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Abstract— The problem of characterizing lower bounds on
data-rates needed for closed loop stability has been solved in a
variety of settings. However, the available results lead to coding
schemes which are very complex and, thus, of limited practical
interest. In this paper, we show how simple coding systems
comprising only LTI filters and memoryless entropy coded
dithered scalar quantizers can be used to stabilize strongly
stabilizable SISO LTI plant models over error-free bit-rate
limited feedback channels. Despite the simplicity of the building
blocks employed, we prove that the data-rates incurred do
not exceed absolute lower bounds by more than 1.25 bits per

sample.

I. INTRODUCTION

The study of networked control systems (NCSs), i.e., con-

trol systems with communication constraints, has emerged

as an active research field during the past years (see, e.g.,

the special issue [1]). Key questions within this framework

are related to the way in which network artifacts affect

the stability and performance of control loops that employ

non-transparent communication channels. Typical channel

artifacts include data-rate limits, random delays and data

dropouts. A unifying framework for the treatment of the

general NCS analysis or design problem does not exist.

Nevertheless, there has been significant progress in the study

of subproblems. For example, data-rate constraints have been

studied in, e.g., [2]–[5]. The issue of data dropouts has

been studied in, e.g., [6] and random time delays have been

considered in, e.g., [7].

In this paper we focus on feedback loops closed over

delay- and error-free bit-rate limited channels. Within this

context, a key existing result establishes necessary and

sufficient conditions on the channel data-rate that allows one

to achieve closed loop stability (in an appropriate sense; see,

e.g., [2], [3], [5] and the many references therein). This result

is given in terms of a lower bound on the channel data-

rate (which depends on the unstable plant poles only) over

which coding schemes can be constructed so as to achieve

stability. These coding schemes are quite complex and are

not attractive from a practical point of view. On the other

hand, showing that the rate at which a stable control system

is transmitting data is always greater than the aforementioned

bound (i.e., necessity) is fairly simple (see also [8], [9]),

whereas constructing an actual coding scheme that achieves
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stability at any rate above the absolute limit (i.e., the proof of

sufficiency) is much more involved (see [2], [5]). Clearly, the

need arises to develop the study of simple stabilizing coding

schemes that achieve rates close to the bounds in [2], [3],

[5], and of approaches that allow one to exploit the insights

obtained when deriving the necessity of the bounds in the

construction of coding schemes.

Motivated by the discussion above, this paper shows

how simple coding systems comprising only LTI filters

and entropy coded dithered quantizers (see, e.g., [10]) can

be used to stabilize strongly stabilizable SISO LTI plant

models incurring in data rates which exceed the minimal

ones established in [2], [3], [5] by no more than 1.25 bits per

sample. The excess rate of our simple coding scheme is given

by the sum of two terms: a first term due to the divergence

of the quantization noise distribution from Gaussianity, and a

second term that originates in the inefficiency of the loss-less

coder that generates the binary words.

In our results, the coder and decoder architecture plays an

essential role, which, given the results in, e.g., [5], is by no

means surprising. Our work also sheds light into the reasons

why the results in [11] are not always consistent with the

lower bound on data-rates for stability studied in [2].

The remainder of this paper is organized as follows: Sec-

tion II introduces the notation used in the paper. Sections III

and IV present the considered setup and coding scheme,

respectively. Section V focuses on a simplified setting where

Gaussianity assumptions are imposed. Section VI uses the

results in Section V to derive guaranteed upper bounds on the

data-rates that allow one to achieve MSS with the proposed

coding scheme. Section VII draws conclusions. Due to space

constraints, all proofs have been omitted and can be found

in [12] or obtained via e-mail from the authors.

II. NOTATION

We define N0 , {0, 1, · · · } and R
+
0 = {x ∈ R : 0 ≤

x < ∞}. We use z as both the argument of the z-transform

and as the forward shift operator, where the meaning is clear

from the context. Given any scalar x, |x| denotes magnitude.

The set of all discrete-time strictly proper real rational

transfer functions is denoted by Rsp.

Unless otherwise stated, random processes are always

scalar and defined for k ∈ N0, we abbreviate {x(k)}k∈N0 ,

x(k) ∈ R, by x, and define xk , {x(0), · · · , x(k)}.

E {·} denotes the expectation operator. The variance, at time

instant k, of a process x is denoted via σ2
x(k); similarly, if

x is a random variable, then σ2
x denotes its variance. We

define σ2
x , limk→∞ σ2

x(k), provided the limit exists. If x is
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Fig. 1. Considered networked control system (generic coding scheme).

a wide sense stationary (wss) (asymptotically wss) process,

then Sx(ejω) denotes its (stationary) power spectral density

(PSD) and Ωx(z) denotes any spectral factor of Sx(ejω),
i.e.,

∣

∣Ωx(ejω)
∣

∣

2
, Sx(ejω). We say that a random variable is

a second order one if and only if it has finite mean and finite

and non-zero variance.

If x, y, z are continuous (resp. discrete) random variables,

then h(x) (resp. H(x)) denotes the differential (resp. dis-

crete) entropy of x; h(x|y) (resp. H(x|y)) denotes the con-

ditional differential (discrete) entropy of x, given y; I(x; y)
denotes the mutual information between x and y; I(x; y|z)
denotes the conditional mutual information between x and

y, given z. We recall that if x is Gaussian, then h(x) =
1
2 ln 2πeσ2

x. In this paper we use logarithms in base e. Thus,

information is measured in nats (1 nat = (ln 2)−1 bits). For

details and basic properties of the quantities mentioned above

we refer the reader to [13].

III. PROBLEM SETUP

In this paper we are concerned about the stability of a

closed loop system built around a SISO discrete time LTI

plant model, which employs a delay- and error-free data-rate

limited channel in the feedback path, as shown in Fig. 1.

In that figure, G(z) is the plant model, C(z) is an LTI

controller, y is the plant output, u is the plant input, r is a

reference signal, and d models disturbance signals. In order

to make use of the bit-rate limited channel, the feedback path

comprises an encoder E which generates binary words based

on information regarding the plant output. These words,

which we will denote by s, are then sent delay- and error-

free through the channel. At the receiving end, a decoder D
uses the received symbols to generate the signal f that is fed

back into the controller.

We will make the following assumptions:

Assumption 1 (Plant model): G(z) ∈ Rsp is unstable,1

has no poles or zeros on the unit circle, is strongly stabi-

lizable,2 and its initial state is an independent second order

random variable. N

Assumption 2 (Reference and disturbance): The signals

r and d are second order zero-mean wss processes that admit

rational PSDs, and that are mutually uncorrelated. Moreover,

Sd(e
jω) + Sr(e

jω) 6≡ 0. N

Assuming that the plant is strictly proper guarantees that

the feedback loop in Fig. 1 is well-posed for all causal con-

trollers, decoders and encoders. The assumption regarding

1Otherwise the problem of stabilization would admit a trivial solution.
2I.e., it admits a stable stabilizing controller (see, e.g., [14]).
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Fig. 2. Proposed coding scheme.

the plant initial state holds for most cases of interest. The

remaining assumptions on G(z) are not essential, but we

have made them to maintain a straightforward presentation

(see [15] for the general case). Assumption 2 is standard

except for the fact that we require r or d to be non-zero. We

avoid the case r = d = 0 for brevity.

For future reference, we define {p1, · · · , pnp
} as the set

of unstable plant poles, and

ξp(z) ,

np
∏

i=1

1 − zpi

z − pi

. (1)

Throughout this paper we adopt the following notion of

stability (see also, e.g., [16]–[18]):

Definition 1 (Mean square stability): Consider a system

described by x(k + 1) = f(x(k), w(k), k), where k ∈ N0,

f : R
n × R

m × R → R
n, x(k) ∈ R

n is the system state

at time instant k, x(0) = xo, where xo is a second order

random variable, and the input w is a second order wss

process independent of xo.3 We say that the system is mean

square stable (MSS) if and only if there exist finite µ ∈ R
n

and finite M ∈ R
n×n, M ≥ 0, such that

lim
k→∞

E {x(k)} = µ, lim
k→∞

E
{

x(k)x(k)T
}

= M,

regardless of the initial state xo. N

Significant work has been devoted to the study of the MSS

of the networked control system in Fig. 1, when arbitrarily

complex coding schemes are employed (see, e.g., [2], [5]).

However, the study of simple and efficient coding schemes

has received much less attention. This is indeed one of the

main motivations for the present work.

IV. PROPOSED CODING SCHEME

We seek simple, though effective, coding and decoding

schemes. We propose to use the coding scheme shown in

Fig. 2. In that figure, F1(z) is an LTI filter, and Ê , D̂ are

(for the moment) abstract systems that are allowed to exploit

the history of their inputs to generate their corresponding

outputs. More precisely, for every k ∈ N0,

s(k) = Êk(vk, sk−1), w(k) = D̂k(sk),

where Êk and D̂k are (possibly stochastic) mappings that may

depend explicitly upon time, and where the range of Êk is a

collection of prefix-free binary words (see, e.g., [13]). Note

that the resulting control loop is well-posed if F1(z) ∈ Rsp.
The coding scheme defined above is a restricted instance

of much more general schemes. Indeed, it is a special case of

3I.e., w is wss, w(k) is a second order random variable for every k ∈ N0,
and E

{

w(i)w(j)T
}

is finite for every i, j ∈ N0.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeB06.4

2699



a coding scheme that exploits the history of the plant output

and of the received symbols in an arbitrary causal fashion

(see, e.g., [2], [5]).

We will assume that the following holds:

Assumption 3 (Coding scheme): The coding scheme in

Fig. 2 is such that, ∀k ∈ N0,

(a) knowing sk and vk does not provide more knowledge

about w(k) than just knowing sk,

(b) the sequence of mappings {D̂i}i∈{0,··· ,k} is known at

the encoder and is such that sk can be recovered exactly

from wk (and vice-versa). Also,

(c) F1(z) ∈ Rsp and the corresponding initial state is an

independent second order random variable. N

At each time instant k the encoder transmits the symbol

s(k) using a word of length R(k) (measured in nats). We

will be interested in the average coding rate and, accordingly,

we define the average data-rate as

R̄ , lim
k→∞

1

k

k−1
∑

i=0

R(i), (2)

provided the limit exists. R̄ is the average rate at which

the symbols are sent trough the channel and, as such, is a

measure of the “information flow” at the physical level.

A key question that arises when considering any coding

scheme is how to characterize lower bounds on the achiev-

able average data-rates. To that end we define the following:

Definition 2: Consider two random processes v and w.

We define (if the defining limit exists) the average directed

mutual information between v and w as4 (see also [19])

I∞(v → w) , lim
k→∞

1

k

k−1
∑

i=0

I(w(i); vi|wi−1). (3)

N
We can now characterize lower bounds on the average

data-rate for the proposed coding scheme:

Theorem 1 (Lower bounds on data-rates): Consider the

networked control architecture in Fig. 1 and the specific

coding scheme in Fig. 2, where Ê and D̂ are as described

above. If Assumptions 3(a-b) hold, then R̄ ≥ I∞(v → w).
Proof: See [12]. �

Theorem 1 relates a physical quantity, namely average

data-rate, to an information theoretic quantity, namely aver-

age directed mutual information. It is important to note that

a different bound on the average data-rate would have arisen

if we had considered D̂ and Ê with different information

available.

Theorem 1 is a key one. However, it is not straightforward

to characterize I∞(v → w) unless one makes suitable

assumptions on Ê and D̂ or, equivalently, on the signal

q , w − v. (4)

In the next section we will make some Gaussianity as-

sumptions. Later, in Section VI, we will consider a simple

instance of Ê and D̂ and we will exploit the results for the

4I∞(v → w) is sometimes called directed mutual information rate.

d

ur
C(z) G(z)

−

q

F1(z)
−

q

y

w v

Fig. 3. Model of the networked control system under study.

Gaussian case to provide guaranteed upper bounds on the

rates associated to that specific coding scheme, without using

the Gaussianity assumptions.

V. THE GAUSSIAN CASE

As foreshadowed at the end of Section IV, we will assume

in this section that the following holds:

Assumption 4 (Gaussianity): The noise q (see (4)) is

an independent second order zero-mean i.i.d. Gaussian se-

quence. The initial states of all LTI filters in Fig. 3 (including

plant and controller) are independent second order Gaussian

random variables, and r and d are jointly Gaussian processes.

N

Consistent with the fact that the noise q depends on the

way in which Ê and D̂ are chosen, we will consider the

variance of q, say σ2
q , as design parameter. Assumption 4,

when combined with the networked control system in Fig. 1

and the coding scheme in Fig. 2, yields the linear model in

Fig. 3.

We will associate to every pair {F1(z), C(z)} a vector

K(z) defined via

K(z) ,
[

F1(z) C(z)
]

. (5)

As long as Assumptions 2 and 4 hold and q has finite

variance, the networked control system in Fig. 3 is MSS

if and only if K(z) is such that the feedback loop in Fig. 3

is well-posed internally stable in the standard deterministic

sense (see, e.g., [20], [21]). Thus, if we define

S , {K(z) ∈ Rsp ×Rp : the loop in Fig. 3 is

internally stable and well-posed} ,

then MSS is equivalent to K(z) ∈ S and σ2
q ∈ R

+
0 (provided

Assumptions 2 and 4 hold; see [20]).5 It is easy to see that

K(z) ∈ S if and only if F1(z) is stable, and C(z) is an

admissible controller6 for G(z) (see, e.g., [21]).

Using Theorem 1 we can now characterize average di-

rected mutual information in the situation under study:

Corollary 1 (I∞(v → w) under Gaussianity assumptions):

Consider the feedback loop in Fig. 3 and assume that

5Consistent with Assumption 3(c), F1(z) is constrained to be strictly
proper.

6A controller is said admissible for a given plant if and only if it is
internally stabilizing and defines a well-posed control loop (see [21]).
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Assumptions 1, 2 and 4 hold. If K(z) ∈ S and σ2
q ∈ R

+
0 ,

then

I∞(v → w) =
1

4π

∫ π

−π

ln
Sw(ejω)

σ2
q

dω

(a)

≤
1

2
ln (1 + γ), γ ,

σ2
v

σ2
q

, (6)

where Sw(ejω) is the stationary PSD of w, σ2
v is the

stationary variance of v, and γ is the stationary coding

scheme signal-to-noise ratio. Equality in (a) holds if and

only if Sw(ejω)σ−2
q is constant for every ω.

Proof: See [12]. �

Corollary 1 provides an explicit expression for the average

directed mutual information across the coding scheme in

the considered situation. Also, it establishes a relationship

between the average directed mutual information across the

coding scheme and the corresponding signal-to-noise ratio.

In particular, it follows from (6) that (provided Assumptions

1, 2 and 4 hold) minimizing the coding scheme signal-to-

noise ratio amounts to minimizing an upper bound on the

average directed mutual information across it. Moreover, if

Sw(ejω)σ−2
q is a constant, then we have equality in (6).

Hence, under the constraint of having Sw(ejω)σ−2
q constant,

minimizing the coding scheme signal-to-noise ratio also

minimizes the average directed mutual information across

it. We will show below that, in our setting, one can restrict

Sw(ejω)σ−2
q to be constant without loss of generality. To-

wards that goal, we start with the following theorem:

Theorem 2 (Directed mutual information for MSS):

Suppose that Assumptions 1, 2 and 4 holds. Then:

1) There exists K(z) ∈ Rsp ×Rp such that the feedback

loop in Fig. 3 is MSS if and only if

I∞(v → w) > I inf
∞ (v → w) ,

np
∑

i=1

ln |pi|.

2) Any I∞(v → w) > I inf
∞ (v → w) can be achieved in

a MSS loop if one chooses a stable and strictly proper

F1(z) such that 1 + F1(z) is minimum phase (MP),

C(z) is any stable admissible controller for G(z), and

σ2
q is made sufficiently large (but finite).

Proof: See [12]. �

Theorem 2 establishes a bound on the directed mutual

information across the considered coding schemes whose

satisfaction is necessary and sufficient to achieve MSS. It

also provides a characterization of the controller C(z), the

LTI filter F1(z), and the noise variance σ2
q , that allow one to

achieve any average directed mutual information arbitrarily

close to the bound established.

We can use Theorem 1 to immediately infer that, provided

the assumptions in Theorem 2 hold,

R̄ >

np
∑

i=1

ln |pi| (7)

is a necessary condition that average data-rates need to

satisfy in order to guarantee MSS when employing the

proposed coding scheme. We note that we have recovered,

for the class of considered plant models, the bound on

average data-rates for MSS derived in [2]. However, we have

not provided a proof of the achievability of this bound. This

issue will be explored in Section VI.
We next explore the minimal stationary coding scheme

signal-to-noise ratio compatible with MSS. This will enable

us to state the main result of this section.
Theorem 3 (Signal-to-noise ratio for MSS): Suppose

that Assumptions 1, 2 and 4 hold.

1) There exists K(z) ∈ Rsp ×Rp such that the feedback

loop in Fig. 3 is MSS if and only if the stationary coding

scheme signal-to-noise ratio γ satisfies

γ > γinf ,

(

np
∏

i=1

|pi|
2

)

− 1.

2) Any γ > γinf can be achieved in a MSS loop if one

chooses C(z) as any stable admissible controller for

G(z), F1(z) is chosen as

F1(z) = ξp(∞)(ξp(z)S(z))−1 − 1, (8)

where S(z) , (1 + C(z)G(z))−1, and σ2
q is made

sufficiently large (but finite).
Proof: See [12]. �

From Theorems 2 and 3 we have the following corollary:
Corollary 2: Consider the feedback loop in Fig. 3 and

suppose that Assumptions 1, 2 and 4 hold. A solution to

the problem of finding the minimal stationary coding scheme

signal-to-noise ratio that guarantees MSS provides a solution

to the problem of finding the minimal average directed

mutual information across the coding scheme that guarantees

MSS.
Proof: See [12]. �

Corollary 2 is one of the main results in this paper.

Indeed, by virtue of Theorem 1, Corollary 2 allows one

to conclude that determining the minimal signal-to-noise

ratio for MSS provides an immediate lower bound on the

average data-rates that allow one to achieve MSS. The

key to establishing these facts lies in that we consider a

coding architecture with sufficient degrees of freedom. This

allows one to make Sw(ejω)σ−2
q constant in the limit as

σ2
q → ∞, without constraining the minimum achievable

directed mutual information across the coding scheme, or

the corresponding minimal achievable signal-to-noise ratio (a

simple calculation based on the results of Theorem 3 reveals

this). We feel that the insights provided by these results are of

fundamental importance and, to the best of our knowledge,

new.
Remark 1: The work [11] also studies minimal signal-to-

noise ratio considerations for stability. However, the authors

of [11] constrain themselves to the particular case F1(z) = 0,

which does not, in general, allow one to achieve the absolute

minimal coding scheme signal-to-noise ratio identified in

Theorem 3. Hence, it is not surprising that the results in [11]

do not always suggest bounds on average data-rates that are

consistent with the results in [2], where coding schemes that

exploit the history of y and s are used. N
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Q EC
s+
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VI. UPPER BOUNDS ON ACHIEVABLE DATA-RATES

Section V has focused on establishing a necessary lower

bound on the average data-rate that allows one to guarantee

MSS. We have, however, provided no proof of the achievabil-

ity of this bound. It is well known (see [2], [5]) that there

exist coding schemes that allow one to achieve MSS with

average data-rates arbitrarily close to the bound identified in

Section V. However, since we have chosen a specific coding

scheme that is much simpler than those proposed in [2], [5],

there exists no guarantee that we will be able to actually

achieve the bound. This motivates the study of guaranteed

upper bounds on the average data-rate for MSS applicable

to the proposed coding scheme. In particular, we will use

the results in Section V to study achievable rates, when a

memoryless entropy coded dithered quantizer (ECDQ) is

used to generate the binary words that are sent over the

channel.

Fig. 4 shows the architecture of an ECDQ and its rela-

tionship to D̂ and Ê in Fig. 2 (see, e.g., [10]). The ECDQ is

such that

s+(k) = Q(v(k) + dh(k)),

where dh(k) is the dither signal which is known at both ends

of the channel, and Q corresponds to a uniform quantizer

defined via Q(x) , i∆ for
(

i − 1
2

)

∆ ≤ x ≤
(

i + 1
2

)

∆,

i ∈ Z, where ∆ is the quantization step. At each time instant,

s+(k) is memory- and loss-lessly coded by the entropy

coder EC using explicit information about dh(k) and the

corresponding binary word is sent over the channel. Upon

reception, the decoder ED, which knows dh(k), decodes the

received symbol recovering s+(k). Accordingly, the output

w(k) becomes equal to s+(k) − dh(k).
Key properties of ECDQs are the following:

Lemma 1 (ECDQ (see [10])): Consider an ECDQ as de-

scribed above. If dh is an independent sequence of i.i.d. ran-

dom variables, uniformly distributed on [−∆

2
,

∆

2
], then the

noise q defined in (4) is distributed according to the distri-

bution of −dh, and the scalar mutual information between

v(k) and w(k) satisfies I(v(k); w(k)) = H(s+(k)|dh(k)).
�

Remark 2: The proof in [10] assumes no feedback around

the ECDQ. If there is strictly causal feedback around it (as

in our case), then the same result applies (see detailed proof

in [15]). N

The results in Lemma 1 state that, if one employs an

appropriately dithered ECDQ, then the difference between

the input and output of the ECDQ, namely q, becomes just

an i.i.d. source, uniformly distributed on each quantization

interval (as in the classical additive white noise model for

quantization; see, e.g., [22], [23]). This means that the use

of an ECDQ allows one to achieve a noise q that resembles

the noise source considered in Section V (except for having

a different distribution). Therefore, it is sensible to expect

that use of an appropriately designed ECDQ yields average

data-rates “close” to the bounds identified in Section V. We

will show below that this is indeed true. We note that, given

the fact that the dither signal is known at both ends of

the channel, choosing dh as in Lemma 1 implies that the

ECDQ satisfies Assumptions 3(a-b) (i.e., an ECDQ is a valid

instance of D̂ and Ê in Fig. 2).

We are now ready to prove the main result of this paper:

Theorem 4 (Achievable rates): Consider the networked

control system in Fig. 1 with the coding scheme in Fig. 2,

where D̂ and Ê form an ECDQ as described above. Sup-

pose that the memoryless entropy coder-decoder pair EC-

ED inside the ECDQ uses Huffman coding (see [13]) that

Assumptions 1, 2 and 3(c) hold, that the controller initial

state is an independent second order random variable, and

that the dither signal dh is an independent sequence of i.i.d.

random variables, uniformly distributed on [−∆

2
,

∆

2
] . Then,

if one chooses K(z) as in Theorem 3 (Part 2; see (5)) and

∆ =
√

12σ2
q , with σ2

q ∈ R
+
0 , then the resulting networked

control system will be MSS and the corresponding average

data-rate will be upper bounded as

R̄ ≤

np
∑

i=1

ln |pi| +
1

2
ln

(

2πe

12

)

+ ln 2 + F (∆),

where F : R
+
0 → R

+
0 is a continuous and decreasing function

of ∆ such that lim∆→∞ F (∆) = 0, lim∆→0 F (∆) = ∞.

Proof: See [12]. �

Remark 3 (Bounds are conservative): The upper bound

for the average data-rate in Theorem 4 is conservative.

Indeed, the rates achieved by Huffman coding are usually

closer to the entropy of the source than to the entropy of

the source plus ln 2 (see, e.g., [24].). As a consequence, the

actual data-rates will be usually close to the expression in

Theorem 4 with the term ln 2 omitted. N

Theorem 4 is the main result in this paper. It establishes

guaranteed upper bounds on the average data-rates that

guarantee MSS and that are achievable with the coding

scheme in Fig. 2, when D̂ and Ê form a memoryless ECDQ

and when the plant model is strongly stabilizable. If one

chooses K(z) as suggested in Part 2 of Theorem 3, and ∆
is chosen sufficiently large (but finite), then one will be able

to achieve a rate that is no more than 1
2 ln

(

2πe
12

)

+ ln 2 nats

per sample (i.e., 1.25 bits per sample) away from the absolute

bound in [2], [5]. This additional rate is composed by two

terms: the first one is due to the divergence of the distribution

of quantization noise from Gaussianity, and the second one

originates in the inefficiency of the loss-less coding scheme

employed to generate the binary words. We feel that this

extra rate is a fair price to be paid if one constrain oneself to

the conceptually simple coding schemes considered in this

paper.
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Remark 4: Note that the results in Theorem 4 rely on

the insights developed in Section V. In other words, the

insights developed when establishing lower bounds on the

average data-rates needed for stabilization were key when

constructing an actual coding scheme that achieved a data-

rate close to that bound. It is also worth noting that the

quantization scheme considered in this paper constitutes

a well studied building block in the Information Theory

literature (see, e.g., [10], [23], [25]). All the above stands

in stark contrast to the approach in, e.g., [2]. N

VII. CONCLUSIONS

In this paper, we have studied the mean square sta-

bilization of strongly stabilizable SISO LTI plant models

controlled over bit-rate limited channels. We have proposed

a simple coding scheme which uses only LTI filters and an

entropy coded dithered quantizer. Within this setup, we have

shown that the excess data-rates, which derive from using this

reduced-complexity scheme instead of an arbitrarily complex

one, are no larger than 1.25 bits per sample. Extensions to

more general cases and to performance related questions can

be found in [15].
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