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Abstract— This paper develops a novel mechanism for man-
aging the performance and feasibility trade off within predictive
control. Specifically, it demonstrates that the potential of
Laguerre functions needs more investigation by the community
as this offers a simple and effective alternative to the more
usual parameterisations using pulse operator in the predictions.
The paper develops a simple and efficient dual-mode algorithm
using Laguerre functions and demonstrates, by example, the
improvements with respect to a conventional approach, in terms
of performance and feasibility benefits.

I. INTRODUCTION

Although linear predictive control [6], [10], [2] is well

established and widely used, there are still some theoretical

and practical issues which have non-satisfactory answers.

One well understood conflict is that between feasibility

and performance. A controller that is well tuned to give

high performance will often have relatively small feasible

regions [14], [5] unless one uses a prohibitive number of

decision variables (or degrees of freedom, d.o.f.). Conversely,

a strategy giving good feasibility may will achieve this

through de-tuning and thus have relatively poor performance.

Several authors have considered this problem from dif-

ferent angles. The simplest approach is to adopt saturation

control when the controller is infeasible [9], but this is

only really applicable to stable systems with no output/state

constraints and, may give poor performance where the open

loop dynamics are poor. A similar but slightly more complex

solution was proposed in [15] where the strategy is to use

a look up table and choose from a set of predetermined

controllers, the best performing of the feasible options. Both

these strategies do not consider in detail the observation

made most clear in parametric methods [1], that is the

constrained optimal sequence has affine dependence on the

state and is linear time varying; thus it seems logical to

pursue this latter avenue.

Some interesting work considered so called triple mode

strategies [12], [4] where one embeds a smooth transition

between a controller with good feasibility and one with

good performance into a single model and use the decision

variables to improve performance/feasibility further still.

This work is successful but relies on heavy computation and

algebra in the off-line parts and thus may be difficult for

industrialists to implement.
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This paper considers another alternative which is strongly

related to a theme the first author has pursued for several

years. It seems reasonable to structure the input predictions

such that the desired behaviour is included in the class of

possible optimisation outcomes; this way the optimisation is

able to give an LQR optimal (e.g. [14], [13]). Such a structure

implies that the predictions evolve over an infinite horizon,

as opposed to the finite horizon input predictions common in

DMC and GPC. The difficulty is that using the LQR optimal

as the main base can give very poor feasibility [5] with low

numbers of d.o.f. and this because the decision variables are

commonly taken as perturbations to the optimal trajectory at

just a few, say nc, points; hence the initial state is restricted

to the points that can reach a small unconstrained feasible

region in just nc samples. One might overcome this limitation

if the class of predictions included other trajectories that also

evolve over an infinite horizon, thus relaxing the time scale

required to enter a target set. Interpolation methods [11] are

one way of augmenting the prediction set while maintaining

a tight hold on the number of d.o.f., but this paper aims to

consider a relatively novel and under publicised alternative

which has strong links to the PFC algorithm [8].

Perhaps going against the common trend of the last

decade, the proposal is to make use of open loop predictions.

This may seem opposed to the more usual terminal (or

dual) mode approaches but as the reader will see, elements

of both are required and this is one aspect of the novelty.

Conceptually, the main thrust of this paper is to interpolate

between predictions which evolve over a long horizon rather

than the more usual finite horizon. One argument [16], [17]

is that the typical choices of d.o.f. in GPC and DMC were

chosen for convenience and transparency, not because they

were the best way to map the desired set. There exist other

othorgonal choices of trajectory such as Laguerre functions

which may introduce other benefits. A parallel but related

argument made by proponents of PFC is that one should

know roughly what the desired closed-loop dynamic is, and

ensure this is explicitly included in the design process.

In summary this paper will make two main contributions.

First it will revisit the use of Laguerre functions with

a standard DMC/GPC type of algorithm and demonstrate

clearly the potential benefits. Secondly, these insights will

be transferred to a more sophisticated dual mode algorithm

and it will be shown that, in some cases, one can obtain huge

feasibility improvements over a standard algorithm such as

[14] without necessarily any sacrifice of performance. We

should point out that, in our view, theoretical proofs of which

method is better are unlikely to be tractable and useful and
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it is more important to add the proposed approach to the

toolkit so that it is available when it gives clear benefits.

Section II will give the necessary mathematical background

on conventional MPC algorithms and Laguerre functions,

then section III will develop novel MPC algorithms using

both open-loop and closed-loop predictions but combining

Laguerre functions with the decision variables. Section IV

gives numerical examples of the efficacy of the proposed

algorithms and is followed by conclusions.

II. MODELLING, PREDICTIVE CONTROL AND LAGUERRE

This section will introduce the assumptions used in the

paper and background information.

A. Model, constraints and integral action

Assume a standard state space model of the form:

xk+1 = Axk + Buk; wk = Cxk + dk (1)

with dk the disturbance; let the measured plant output be

given as yk. We will use an independent model approach to

prediction and disturbance estimation, so if w is the output

of the independent model (given by simulating model (1)

in parallel with the plant), then the disturbance estimate is

d̂k = yk − wk.

Disturbance rejection and offset free tracking will be

achieved using the offset form of state feedback [7], that

is:

uk − uss = −K(xk − xss) (2)

where xk is the state of the independent model and xss, uss

are estimated values of the steady-states giving no offset;

these depend upon the model parameters, the set point r and

the disturbance estimate. For simplicity (for details M1, M2

see [7] ) define:

xss = M1(rk − d̂k); uss = M2(rk − d̂k) (3)

Let the system be subject to constraints of the form

u ≤ uk ≤ u

∆u ≤ ∆uk ≤ ∆u

y ≤ yk ≤ y






∀k (4)

B. Predictive control - DMC/GPC

In the literature, DMC/GPC algorithms are derived based

on control increments (e.g. [10]). However, to ensure consis-

tency with the dual-mode approaches discussed later, the cost

function and predictions are based on offset from steady-state

rather than control increments.

Open-loop output predictions over some horizon ny can

be computed to have the following form1:

y−→k = H u−→k−1 + Pxk + Ld̂k (5)

1The state xk is obtained from the independent model.

where the matrices H, P depend on the model parameters

and horizons, L is [I, I, ..., I]T and the arrow notation (right

for future) is defined as follows:

y−→k =








yk+1

yk+2

...

yk+ny








; u−→k−1 =








uk

uk+1

...

uk+nu−1








(6)

Typically for DMC/GPC it is assumed that uk+nu+i =
uss, i ≥ 0 with nu << ny . The performance index is given

as:

J = ‖Wy(Lrk − y−→k)‖2
2 + ‖Wu( u−→k−1 − Luss)‖2

2 (7)

where Wy, Wu are tuning weights. The control law is given

by the first component of:

u−→k−1 = arg min
u
−→

k−1

J s.t. (4) (8)

C. Optimal MPC or OMPC

In the case of optimal MPC [14], [13], the predictions

are based around the unconstrained optimal (essentially what

you would get with the same cost function based on infinite

input and output horizons), hence define the unconstrained

optimal feedback minimising J for infinite horizons to be

Ko. By embedding this optimal into the prediction class, then

optimal behaviour should ensue whenever that is feasible

(satisfies constraints).

To allow for constraints it is necessary to allow pertur-

bations about the unconstrained optimal predictions, hence

define the perturbed input predictions at the current sample

as:

uk+i − uss = −Ko(xk+i − xss) + ck+i (9)

with ck+i = 0, i ≥ nc. It can be shown easily [10] that

substituting this prediction into the cost J with infinite

horizons, the cost takes the form:

J =

nc−1∑

i=0

cT
k+iSck+i (10)

with S = BT ΣB + R, Σ − ΦT ΣΦ = Q + KT
o RKo, Φ =

A−BKo. Hence the MPC algorithm, here denoted as OMPC

for optimal MPC, is given from:

c−→k−1 = arg min
c
−→

k−1

nc−1∑

i=0

cT
k+iSck+i s.t. (4) (11)

The first component of c−→k−1 is used to define uk from (9).

D. Laguerre polynomials

Laguerre polynomials are defined as follows:

Li(z) =
√

(1 − a2)
(z−1 − a)i−1

(1 − az−1)i
; 0 ≤ a < 1 (12)

These are othornormal and hence span the input prediction

space effectively.

The key point to note is that conventional algorithms such

as GPC/OMPC summarised in the earlier sections use d.o.f.
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over just the next nu, nc samples because these assume in

prediction that uk+i = uss, i ≥ nu or ck+i = 0, i ≥ nc.

Usually nu, nc are chosen to be small, say one or two, and

hence there is little flexibility in the prediction class.

Laguerre polynomials with a > 0 evolve over an infinite

horizon and the speed of convergence is linked directly to

the ’time scaling factor’ a. If the ‘best’ closed-loop input

trajectory is expected to evolve with a given time constant,

then it is intuitively obvious that an appropriate mix of

Laguerre polynomials with this time scaling factor is more

likely to get close to the ideal trajectory than a mix of simple

input values (i.e. equivalent to using pulse operators) over a

short finite horizon. In a similar vein, where a state is a

long way from the unconstrained feasible region, a small

number of simple input perturbations is not sufficient to

regain feasibility [5] and hence conventional algorithms may

have poor feasibility. Laguerre provides a more complete

alternative trajectory and thus may improve feasibility.

Remark 2.1: One can reconstitute the normal GPC de-

cision variables (i.e. uk, uk+1, ...) by noting that these are

replicated by Laguerre with a = 0. Hence, if a = 0 then

L0 = [1, 0, 0, . . .], L1 = [0, 1, 0, 0, . . .], etc.

For completeness, a means of computing the sequences

for any a is given in appendix 1. Specifically this shows

how one might build up an input prediction u−→k−1 from an

appropriate mix of Laguerre polynomials.

E. Summary

This section has summarised two popular MPC algorithms

in their usual form and argued that replacing the more usual

decision variables of uk+i, ck+i with Laguerre polynomials

Li may bring about benefits. The remainder of this paper

shows how this might be done and demonstrates the potential

benefits of doing so.

III. USING LAGUERRE POLYNOMIALS IN GPC AND

OMPC

This section derives GPC/DMC and OMPC algorithms

which use a mix of Laguerre polynomials as the decision

variables. For ease of distinction these are denoted as LDMC

and LOMPC for Laguerre DMC and Laguerre OMPC respec-

tively. As the algebra is relatively routine, the presentation

is deliberately concise.

A. A Laguerre DMC algorithm

The DMC form of the prediction was given in (5). The

only change being proposed here is to replace the decision

variables in the future control sequence. The reader is

reminded that it is important with the disturbance model

adopted to include the estimated steady-state value of the

input explicitly and optimise around this, hence we use the

Laguerre polynomial as a perturbation about the expected

steady-state.

To better enable the reader to see the differences, here we

place the DMC and LDMC input prediction sequences side

by side:

u−→k−1 =













uk

...

uk+nu−1

uss

uss

...













︸ ︷︷ ︸

DMC

or u−→k−1 = HLη +













uss

...

uss

uss

uss

...













︸ ︷︷ ︸

LDMC
(13)

where HL is defined in appendix 1. The LDMC output pre-

dictions are determined by substituting the input predictions

into (5), that is:

y−→k = H [HLη + Luss] + Pxk + Ld̂k (14)

Here after everything is standard except that the constraints

are parameterized using the same Laguerre parameter vector

η (see [17]). Substitute predictions (14) into the cost function

((7) such that:

JLDMC = ‖Wy(Lrk − H [HLη + Luss] + Pxk + Ld̂k)‖2
2

+ ‖WuHLη‖2
2 (15)

Next minimise JLDMC wrt η and subject to constraints

η = argmin
η

JLDMC s.t. (4) (16)

The control law is given by substituting the optimum η into

(13b) and then implementing the first value of the predicted

input trajectory, that is by taking the top row of (13b).

B. Laguerre OMPC or LOMPC

OMPC is, by design, based around the unconstrained

optimal sequence. This basic concept is preserved and thus

the Laguerre polynomials are used, not to model the input

trajectories directly but rather the perturbations ck around the

unconstrained optimal (which already includes uss). For ease

of viewing and in a similar fashion to the previous section,

the corresponding predictions for the decision variables used

in OMPC and LOMPC are put side by:

c−→k−1 =













ck

...

ck+nc−1

0
0
...













︸ ︷︷ ︸

OMPC

or c−→k−1 = HLη
︸︷︷︸

LOMPC

(17)

The reader will note that one key difference here is that the

HL matrix has a large number of rows2 and, as mentioned

before, sufficient rows must be included to capture all the

dynamics within the constraint handling. To ensure a a

proper synergy with the OMPC algorithm and to allow strict

statements about recursive feasibility and convergence, we

2Technically infinite but as with all MPC it usual to go up a given horizon
only or capture the asymptotic behaviour with Lyapunov equations.
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will demonstrate how easily the corresponding cost J can

be computed which includes the entire implied dynamic.

1) For LOMPC the predicted cost can be represented in

terms of perturbations ck as:

J =

∞∑

i=0

cT
k+iSck+i (18)

2) Next, note that for LOMPC we define ck+i = L(i)T η

where L(i) is a multivariable equivalent if required

(see appendix 1).

3) Finally, substitute into (18) to give

JLOMPC =

∞∑

i=0

ηT L(i)SL(i)T η (19)

4) Next, substitute from equation (22) which has L(i) =
ALL(i − 1) and hence:

JLOMPC = ηT [

∞∑

i=0

Ai
LL(0)SL(0)T (Ai

L)T ]

︸ ︷︷ ︸

SL

η (20)

Hereafter everything is standard. Find the η which minimises

cost (20) wrt η subject to the corresponding predictions

meeting constraints.

η = arg min
η

JLOMPC s.t. (4) (21)

Then reconstitute the first value of the predicted input

trajectory uk using ck = L(0)T η and (9).

Remark 3.1: It is straightforward to show, with conven-

tional arguments, that the LOMPC algorithm gives guaran-

teed stability in the nominal case and offset free tracking

when that is feasible.

IV. NUMERICAL EXAMPLES

This section will illustrate the efficacy of the proposed

LDMC, LOMPC algorithms by way of numerical examples.

A. Explanation of illustrations or comparisons

Specifically the aim here is to compare two aspects:

• The closed-loop performance for a range of initial

conditions.

This is measured by computing the performance index

J over a time span long enough for the system to have

converged. The global optimum (the OMPC algorithm

with high nc) is used a measure of how far the algo-

rithms are from optimal. The figures typically show the

ratio of a given algorithm cost to the global optimal cost

so the nearer to one the better; however a zero denotes

infeasibility.

• The volume or extent of the feasible region for a range

of state directions.

As it is difficult to plot in higher than 2D space, instead

we choose state directions and compute how far out in

these directions a feasible solution exists; the maximum

distance points for various directions could be denoted

pi. The various algorithms are then tested for initial
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Fig. 1. Ratio of algorithm cost with global optimum for several directions.

points λpi, 0 ≤ λ ≤ 1. Clearly the larger lambda for

which they are feasible, the larger the feasible region in

that specific direction. Infeasibility is denoted by a zero

in the cost plots.

B. Example 1

For this example the model is given as:

A =





1.4000 −0.1050 −0.1080
2 0 0
0 1 0



 ; B =





0.2
0
0



 ;

C =
[

5 7.5 0.5
]
.

The constraints are:

u = 0.04 = −u; ∆u = 0.02 = −∆u; y = 1.2 = −y.

The tuning parameters are Wu = 10, Wy = 1, nu = nc =
2, a = 0.5. There are ten directions for the initial states,

evenly spread.

Figure 1 shows how the various algorithms performed

compared to the global optimum for the various directions

as lambda is varied between zero and one. Each direction is

denoted by a single curve and infeasibility is denoted by the

curve becoming zero.

• A comparison of the top two subplots in figure 1(DMC

and LDMC) and in particular the scale on the vertical

axis, demonstrates that LDMC has much better perfor-

mance than DMC but the feasible regions are similar.

• A comparison of the bottom two subplots in figure

1(LOMPC and OMPC) shows performance close to

the optimum when feasible, but clearly LOMPC has

much better feasibility as the curves do not drop to

zero until higher values of lambda. Figure 2 extends

this feasibility comparison further by showing the ratio

of JLOMPC/JOMPC, and clearly this ratio is close to or

less than one when both are feasible and then zero for

larger lambda because OMPC has become infeasible.
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C. Example 2

For this example the model is given as:

A =







0.9146 0 0.0405 0.1
0.1665 0.1353 0.0058 −0.2

0 0 0.1353 0.5
−0.2 0 0 0.8







;

B =







0.0544 −0.0757
0.0053 0.1477
0.8647 0

0.5 0.2







;

C =

[
1.7993 13.2160 0 0.1
0.8233 0 0 −0.3

]

.

The constraints are:

u =

[
1
2

]

; u =

[
−1
−2

]

; ∆u =

[
0.5
0.5

]

; ∆u =

[
−0.5
−0.5

]

;

y =

[
7
1

]

; y =

[
−3
−1

]

.

The tuning parameters are Wu = 1, Wy = 1, nu = nc =
3, a = 0.5. There are fifteen directions for the initial states,

evenly spread.

Figures 3 and 4 give the same comparisons as explained in

figures 1 and 2. Similar conclusions can be derived, although

for this example the feasibility and performance benefits are

not as significant except in a few directions. A smaller value

of the scaling factor a might be better suited.

V. CONCLUSIONS

The paper has argued for the potential benefits of Laguerre

functions within MPC and more specifically, developed ear-

lier work by integrating these systematically into a dual
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Fig. 4. Ratio of LOMPC cost with OMPC cost for several directions.

mode approach, denoted LOMPC. It has been shown by

example that this algorithm can outperform a conventional

dual mode algorithm by giving substantially better feasibility

without compromise to performance. In fact, with example

1, it is notable that for some search directions, one can

get feasibility as much as twice as far out with no loss in

performance, and this while using exactly the same number

of decision variables and optimisation complexity.

We believe the field of how to parameterise the flexibility

within the predictions of MPC is understudied, with many

authors defaulting to the conventional choice of the explicit

values at given sample instants. For our part, the author

intends to develop this area further and also look at how the

concepts and advantages compare to the recently proposed

alternative of clever detuning [3].
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VI. APPENDIX 1: LAGUERRE PREDICTIONS

The Laguerre sequences can be computed using the fol-

lowing state space model.

L(k + 1) =










a 0 0 0 · · ·
β a 0 0 · · ·

−aβ β a 0 · · ·
a2β −aβ β a · · ·

...
...

...
...

. . .










︸ ︷︷ ︸

AL

L(k);

L(0) =
√

1 − a2










1
−a

a2

−a3

...










; β = 1 − a2

(22)

where L(k) = [l1(k) l2(k) l3(k) ... lN (k)]T containing the

set of Laguerre functions. The dimension of this state space

predictor can be taken as large (or small) as needed to capture

the desired polynomial sequences. A combination of these

sequences up to a horizon n could be computed as

u−→k−1 =








L(0)T

L(1)T

...

L(n)T








︸ ︷︷ ︸

HL

η (23)

where η is the nL dimension decision variable when one

uses the first nL columns of HL.

NOTE: because the sequences evolve with a time scaling

factor a, it is usually important to ensure that the prediction

horizon adopted is large enough to capture all the key

dynamics; this for the same reasons practitioners use large

output horizons with MPC.

Remark 6.1: For multivariable signals, one can easily

modify the above algebra to allow a separate set of sequences

for each loop. Hence, it is also easy to allow different a for

different loops. This detail is omitted.
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