D(z)Q(z) this equation

is modified to

b(z)[P̂r(z) + D(z)Q(z)]
= Pc(z) + D(z)β0(z) + b(z)D(z)Q(z)
= Pc(z) + D(z) [β0(z) + b(z)Q(z)]

︸ ︷︷ ︸

β(z)

(34)

⊔⊓
Corollary 5.1: The input sequence will also be affine in

the parameters of Q. However, as the input is sinusoidal this

sequence would only be of interest during transients and it

is not immediately obvious how one would judge ‘optimum’

and thus include this into the optimisation of Qi.

Theorem 5.1: The errors in transients can be minimised

by minimising the signal e(z). This signal comprises a fixed

term β0(z)/Pc(z) and a free affine term b(z)Q(z)/Pc(z).
As the dependence on the free parameters Q(z) = [Q0 +
Q1z

−1 + Q2z
−2, ..., Qnz−n] is affine, the 2-norm error can

be minimised using a straightforward least squares optimi-

sation over the parameters Qi.

Proof: Obvious. ⊔⊓
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Fig. 1. Responses with a frequency of w = 0.0314 (rad/sample).

Remark 5.1: One could also optimise the parameters of

Q(z) with a view to satisfying input and output constraints

for pre-specified transients, however that is not pursued in

this paper.

VI. EXAMPLES

This section will first illustrate the efficacy of MPC in

tracking sinusoidal targets and rejecting sinusoidal distur-

bances. Secondly, it will demonstrate the potential benefits of

introducing the Q parameter to improve transient behaviour.

A. Model and set points

Consider the model given as

A(z) = 1−1.8z−1 +0.81z−2; B(z) = 0.01z−1 +0.003z−2

(35)

Assume a sample time of T = 1 and define: (i) set point 1

with w = 2π/200 and (ii) set point 2 with w = 2π/20.

B. Asymptotic tracking and disturbance rejection

This section focuses on the efficacy of the basic algorithm

using the default prefilter P̂r and demonstrates that asymp-

totic offset tracking is achieved, in the presence of unknown

disturbances.

The default prefilter P̂r(z) is used with the sinusoidal set

points specified above and the corresponding closed-loop

responses are displayed in figures 1 and 2. It is perhaps

unsurprising that the transient errors are larger with the faster

frequency, however the key point in both cases is that the

control clearly performs well.

Figure 3 demonstrates the case of disturbance rejection,

where the disturbance is a cosine curve with a frequency

w = 2π/200; again this is rejected.

C. Reducing transient errors

This section demonstrates the potential benefits of modify-

ing the default prefilter as discussed in section V. In this case

we try Q(z) with various numbers of terms nQ = 0, 2, 4, 7
and overlay the response plots on the same figures: figures

4,5 for slow and fast frequencies respectively. It is clear that

including Q(z) has greatly reduced transient errors, but there

is little benefit above four terms for this case. Table I shows

the 2-norms of the transient errors and backs up this message.
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Fig. 2. Responses with a frequency of w = 0.314 (rad/sample).
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Fig. 3. Disturbance responses with a frequency of w = 0.0314

(rad/sample).

TABLE I

2-NORMS OF TRANSIENT ERRORS

nQ = 0 nQ = 2 nQ = 4 nQ = 7

w=0.0314 0.0273 0.0037 0.0026 0.0026

w=0.314 1.95 0.3033 0.2117 0.2115
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Fig. 4. Responses with a frequency of w = 0.0314 (rad/sample).
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Fig. 5. Responses with a frequency of w = 0.314 (rad/sample).
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VII. CONCLUSIONS

This paper has developed an MPC algorithm for tracking

sinusoidal set points, a scenario that has been largely ignored

in the predictive control community. The algorithm works

well and also rejects disturbances with the same sinusoidal

component. Further contributions are to show how the pre-

filter can be reduced to a minimal order, without any loss

of performance and also to provide simple, and therefore

potentially adaptive, mechanisms for augmenting the prefilter

dynamics systematically to improve transient behaviour.

This paper is an initial work and in future studies we

intend to look more carefully at issues such as constraint

handling, nuances with multivariable systems and also some

case studies such as the cutting tool.
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