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I. INTRODUCTION

The rarefaction of global water resources is a motivation
for research on automation of management of water distri-
bution systems. Large amounts of fresh water are lost due
to poor management of open-channel systems. This article
focuses on the management of such canals which are used
to convey water from the resource (generally a dam located
upstream) to a specific downstream location. Due to the
fluctuations of water needs, water demand changes with time.
This change in demand calls for the efficient operation of
the open-channel systems to avoid overflows and to supply
desired flow rates at pre-specified time instants.

Automation techniques based on optimization and control
provide more efficient management strategies than manual
techniques. They rely on flow models, in particular the Saint-
Venant equations [1] or simplified versions of these equa-
tions to describe one-dimensional hydraulic systems. Water
level regulation and control of the water flow are among
the methods used to improve the efficiency of irrigation
systems. These techniques allow engineers to regulate the
flow in hydraulic canals and therefore to irrigate large areas
according to predicted consumption.

In this article, the specific problem of controlling the
downstream flow in a one-dimensional hydraulic canal by
upstream discharges is investigated. Several approaches to
this problem have already been described in the literature.
The majority of these approaches use linear controllers to
control the (nonlinear) dynamics of the canal system. Such
methods include transfer function analysis for Saint-Venant
equations [16] which in turn allows the use of classical con-
trol techniques for feedback [5], [14]. Alternatively, Rieman
invariants for hyperbolic conservation laws as in [6], [7]
can be used to construct Lyapunov functions, used for stabi-
lization purposes. Adjoint methods [26] have been used for
estimation and control, via sensitivity analysis. More closely
related to the present study, open-loop control methods have
been developed either by computing the solutions of the flow
equations backwards using discretization and finite difference
methods [4], [3], or using a finite dimensional approximation
in the frequency domain [15], [22]. Our approach is to design
an open-loop controller that expresses the upstream discharge
explicitly as a function of the desired downstream discharge

at a given location. It can be shown using Lyapunov stability
method that the open-loop system is stable [11], [27], which
provides another justification for open-loop control of the
considered system. We will use two approaches: a differential
flatness approach based on Cauchy-Kovalevskaya series and
a frequency approach based on the Laplace transform.

In the context of partial differential equations, differential
flatness was used to investigate the related problem of heavy
chains motion planning [21], as well as the Burgers equation
in [20] or the telegraph equation in [10]. The theory of
differential flatness, which was first developed in [9], consists
in a parametrization of the trajectories of a system by one
of its output, called the “flat output”.

Starting from the classical Saint-Venant equations widely
used to model unsteady flows in rivers [1], we present
a model simplification and a linearization which lead to
the Hayami partial differential equation as shown in [19].
The practicality of using the Hayami equation lies in the
need of only two numerical parameters to characterize flow
conditions: celerity and diffusivity. The original Saint-Venant
equation requires the knowledge of the full geometry of
the canal and of the roughness coefficient, which make
it impractical for long rivers where these parameters are
difficult to estimate.

The problem of controlling the Hayami equation was
already investigated [16] with transfer function analysis, and
in [13] for parameter estimation. The Hayami equation is
closely linked to the diffusive wave equation with quadratic
source terms, which have been studied in [8] and [17].
The difference between our problem and the aforementioned
problem is the nature of the boundary conditions: indeed,
unlike heat transfer problems, one cannot impose a value
for the downstream discharge (respectively heat flux). In
river flow, there are hydraulic structures such as weirs which
impose a static relation between water elevation and the
flow. In fact, we show that the solution of our problem is
a composite of the solution in [17] and an additional term
which captures the boundary condition set by the hydraulic
structure, therefore required to solve the specific problem of
interest in this study.
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The article is organized as follows: a description of the
physical problem and the system of equations to be solved
is first introduced (section II). Then, in section III, a solution
of these equations is devised using differential flatness and
transfer function analysis. The equivalence of the two ap-
proaches is shown analytically. A statement of convergence
is made about the controller infinite series. A numerical
assessment of the open-loop controller is finally presented
and discussed in section IV. In particular, the difference
with controllers synthesized in the context of heat transfer
is illustrated through numerical simulation. Applications of
the controller on the fully nonlinear Saint-Venant model are
presented to show the usefulness of the proposed method for
a full nonlinear system.

II. PHYSICAL PROBLEM

The system of interest is a hydraulic canal of length L. For
simplicity, the canal is assumed to have a uniform rectangular
cross-section but more complex geometries can easily be
taken into account. In this section we present the equations
that govern the system, the Saint-Venant equations. We then
derive the Hayami model which is a simplification of these
equations.

A. Saint-Venant Equations

The Saint-Venant equations [1] are generally used to
describe unsteady flows in rivers or canals [19]. These equa-
tions assume one-dimensional flow, with uniform velocity
over the cross-section. The effect of boundary friction and
turbulence is accounted for through resistance laws such as
the Manning-Strickler one [28] the average channel bed slope
is assumed to be small, and the pressure is hydrostatic. These
equations are written as follows:

At +Qx = 0 (1)

Qt +
(
Q2

A

)
x

+ gAYx = gA(Sb − Sf ) (2)

with A(x, t) the wetted cross-sectional area (m2), Q(x, t)
the discharge (m3/s) across section A(x, t), Y (x, t) the
water depth (m), Sf (x, t) the friction slope, Sb the bed slope,
and g the gravitational acceleration (m2/s). For rectangular
cross sectional geometries, these variables are linked by
the following relations: A(x, t) = Y (x, t)B0, Z(x, t) =
Y (x, t) + Sb(L − x) and Q(x, t) = V (x, t)A(x, t) where
Z(x, t) is the absolute water elevation (m), V (x, t) is the
mean water velocity (m/s) across section A(x, t), and B0

is the bed width (m). Equation (1) is referred to as the
mass conservation equation, and equation (2) is called the
momentum conservation equation. We assume that there is
a cross-structure at the downstream end of the canal, which
can be modeled by a static relation between Q and Z at
x = L, i.e:

Q(L, t) = W (Z(L, t)) (3)

where W (.) is an analytical function. For a weir struc-
ture, this relation can be assumed to be Q(L, t) =

Cw (Z(L, t)− Zw)3/2 where Zw is the weir elevation, and
Cw a positive constant depending on the physical character-
istics of the weir.

B. Hayami Model

Depending on the characteristics of the river, some terms
in the momentum equation (2) can be neglected, which
allows us to simplify the two equations and to assemble them
into a single partial differential equation. As shown in [16],
assuming that the inertia terms Qt+

(
Q2

A

)
x

can be neglected
with respect to gAYx will lead to the diffusive wave model:

BYt +Qx = 0 (4)
Zx = −Sf (5)

The two equations can be combined and will lead to the
diffusive wave equation:

Qt + CQx −DQxx = 0 (6)

where Q(x, t) is the flow (m3/s), C and D usually known
as the celerity and the diffusivity are non-linear functions
of the flow, depth, and location [9]. Linearizing equation (4)
around a reference discharge Q0 (i.e. Q(x, t) = Q0+q(x, t))
leads to the Hayami equation:

qt + C0qx −D0qxx = 0

where q(x, t) is the deviation from the nominal flow Q0,
C0(Q0) and D0(Q0) are the nominal celerity and diffusivity.
We call Z0 and B0 the reference elevation and width, and
also assume that Z(x, t) = Z0 + z(x, t), therefore equation
(4) can be linearized as follows:

B0zt + qx = 0

where we have substituted Yt by (Z − Sb(L− x))t = Zt
before linearizing. The right boundary condition (3) is also
linearized and becomes:

q(L, t) = bz(L, t)

where b is the linearization constant. The value of this
constant depends on the weir geometry: length, height, and
discharge coefficient.

C. Open-Loop Control Problem

The control problem illustrated in Figure 1, consists in
determining the control u(t) = q(0, t), i.e. the flow of
the upstream discharge, that yields the desired downstream
discharge y(t) = q(L, t), where y(t) is a user-defined flow
profile over time at the end of the canal.

We therefore have to solve a feed-forward control problem
for a system with boundary control (in the present case
upstream discharge). The dynamics are modeled by the
following equations:

∀x ∈]0, L[ ∀t ∈]0, T ] D0qxx − C0qx = qt (7)
∀x ∈]0, L[ ∀t ∈]0, T ] B0zt + qx = 0 (8)
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Fig. 1. Schematic representation of the canal with weir structure.

And a boundary condition is imposed at x = L by
equation (9):

∀t ∈]0, T ] q(L, t) = bz(L, t) (9)

And initial conditions defined by the deviations from the
nominal values:

∀x ∈]0, L[ q(x, 0) = 0
∀x ∈]0, L[ z(x, 0) = 0

The output is defined by:

∀t ∈]0, T ] y(t) = q(L, t) (10)

We are looking for the appropriate control u(·) which will
generate the y(t) defined by (10) is defined by equation (11),
where u(.) is defined by:

∀t ∈ [0, T ] q(0, t) = u(t) (11)

III. COMPUTATION OF THE OPEN LOOP CONTROL INPUT
FOR THE HAYAMI MODEL

In this section we solve the control problem given by
equations (7-10) and try to parametrize the flow q(x, t) in
terms of the discharge q(L, t) or y(t). We will produce a
solution to this problem using two approaches:

1) An approach based on Cauchy-Kovalevskaya decom-
position

2) A frequency approach based on Laplace transform.
The transfer function approach does not make the assumption
that the considered functions are expandable in the Cauchy-
Kovelevskaya form, therefore is a priori more general. In
the present case as will be shown below, the result for the
algebraic expression obtained shows equivalence of the two
methods (a posteriori assessment).

A. Cauchy-Kovalevskaya Form Approach

Following [23], equation (7) can be transformed into the
heat equation. Let us consider the following transformation:

q(x, t) = h(x, t)p(x, t) (12)

where h(x, t) = e

(
−α2

β2 t+α(x−L)
)

, α = C0
2D0

, and β = 1√
D0

.
We have:

pth(x, t) = qt +
α2

β2
q

pxh(x, t) = qx − αq
pxxh(x, t) = qxx − 2αqx + α2q.

Substituting in equation (7), p(x, t) will satisfy:

pt =
1
β2
pxx (13)

The problem (7) - (10) can now be reformulated as follows

∀x ∈]0, L[ ∀t ∈]0, T ] pt =
1
β2
pxx (14)

∀x ∈]0, L[ ∀t ∈]0, T ] B0zt = −h(x, t) (px + αp)(15)
∀t ∈]0, T ] p(L, t) = bf(t)z(L, t) (16)
∀t ∈]0, T ] p(L, t) = f(t)y(t) (17)

where f(t) = e
α2

β2 t. The Cauchy-Kovalevskaya form [12]
consists in expressing the solution of the PDE in power
series, in the present case as a function of p(L, t) (resp.
z(L, t)) and all its derivatives. The Cauchy-Kovalevskaya
decomposition is a standard way of parametrizing the input
as a function of the output for particularly parabolic and
linear PDEs. We assume the following form for p and z:

p(x, t) =
+∞∑
i=0

pi(t)
(x− L)i

i!
, (18)

z(x, t) =
+∞∑
i=0

zi(t)
(x− L)i

i!
. (19)

where pi(t) and zi(t) are C∞ functions. We have:

pt =
+∞∑
i=0

ṗi
(x− L)i

i!
,

pxx =
+∞∑
i=0

pi+2
(x− L)i

i!
,

where ṗi denotes the time derivative of pi(t). After sub-
stitution in equation (14), we obtain:

+∞∑
i=0

ṗi
(x− L)i

i!
=

1
β2

+∞∑
i=0

pi+2
(x− L)i

i!

Equating the coefficients of (x−L)i

i! gives for all i ∈ N:

pi+2(t) = β2ṗi(t) (20)

Additionally, it follows from equation (18) and equation (19)
that p0 = p(L, t) and z0 = z(L, t). We still need a condition
on p1 to be able to express every pi as a function of p0.
We combine equation (15) and equation (16) to obtain a
boundary condition on p at x = L. We have:

zt =
+∞∑
i=0

żi
(x− L)i

i!

So that ż0 = zt(L, t), and equation (15), with x = L gives:

B0ż0 + e
−α2

β2 t (p1 + αp0) = 0. (21)

In addition, equation (16) gives:

p0 = bz0e
α2

β2 t.
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Differentiating this equation with respect to time, we get:

ż0 =
1
b

(
ṗ0 −

α2

β2
p0

)
e
−α2

β2 t,

and eventually; plugging back into equation (21), we obtain:

p1 = −B0

b
ṗ0 + κp0.

where κ = B0
b
α2

β2 −α. Using the induction relation (20) and
the expression of p0 and p1, we can compute separately the
odd and even terms:

p2i = β2ip
(i)
0

p2i+1 = κβ2ip
(i)
0 −

B0

b
β2ip

(i+1)
0

where p
(i)
0 stands for the ith time derivative of p0(t).

Therefore, we can formally write p(x, t) as follows:

p(x, t) =
+∞∑
i=0

β2ip
(i)
0

(x− L)2i

(2i)!

+
+∞∑
i=0

β2i

(
κp

(i)
0 −

B0

b
p
(i+1)
0

)
(x− L)2i+1

(2i+ 1)!
.

From equation (17), we deduce that p0(t) = f(t)y(t). The
final parametrization of the flow q(x, t) will have the form:

q(x, t) = h(x, t)
(
T1(x, t) + κT2(x, t)−

B0

b
T3(x, t)

)
,

(22)
where

T1(x, t) =
+∞∑
i=0

(fy)(i)
β2i(x− L)2i

(2i)!
, (23)

T2(x, t) =
+∞∑
i=0

(fy)(i)
β2i(x− L)2i+1

(2i+ 1)!
, (24)

and

T3(x, t) =
+∞∑
i=0

(fy)(i+1) β
2i(x− L)2i+1

(2i+ 1)!
. (25)

Equation (22) relates the discharge variation q(x, t) as a
function of the desired flat output y(t) which corresponds
to the discharge q(L, t) at the downstream end of the canal.
The output y(t) is sometimes referred to as “flat”, which
in the present context means that it is possible to express
the input of the system u(t) explicitly as a function of the
desired output y(t) and its derivatives. This also defines the
parametrization of the state q(x, t) as a function of the same
derivatives. This solution is formal, and the convergence of
the infinite series needs to be assessed. Before we investigate
this issue, we solve the problem in the frequency domain, to
prove the equivalence of the two approaches.

B. Feed-forward Controller Design using the Frequency
Approach Based on Laplace Transform

The frequency approach uses the Laplace transform of the
equations of section II-C, and provides algebraic expressions
instead of partial differential equations by converting deriva-
tives w.r.t time t into multiplications by the Laplace variable
s. After finding the algebraic expression of the solution in
the Laplace domain, we can carry out an inverse Laplace
transform to find the parametrization of q(x, t) in terms of the
desired output flow y(t). For Laplace notations, we define for
any function l(x, t), t ≥ 0, the temporal Laplace transform,

noted L(l(x, t)), or l̂(x, s) to be: l̂(x, s) =
∞∫
0

e−stl(x, t)dt.

Applying Laplace transform to equations (7), (8) and in-
troducing the boundary conditions leads to the frequency
representation of the Hayami model:

q̂(x, s) =
P (x, s)
Q(s)

û(s) (26)

where P (x, s) and Q(s) are defined by:

P (x, s) = eαx ((B0s+ αb) sinh(γ(s)(L− x))
+ γ(s)b cosh(γ(s)(L− x))) ,

Q(s) = (B0s+ αb) sinh(γ(s)L) + γ(s)b cosh(γ(s)L),

and γ(s) = β
√
s+ α2

β2 .
Equation (26) relates the flow in the Laplace domain at any

point x, q̂(x, s), to the input flow prescribed by the control
input û(s). We want to derive an algebraic expression that
relates q̂(x, s) to the desired output ŷ(s). We proceed by
evaluating equation (26) at x = L to obtain:

ŷ(s) =
P (L, s)
Q(s)

û(s) (27)

Dividing equation (26) by equation (27) leads to the follow-
ing expression:

q̂(x, s)
ŷ(s)

=
P (x, s)
P (L, s)

(28)

Developing the hyperbolic functions of P (x, s), in terms of
their power series, we obtain:

P (x, s) = eαx

(
(B0s+ αb)

+∞∑
i=0

(γ(s)(L− x))2i+1

(2i+ 1)!

+γ(s)b
+∞∑
i=0

(γ(s)(L− x))2i

(2i)!

)
(29)

We substitute equation (29) into equation (28) and express
q̂(x, s) in terms of the constants defined in section III.

q̂(x, s) = eα(x−L)

(
+∞∑
i=0

(
s+

α2

β2

)i
β2i(x− L)2i

(2i)!

+
+∞∑
i=0

β2i

(
κ

(
s+

α2

β2

)i
−B0

b

(
s+

α2

β2

)i+1 (x− L)2i+1

(2i+ 1)!

)
ŷ(s)(30)
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We carry out the inverse Laplace transform and express
q(x, t) in terms of y(t) in the time domain. Using the inverse
Laplace transformation rules: L−1(ĝ(s+a)) = g(t)e−at and
L−1(sĝ(s)) = ġ(t) + g(0) where g(t) is any time function
and a is a constant, we can use the following identity:

L−1((s+ a)iĝ(s)) = (g(t)eat)(i) (31)

where we have assumed zero initial conditions. Applying
equation (31) with a = α2

β2 and ĝ(s) = ŷ(s) to equation
(30), we obtain:

q(x, t) = h(x, t)
(
T1(x, t) + κT2(x, t)−

B0

b
T3(x, t)

)
(32)

where T1(x, t), T2(x, t), T3(x, t) are defined in equations
(23), (24), and (25), and h(x, t) is defined in equation (12).
Comparing equations (22) and (32), we conclude that the
algebraic solution obtained with the frequency approach
is identical to the solution obtained with the Cauchy-
Kovalevskaya approach.

C. Convergence of the Infinite Series

We now give the formal proof of convergence of the series
in equation (32) or (22). We assume that the flat output y(t)
is a Gevrey function of order α > 0, i.e.:

∃m, l ∈ R ∃α > 0 ∀n ∈ N sup
t∈[0,T ]

∣∣∣y(n)(t)
∣∣∣ < m

(n!)α

ln

(33)

f(t) = e
α2

β2 t is Gevrey of order 0, and therefore is Gevrey of
order α. The product of two Gevrey functions of same order
is a Gevrey function of the same order, as a consequence,
f(t)y(t) is Gevrey of order α > 0. We will use the
Cauchy-Hadamard theorem [8] which states that the radius of

convergence of the Taylor series
+∞∑
i=0

anx
n is 1

lim sup
n→+∞

|an|1/n
.

The radius of convergence for T3(x, t) is given by:

1
ρ

= lim sup
i→+∞

(
β2i
∣∣(fy)(i+1)(t)

∣∣
(2i+ 1)!

) 1
2i+1

where ρ is the radius of convergence around L. We can find
an upper bound to 1

ρ by inducing the property of bounds on
a Gevrey function of order α > 0 from equation (33).

1
ρ
≤ lim sup

i→+∞

(
β2im ((i+1)!)α

li+1

(2i+ 1)!

) 1
2i+1

≤ lim sup
i→+∞

β
2i

2i+1m
1

2i+1

l
i+1
2i+1

(
((i+ 1)!)α

(2i+ 1)!

) 1
2i+1

∼ lim sup
i→+∞

β√
l

i+ 1
2i+ 1

(
i+ 1
e

) (α−2)i+(α−1)
2i+1

(34)

∼


+∞ α > 2
β

2
√
l

α = 2

0 α < 2

where in equation (34) we have used the fact that
((i+ 1)!)

1
i+1 ∼ i+1

e , and ((2i+ 1)!)
1

2i+1 ∼ 2i+1
e as an

immediate consequence of the Stirling formula. Also we have
used m

1
2i+1 ∼ 1, β

2i
2i+1 ∼ β and l

i+1
2i+1 ∼

√
l. This will

ensure an infinite radius of convergence for α < 2. Similar
calculations can be held for T1(x, t) and T2(x, t) leading to
the following conclusions:
• Equation (22) converges with an infinite radius of

convergence for the choice of a Gevrey function y(t)
of order α < 2.

• For α = 2, the radius of convergence is greater than
2
√
l

β , which provides convergence of the series for x ∈
[L− 2

√
l

β , L], given the definition of x ∈ [0, L].
• We can draw no conclusions on the convergence of the

series when α > 2.

IV. NUMERICAL ASSESSMENT OF THE PERFORMANCE
OF THE FEED-FORWARD CONTROLLER

In this section, we compute the control command u(t) by
evaluating equation (22) or (32) at x = 0. We subsequently
simulate the controller numerically on the Hayami model
equations (7) - (9) in order to evaluate their behavior before
testing them on the Saint-Venant equations. This section suc-
cessively investigates numerical simulations for the Hayami
and the Saint-Venant models.

A. Hayami Model Simulation

From section III-C, the infinite series convergence is
ensured by choosing y(t) to be a Gevrey function of order
α < 2. To meet this convergence condition following [12],
we introduce the bump function φσ(t) : R→ R defined as

φσ(t) =



0 t < 0
t/T∫
0

exp(−1/((τ(1−τ))σ)dτ

1∫
0

exp(−1/((τ(1−τ))σ)dτ

0 ≤ t ≤ T

1 t > T

where σ > 1, T > 0. The Gevrey order of the bump
function is 1 + 1/σ. The function φσ(t) is used in [8], [9],
[12], [17], [25], it is strictly increasing from 0 at t = 0 to
1 at t = T with zero derivatives at t = 0 and t = T . The
larger the σ parameter is, the faster is the transition. Setting
y(t) = q1φσ(t) will allow us to have a transition from zero
discharge flow for t ≤ 0 to a discharge flow equal to q1 for
t ≥ T , where q1 is a constant.

The upstream discharges or the control input u(t) can be
computed by substituting x = 0 in equation (22) or (32). We
obtain:

u(t) = h(0, t)
(
T1(0, t) + κT2(0, t)−

B0

b
T3(0, t)

)
(35)

For the Hayami model simulation,we consider increment-
ing the flow by 1m3/s from its nominal flow Q0 = 2.5m3/s
in 1 hour (T = 3600 seconds). We will take σ = 2
which will imply y(t) to be a Gevrey-function of order 1.5
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Fig. 2. Results of the numerical simulation of feed-forward control of the
Hayami equation. The desired downstream discharge is y(t), the upstream
discharge is u(t) , and the downstream discharge computed by solving the
Hayami model is q(L, t).

thus satisfying the convergence condition in section III-C.
The model parameters are L = 1000 m, C0 = 20 m/s,
D0 = 1800 m2/s, B0 = 7 m, and b = 1 m2/s. The
infinite series of the control input u(t) is approximated using
80 terms of the infinite series, and equations (7), (8), (9),
and (11) are solved using the Crank-Nicholson scheme. The
solution of the numerical scheme at x = L or q(L, t) is
compared to y(t), the desired downstream discharge flow.
The results of this simulation are shown in figure 2.

The discharge at the downstream follows the desired
discharge accurately which validates our control input. We
can now compare our result to other problems from the
literature.

In the context of thermal systems [12], an explicit open
loop controller was derived for the heat equation with zero
gradient boundary conditions. With some simple transforma-
tions in time and space we can relate the results [12] to our
problem. The transformed version of the equations of [12]
has the following form:

∀x ∈]0, L[ ∀t ∈]0, T ] D0qxx − C0qx = qt (36)
∀t ∈]0, T ] qx(L, t) = 0 (37)
∀x ∈]0, L[ q(x, 0) = 0
∀t ∈]0, T ] y(t) = q(L, t)
∀t ∈]0, T ] u(t) = q(0, t)

The solution of the control input for this particular problem
is:

uheat(t) = h(0, t) (T1(0, t)− αT2(0, t)) (38)

We can vary the value of the variable b in equation (35),
and observe its effect on u(t). This physically corresponds
to changing the height or the width of the weir located at
the downstream end of the canal. Figure 3 shows the effect
of varying b on the control input u.

We can see that by increasing the value of b, the func-
tion of u(t) numerically converges to uheat(t) described by
equation (38). This can be seen directly by inspection of the
limit of equation (35) as b tends to +∞ which would result
in equation (38). Substituting κ = B0

b
α2

β2 − α into equation

Fig. 3. Effect of varying b on the upstream discharge or control input u(t).

Fig. 4. Consequence of neglecting the boundary conditions in calculating
the upstream discharge. The desired downstream discharge is y(t), and the
downstream discharge calculated by solving the Hayami model with b =
1 m2/s and control input of equation (38) is q(L, t).

(35), we obtain:

u(t) = uheat(t) + ub(t)

where

ub(t) = h(0, t)
B0

b

(
α2

β2
T2(0, t)− T3(0, t)

)
As b tends to +∞, the boundary effect becomes negligible,
and equation (35) converges in the limit to equation (38), i.e.
in the limit u and uheat are identical.

If we were to use the controller in equation (38) to control
our problem with b = 1m2/s, we would obtain the results
shown in figure 4.

The effect can be seen in the transition which takes
approximately 1.6 hours instead of 1 hour. This shows
the considerable importance of boundary conditions on the
dynamics of the flow transfer. It is therefore very important
to take into account the physically true boundary conditions
in the open-loop control design to ensure a scheduled water
distribution.

B. Saint-Venant Model Simulation

In numerous cases, controlling the Saint-Venant equations
directly is impractical because of the required knowledge
for the geometry of the canal and the Saint-Venant pa-
rameters defined in section II-A. For this reason we have
used a simplification of the model to arrive to the Hayami
equation which requires only two parameters, C0 and D0.
The coefficient b, which represents the downstream boundary
condition, can easily be inferred from the weir equation. In
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this section we show numerically that a calibrated Hayami
model would provide us with an open-loop control law that
steers the Saint-Venant equation solution at x = L or the
flow discharge at the weir to the desired discharge accurately.
For the purpose of the simulation we use SIC, a computer
program developed by Cemagref [18], [2] to simulate the
upstream discharge and the measurement discharge at the
downstream. SIC solves the full nonlinear Saint-Venant equa-
tions using a finite difference scheme standard in hydraulics
(Preissmann scheme).

1) Hayami Model Identification: The purpose of model
identification is to identify the parameters C0, D0 and
b corresponding to the Hayami model and its boundary
condition parameter that would best approximate the real
flow governed by the Saint-Venant equations. This is done
with an upstream discharge in a form of a step input, the flow
discharges are monitored at the upstream and downstream
positions. The hydraulic identification is done classically by
finding the values of C0, D0 and b that minimize the error
between the computed downstream discharge by the solution
of the Crank-Nicholson scheme [29] and the measured
one. We therefore have to solve the following optimization
problem:

min
C0,D0,b>0

Tsim∫
0

|qSIC(τ)− qCN(C0, D0, b, τ)|2 dτ

where qSIC is the downstream flow generated by SIC, and qCN
is the downstream flow generated by the Crank-Nicholson
scheme, Tsim is the simulation time usually larger than
the period needed to reach steady state. In our case, the
identification was performed around a steady flow regime
of 1.7 m3/s, canal of length L = 4232 m, and bed width
B0 = 2 m. The average bottom slope is 3.8 × 10−4 and
the Manning coefficient is 0.024m−1/3s. This leads to the
following parameters: C0 = 2.02m/s, D0 = 1517.4m2/s,
and b = 0.43 m2/s. Note that this approach leads to a
plant/model mismatch. The theoretical quantification of this
mismatch is outside the scope of this work (it involves
the study of nonlinear hyperbolic conservation laws). The
numerical study of this mismatch is the topic of ongoing
work [24].

2) Saint-Venant Control: The experimental canal we
would like to simulate has the same properties as the one
we have used for identification in the previous section. We
are interested in raising the flow at the downstream from
2.5 m3/s to 3.5 m3/s in 4 hours. Setting the variables in
section IV-A to q1 = 1m3/s, T = 14400 s, and σ = 2 will
define the downstream profile y(t). The control input or the
discharge at the upstream can be calculated and the results
are shown in figure 5.

We notice that the open-loop control designed with the
Hayami model performs very well on the full nonlinear
Saint-Venant equations. As can be seen in Figure 5, the
reference output and the actual output achieved by the
Hayami controller on the full Saint-Venant equations are vi-
sually almost identical, which confirms the practicality of the

Fig. 5. Results of the implementation of our controller on the full
nonlinear Saint-Venant equations. The desired downstream discharge is
Qdesidred(t) = Q0 + y(t), the downstream discharge calculated by solving
the Saint-Venant equations in SIC is Q(L, t) = Q0 + q(L, t), and the
of the canal is Q(0, t) = Q0 + u(t) where u(t) is calculated using
the Hayami model open-loop controller. The nominal flow in the canal is
Q0 = 2.5 m3/s.

method for implementation on real canals. This shows that
the Hayami model is practical for the design of open-loop
control when the corresponding parameters are identified.

V. CONCLUSION

This article introduces a new method to design an open-
loop control based on the Hayami model for river flow
control. The open loop control law is derived in two ways
leading to identical analytical expressions. The controller
is obtained as an infinite series in terms of the desired
downstream discharge flow. We have given sufficient con-
ditions on the downstream profiles to ensure convergence.
The effect of the boundary condition is also investigated and
compared to previous studies realized for thermal systems.
The simulations show satisfactory results for controlling the
full Saint-Venant equations. We will apply our method of
open-loop controller design to Gignac Canal in Montpellier,
France and further validate our results, which will be done
in October 2008 with the seasonal opening of the canal for
experimental purposes.
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marées dans leur lit. Comptes rendus à l’Académie des Sciences,
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APPENDIX

Given a function l(x, t), t ≥ 0, its temporal Laplace
transform, noted L(l(x, t)), or l̂(x, s) is given by: l̂(x, s) =
∞∫
0

e−stl(x, t)dt.

Starting from equations (7)-(11), we relate q̂(x, s) the
Laplace transform of q(x, t) to q̂(0, s) the Laplace transform
of q(0, t).

We have L(qt(x, t)) = sq̂(x, s) − q(x, 0), L(qx(x, t)) =
q̂x(x, s), and L(qxx(x, t)) = q̂xx(x, s) with q(x, 0) = 0.
The property q(x, 0) = 0 results from section II-B: q(x, t)
is defined to be the deviation from the nominal flow, and at
t = 0 the deviation should be 0, i.e. q(x, 0) = 0.

Equation (7) becomes:

D0q̂xx(x, s)− C0q̂x(x, s) = sq̂(x, s)

This is an ordinary differential equation in the variable x,
whose characteristic equation is D0λ

2 − C0λ − s = 0. The
solution q̂(x, s) is of the following form:

q̂(x, s) = A1(s)eλ1(s)x +A2(s)eλ2(s)x (39)

with λ1(s) = α − γ(s), λ2(s) = α + γ(s) and α = C0
2D0

,

β = 1√
D0

, γ(s) = β
√
s+ α2

β2 as defined in sections III and
III-B.

Substituting equation (39) into equation (8) leads to:

ẑ(x, s) = − 1
B0s

(
A1λ1(s)eλ1(s)x +A2λ2(s)eλ2(s)x

)
.

Boundary conditions of equations (9) and (11) read as:

x = 0 A1(s) +A2(s) = û(s) (40)
x = L q̂(L, s) = bẑ(L, s). (41)

Equation (41) gives:

A1e
λ1(s)L +A2e

λ2(s)L = − b

B0s

(
A1λ1(s)eλ1(s)L

+A2λ2(s)eλ2(s)L
)

which, using equation (40), leads to:

A1(s), A2(s) =
û(s)

(
1 + (α± γ(s)) b

B0s

)
eγ(s)L

D(s)
,

where

D(s) =
b

B0s

(
(α+ γ(s))eγ(s)L − (α− γ(s))e−γ(s)L

)
+eγ(s)L − e−γ(s)L.

Then, we obtain:

q̂(x, s) =
P (x, s)
Q(s)

û(s)

where

P (x, s) = eαx ((B0s+ αb) sinh(γ(s)(L− x))
+ γ(s)b cosh(γ(s)(L− x))) ,

and

Q(s) = (B0s+ αb) sinh(γ(s)L) + γ(s)b cosh(γ(s)L).
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