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Abstract— For mobile platforms with steerable standard
wheels it is necessary to precisely coordinate rotation and steer-
ing angle of their wheels. Especially for redundantly actuated
platforms the misalignments of a single wheel directly leads
to invalid configurations which may cause degraded motion of
the platform and high internal forces. An established approach
to deal with this problem is to represent the current state of
motion in form of the Instantaneous Centre of Motion (ICM)
and to derive a valid trajectory for this point. However, this
representation bears severe numerical drawbacks.

To remedy those numerical problems an alternative ICM
representation based on spherical coordinates is proposed
in this work. Furthermore, the relations between ICM and
generalized robot velocities are addressed. It is shown, that
one receives a basis of a subspace within the kinematical
constraints’ nullspace by decomposing the generalized velocity
vector in spherical coordinates. Finally the proposed ICM-based
control is particularized and simulative analyzed w.r.t. the Care-
O-bot 3 demonstrator (Fig. 1).

I. INTRODUCTION

An essential prerequisite for future service robots is a

safe and efficient operation amongst humans [1]. Thus a

high degree of mobility, flexibility and robustness of the

mobile platforms is required. Accordingly a wide variety

of different motion concepts exists ranging from snake-like

approaches over wheeled platforms up to humanoid robot

systems [2], [3]. A very intelligible introduction can be

found in [4]. Currently wheeled platforms appear to be a

promising compromise between a high degree of flexibility

and robustness on the one hand and moderate complexity

on the other hand. Therefore many efforts were taken to

design, build and control a diversity of different wheeled

systems [5], [6]. The approaches range from simple differ-

ential driven platforms and systems with centered or off-

centered orientable wheels to mobile robots that use specially

designed wheels [7], [8], like the Swedish or the orb wheel.

Orientable wheels offer high robustness and comparably

small mechanical complexity on the one hand, on the other

the systems flexibility is slightly reduced and the complexity

of the control scheme is increased.

In their seminal work [5] Campion et al. categorized all

wheeled mobile robots by their kinematic properties into five

different classes. They expressed all kinematic constraints in

a matrix M . The entirety of all allowed configurations of the

mobile platform - all configurations that fulfill the kinematic
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Fig. 1. Mobile Base of Care-O-bot 3 (www.care-o-bot.de)

constraints - is then formed by the nullspace N [M ] of M .

The dimension of the nullspace ”dimN [M ]” and the rank of

M ”rank[M ]” classify the kinematic properties of the system.

The corresponding numbers are usually referred to as the

degree of mobility

δm = dimN [M ] = 3 − rank[M ]

and the degree of steerability

δs = rank[M ].

δm resembles the dimension of the instantaneously accessi-

ble velocity space - also called the differentiable degrees

of freedom [4] - while δs corresponds to the number of

independently steerable wheels. For any mobile platform

with two or more orientable wheels δm equals 1 and δs
equals 2 for any non-degenerated configuration, i.e. any

configuration that allows the robot to move. This implies

that a robot with orientable wheels cannot instantaneously

change its driving direction and that all wheels have to be

precisely coordinated.

A basic strategy - given slowly changing set point ve-

locities and a sufficiently high control frequency - is to

calculate every wheel’s steering direction and velocity by

superposition of the set point velocities [9]. However, this

strategy encounters some problems, as the set point values

for the steering directions depend on the ratios of the velocity

components. Thus, especially if the velocity components

are small, already minor changes of these components have

a high impact on the related set point values. A strategy

providing an accurate solution to the problem is to calcu-

late an optimal path within the nullspace of the kinematic

constraints. However, this can become a very complex task,
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especially if the nonlinear character and singularities of the

system are considered.

Besides a wide variety of different, other approaches

[10], [11], an often applied middle course between above

mentioned methods is to calculate the Instantaneous Centre

of Motion (ICM) [12], [13], [14] and derive a valid trajectory

for it. However, this ICM-based representation has some nu-

merical drawbacks, which affect potential control strategies.

A detailed discussion of these problems can be found in [15],

[16].

This work approaches the problem of wheel coordination

through control of the ICM. It gives a short introduction to

the ICM (section II) and addresses the numerical drawbacks.

Similar to [15] an alternative parameterization of the ICM,

which remedies these problems, is proposed. The basic

idea of this approach is to relocate critical singularities

in non-critical regions of the ICM’s parameter-space. It is

shown that, in a conveniently defined coordinate system,

the proposed representation is closely related to a spherical

representation of the system’s generalized velocities, respec-

tively the twist vector

~t =





vx

vy

ω



 .

Furthermore, the transformation equations from the defined

ICM space into the robots configuration space are derived.

Finally, the proposed control scheme is particularized and

analyzed with respect to the control architecture of Care-O-

bot 3.

II. ICM DEFINITION AND NUMERICAL ISSUES

A. Definition

There are several corresponding definitions for the Instan-

taneous Centre of Motion (ICM). Within this work the ICM

is defined as the point in the world coordinate frame, which

instantaneously does not change with respect to the robot,

while the latter is moving. It is the point around which the

robot rotates, the centre of the generalized curve on which

the robot moves at the very moment. For mobile robots with

steered standard wheels it is furthermore the point where all

wheel axis intersect. However, the last statement only holds

if the kinematic constraints are not violated e.g. no slipping

occurs. In the world coordinate frame the ICM position can

be calculated as

~xw
ICM

=

(
xw

ICM

yw
ICM

)

=

(
xw

r − vw
r,y/ωw

r

yw
r + vw

r,x/ωw
r

)

, (1)

where xw
r , yw

r and θw
r are components of the robots posi-

tion and orientation vector ~xw
r and vw

r,x, vw
r,y , ωw

r are the

components of the robots twist ~twr

~xw
r =





xw
r

yw
r

θw
r



 , ~twr =





vw
r,x

vw
r,y

ωw
r





xw

yw

xr

yr

ICM

θw
r

xw
r

yw
r

xw
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Fig. 2. Applied Coordinate Systems and ICM

in the world frame (Fig. 2). Transformation to the robot

coordinate frame delivers

~xr
ICM

=

(
xr

ICM

yr
ICM

)

=

(
−vr

r,y/ωr
r

+vr
r,x/ωr

r

)

(2)

for the ICM position, where vr
r,x, vr

r,y and ωr
r are the

components of the robot’s twist ~trr w.r.t the world frame

~trr =





vr
r,x

vr
r,y

ωr
r



 =





vw
r,x cos(θw

r ) + vw
r,y sin(θw

r )
−vw

r,x sin(θw
r ) + vw

r,y cos(θw
r )

ωw
r





expressed in the robot coordinate frame. As we are not

interested in the global behavior of the robot we confine

our reflections on the robot-coordinate frame. Following all

velocities and positions are expressed relative to the robot-

coordinate frame. For a more convenient writing we thus

omit the indicators of the coordinate system and write ~tr
instead of ~trr and ~xICM instead of ~xr

ICM
respectively.

B. Numerical Issues

The numerical problems arising while using an ICM-

based representation of the twist ~t are twofold. The first

problem is that the transformation fICM(~tr) from the vector

representation of the twist ~tr into the ICM representation

(1),(2) is not injective. Thus, information is lost and the

ICM cannot be transformed back directly. The second, more

severe problem is the singularity arising when ωr becomes

zero (Fig. 3).The right-side limit then becomes

lim
ωr→0+

fICM(~tr) → +∞

while the left-side limit is

lim
ωr→0−

fICM(~tr) → −∞

and thus are not equal (Fig. 4(a)). This singularity however, is

introduced only by the chosen parameterization and does not

have any physical meaning. It occurs in a frequently traversed

region of the parameter space and thus hinders controller

design.
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Fig. 3. Example for an arbitrary trajectory of robot and ICM

III. ICM IN SPHERICAL COORDINATES

The following representation adapts the formulation of the

ICM addressing singularity by relocation and consering all

available information. Before introducing the new parameter-

ization for the ICM a coordinate system with the basis vx, vy

and ω · dmax is defined to represent the robot’s motion. The

constant factor dmax is introduced to render the rotational

velocity the same dimension as the translational velocities.

Accordingly the robot twist ~tr is redefined to

~t∗r =





vr,x

vr,y

ωr · dmax



 .

A. Conserving all available Information

Transforming the Cartesian representation (2) of the ICM

into polar coordinates

(
rICM

φICM

)

=





√
v2

r,x+v2
r,y

|ωr|

arctan2

(
vr,x/ωr

−vr,y/ωr

)



 , (3)

replacing |ωr| with ωr, removing ωr from the φICM term

(
rICM

φICM

)

:=





√
v2

r,x+v2
r,y

ωr

arctan2

(
vr,x

−vr,y

)



 (4)

and accepting the peculiarity that the distance rICM may take

negative values, allows to regain the signs of all velocity

components. To recover also the absolute values of the

components of the twist ~t∗ the absolute translational velocity

vabs =
(
v2

r,x + v2
r,y

)− 1
2 can be used. However, to achieve

a convenient formulation with respect to the above defined

three-dimensional coordinate system the term ωr · dmax is

added:

v∗
abs

:=
√

v2
r,x + v2

r,y + (ωr · dmax)
2

(5)

B. Relocating the Singularities

The above derived equations do not tackle the problem of

the infinity points of the ICM. To tackle that problem a new

parameter

θICM := arctan

(
dmax

rICM

)

(6)

is defined. Calculating the inverse to rICM corresponds to a

reflection over the unit circle. This relocates ±∞-regions

(Fig. 4(a)) to the origin. The region around the origin

(Fig. 4) is vice versa relocated at infinity. The calculation

of the arctan resembles a projection of the infinite plane

on a spherical surface. Thus, the mentioned singularities

are eliminated. Only if the absolute velocity is close to

zero small fluctuations in ωr will cause significant jumps

(Fig. 4(c)). However, in contrast to the former representation

the parameters now stay bounded.

C. Correlation to and Relevancy for the Velocity-Space

By defining the new parameter ϕICM by adding π
2 to the

φICM-term in Equation (4) and by renaming v∗
tot in (5) as ρICM

we get:

ρICM :=
√

v2
r,x + v2

r,y + (ωr · dmax)2 (7)

ϕICM := arctan2

(
vr,y

vr,x

)

(8)

θICM := arctan




ωr · dmax

√

v2
r,x + v2

r,y



 (9)

as the resulting parameterization of the ICM. This formula-

tion is identical to the representation of the twist vector ~t∗ in

spherical coordinates. Thus, the backwards transformation

vr,x = ρICM · cos(θICM) · cos(ϕICM) (10)

vr,y = ρICM · cos(θICM) · sin(ϕICM) (11)

ωr · dmax = ρICM · sin(θICM) (12)

is directly given by the standard transformation between

spherical and Cartesian coordinates. As the transformations

applied on (4) conserve neighborhood relations, any con-

tinuous trajectory in the spherical representation transforms

into a continuous trajectory in the originating, planar ICM

space. This means, that the above defined three dimensional

ICM space also represents a subspace of the nullspace N [M ]
of the kinematic constraints. As the parameterization of the

above defined ICM is identical with the representation of

the twist vector ~t∗ in spherical coordinates, any continuous

change in the spherical coordinates of ~t∗ represents a valid

trajectory within the nullspace of the robot’s kinematical

constraints. Descriptively this implies that a valid trajectory

within N [M ] can always be found by independently control-

ing the spherical coordinates of the twist ~t∗. It has to be noted

however, that this representation does not account for other

system immanent singularities or other boundary conditions,

e.g. restrictions on the steering rates. Thus, a valid control

strategy has to consider these additional implications.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB16.4

4978



-
-

-

-

y-Coordinate of ICM

vx [m
s ]ω [1

s ]

y [m] 0

0 0

1

1

2

2

2

2

5

5

(a) Region around Singularity for lim
ωr→0

fICM(~tr)

-

-

ρ-Coordinate of ICM

vx [m
s ] ω [1

s ]

ρ [m
s ]

0

00

2

2

2

4

5

5

6

(b) No singularities for ρ in same region

-

-

-

θ-Coordinate of ICM

vx [m
s ] ω [1

s ]

θ [rad] 0

00

1

1

2

2 5

5

(c) Only singularity of θ for v ≡ 0 and ω ≡ 0

-

-

-

ϕ-Coordinate of ICM

vx [m
s ] vy [m

s ]

ϕ [rad] 0

00

2

2

2

22

2

(d) Unsteadiness of Transformation to ϕ
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Fig. 5. Wheel-Axis based parameterization

IV. RETAINING THE WHEEL SET POINT VALUES

This section delivers a definition for the transformation

f~v,~ϕ(fICM(~t∗r)) from ICM-configuration to the resulting plat-

form configuration, namely velocities ~v and steering angles

~ϕ of the wheels. The backward transformation is written as

f−1∗
~v,~ϕ , although as indicated in section II a direct inversion is

not possible. Based on all wheel velocities ~vw and steering

angles ~ϕs only an estimation of the current ICM can be

calculated.

A. Definition

Let ϕs,i be the steering direction and vw,i the velocity of

the ith wheel (Fig. 5). The position of the wheel’s steering

axis ~xa,i and ~x∗
a,i in the robot coordinate-system is given as

~xa,i =

(
xa,i

ya,i

)

, ~x∗
a,i =

(
da,i

ϕa,i

)

in Cartesian coordinates and in polar coordinates respec-

tively. The offset between wheel steering axis and wheel

center is given by dwa. The wheel’s position (xw,i, yw,i)
itself is calculated via

xw,i = xa,i + dw,a sin(ϕs,i) (13)

yw,i = ya,i − dw,a cos(ϕs,i) (14)

The planar ICM position, relative to the wheel’s steering axis,

is given by the angle φICM,i and rICM,i. It is furthermore de-

fined a spherical ICM representation (ρICM,wi
, ϕICM,wi

, θICM,wi
)

relative to the current wheel position, which transforms into

the generalized wheel velocities (vx,wi
, vy,wi

, ωwi
dmax). The

according transformation ~fICM,w(vx,wi
, vy,wi

, ωwi
) is defined

by the equations (7) to (12).

B. Transforming ICM to Wheel Configuration

To obtain the wheel related ICM the rigid body constraint

for the robot is exploited to express the wheel velocities as

a function of the robot velocities:

vx,wi
= vx,r − yw,iωr (15)

vy,wi
= vy,r + xw,iωr (16)

ωwi
= ωr (17)
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Inserting the dependencies (15) – (17) into equations (7) –

(9) for the wheel related ICM and subsequent simplification

delivers the transformation ~gICM,wi
(ρICM, ϕICM, θICM) from robot

related ICM to wheel related ICM. Simplifying the derived

equations by using that ρICM ≥ 0 delivers

ρICM,wi
= ρICM ·

√

a2 + b2 + c2 (18)

ϕICM,wi
= arctan2

(
b

a

)

(19)

θICM,wi
= arctan

(
c√

a2 + b2

)

(20)

with the components a, b and c, calculated via

a = cos(θICM) cos(ϕICM) − yw,i

dmax

sin(θICM)

b = cos(θICM) sin(ϕICM) +
xw,i

dmax

sin(θICM)

c = sin(θICM).

In the case of steerable standard wheels without sideward

offset the wheel position (yw,i, xw,i) can be substituted

by the constant axis position (ya,i, xa,i). As fulfilling the

kinematical constraints implies that wheel, wheel steering

axis and ICM must lie on one line this substitution is also

valid when calculating the wheel steering directions ϕICM,wi

according to equation (19). Applying the backwards transfor-

mation ~f−1
ICM,w(vx,wi

, vy,wi
, ωwi

) defined by (10) – (12) on the

calculated ICM parameters delivers the generalized velocities

of the wheel. The corresponding wheel configuration is then

calculated by

ϕs,i = arctan2

(
vy,wi

vx,wi

)

+ k1 (21)

vlin,i = k2 ·
√

v2
x,wi

+ v2
y,wi

(22)

where the two factors k1 and k2 are introduced to account

for the ambiguity of the wheel configuration

{k1; k2} =

{
{0;+1} |ϕs,i,desired − ϕs,i,meas| ≤ π

2
{π;−1} otherwise

(23)

and the corresponding branching of the solutions. The

wheel velocity vw,i is finally obtained by adding a system-

dependent compensation term vcomp,i

vw,i = vlin,i + vcomp,i

to account for gear-coupling and the motion of the wheels

around their steering axis.

Concatenating the derived transformations from robot ICM

to wheel ICM (18,19,20), wheel ICM to generalized wheel

velocities (10,11,12) and generalized wheel velocities to

wheel configuration (21,22,23) for all wheels one obtains

the transformation









ϕs,1

vw,1,lin

...

ϕs,n

vw,n,lin










= ~f~v,~ϕ(ϕICM, θICM, ρICM) (24)








ωw,i

ϕs,i

ϕ̇s,i

...








(
ω
ϕ̇

)

s,3

(
ω
ϕ̇

)

s,3

(
ω
ϕ̇

)

s,3

(
ω
ϕ̇

)

s,3





ρ
ϕ
θ





ICM,s





vx

vy

ω





s

~fICM

Rw,1

Rw,2

Rw,3

Rw,4

platform-

Controller

RICM

platform

Fig. 6. Overall control structure of the platform

from the robot’s spherical ICM to the platform configuration

space. The corresponding derivatives in the configuration

space are obtained by incorporating the according Jacobian

J~v,~ϕ










ϕ̇w1,s

v̇w1,lin

...

ϕ̇wn,s

v̇wn,lin










=
~f~v,~ϕ

∂ (ϕICM, θICM, ρICM)
︸ ︷︷ ︸

J~v,~ϕ(ϕICM,θICM,ρICM)

·





ϕ̇ICM

θ̇ICM

ρ̇ICM



 . (25)

Analogous the Jacobian J−1∗
~v,~ϕ for the approximate backward

transformation ~f−1∗
~v,~ϕ and the Jacobian JICM for the trans-

formation ~fICM(vr,x, vr,y, ωr) between spherical ICM and

Cartesian representation of the twist ~t∗ are defined.

C. Overall Control Structure

The resulting control structure is composed by the plat-

form control module responsible for wheel coordination and

lower level wheel control modules responsible for control

and coordination of steer and drive motors of each wheel

module (Fig.6). The platform module converts the incoming

velocity and rotation commands into the spherical represen-

tation of the ICM. Then the single components of the ICM

ρICM, ϕICM and θICM are controlled independently via a simple

PID-controller. Based on the above derived formalisms set

point values for the wheel velocity ~vw and the wheel steering

rate ~̇ϕs are calculated and transmitted to the wheel control

modules together with a prediction of the next target ICM.

The wheel control modules compose the final set point values

for wheel velocity vw,i and steering rate ϕ̇w,i by incorporat-

ing the commanded velocity and steering rate, the control

deviation between commanded ICM - converted into wheel

configuration via ~fvw,i,ϕs,i
- and current wheel configuration

and the factor vw,i,comp compensating gear coupling and

eccentric position of the drive wheel. The resulting values

are then send as inputs to the motor controllers, which then

independently control the steering motor and the drive motor

of every wheel.

V. RESULTS

The above discussed control structure was implemented

and simulated in a Matlab Simulink environment for the

particular kinematics of Care-O-bot 3, whose mobile base

is assembled from 4 independent wheel modules (Fig. 7)

with off-centered orientable wheels. The platform (without

additional covers) has an almost square shape with a length

of approximately 60 cm and a width of about 50 cm. With
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xr

yr

yr

zr

h0h1

h2

dw,a

da,i

xa,i

ya,i

ϕa,i

Fig. 7. Top and front view of Care-O-bot 3’s mobile base

respect to the robot coordinate frame the steering-axes of

the wheels lie at xw,i = ±23,5 cm and yw,i = ±18,5 cm.

The wheels are off-centered to the steering-axes by dw,a =
2,2 cm. The chassis clearance h1 is restricted by the accu-

mulator - mounted underneath the robot - and is about 5 cm

(right-hand in Fig. 7). The total height of the system h2 is

approximately 35 cm.

Section V-A presents results obtained when implementing

the different ICM representations.In section V-B the resulting

steering directions ~ϕs and wheel steering rates ∂
∂t ~ϕs obtained

from the above described control structure are examined and

compared to results obtained when the components of the

twist ~t where directly controlled in their Cartesian represen-

tation. The simulations consider the kinematical properties

of the system but do not consider any dynamical aspects.

A. Characteristics in ICM Behavior

In Fig. 8 the desired velocity components (Fig. 8(a))

for a robot driving slalom are depicted together with the

resulting ICM coordinates relative to the robot in Carte-

sian (xICM, yICM) (Fig 8(b)), polar (rICM, φICM) (Fig 8(c)) and

spherical (ρICM, ϕICM, θICM) (Fig 8(d)) representation. Figure 9

shows the resulting robot path (solid blue line) in the world

coordinate frame together with the corresponding trajectories

of the planar ICM (red dashed line). The singularities in the

common Cartesian and polar representation arising whenever

the rotational rate crosses zero are clearly visible in form of

the strong growth of rICM (Fig 8(b)) and yICM (Fig 8(c)). In

Fig. 9 they appear in form of the red dashed line which

exit the plot on one side and reenter on the other side. In

contrast to that the spherical representation stays bounded

and continuously differentiable. Thus the design of an ap-

propriate controller becomes significantly easier. Considering

the opposite case, when the translational velocity takes a

sinusoidal form and the rotational rate is non-zero - a rosette-

like motion -, the θICM and φICM components of the spherical

and polar representation show discontinuousities, while the

Cartesian parameters show a continuous behavior. However,

all components stay bounded and adaption of a controller to

such a characteristic is far easier then to cope with infinity

regions.

B. Effect of ICM on wheel module set point values

Figure 10(a) shows an arbitrary velocity command to-

gether with the resulting curves if the command is
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(c) Resulting ICM in polar representation
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(d) Resulting ICM in spherical representation

Fig. 8. Representation induced singularities in ICM
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Fig. 9. Slalom path of robot (blue, solid) and corresponding ICM trajectory
(red, dashed)

lowpass-filtered either directly in its Cartesian representa-

tion (Fig. 10(b)), or after transformation in its spherical

representation (Fig. 10(c)) and the resulting ideal trajectories

(Fig. 10(d)). The depicted command provokes critical behav-

ior whenever either the translational velocity or the rotational

velocity is close to zero while the other component changes.

The corresponding set point values for the steering direction

(plots 1 and 2 in Fig. 11(a)) show an discontinuous behavior

and the set point values for the corresponding steering rate

(plots 1 and 2 in Fig. 11(b)) grow rapidly. In fact, for the

unfiltered input the steering rates would directly take infinit

values. This is not observed simply because of the limited

time resolution of the simulation. This behavior is due to the

fact that for the platform considered the steering directions

of the wheels result from the ratio between the different

velocity components and not from their absolute value. Thus

controlling the absolute value (Fig. 10(b)) does not remedy

that problem. The steering rates are only reduced due to

the lowpass, which causes the components to never reach

zero after having been set to a non-zero value. In contrast

to that, controlling the spherical ICM means to control the

ratios of the velocity components instead of their absolute

values. Thus the corresponding curve of the steering direction

(plot 3 in Fig. 11(a)) changes continuously and the according

steering rate (plot 3 in Fig. 11(b)) is smaller by a factor of 10

than that of the controlled Cartesian commands and smaller

by a factor of 40 than that of the uncontrolled commands.

The described behavior means that the platform is not able

to change its state of motion instantaneously. This coincides

with the platforms degree of mobility δm = 1 as derived

in section I. The influence of the filters on the motion is

depicted in Figure 10(d). The ideal path of the robot for

the unfiltered Cartesian command is unsteady and cannot be

realized by a pseudo-omnidirectional, non-holonomic plat-

form without stopping and reorienting its wheels. The path

corresponding to the valid filtered spherical ICM components

shows a continuous, steady behavior. Figure 11(a) shows the
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(b) Desired velocities and rotation after lowpass-filtering
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(c) ICM after transformation and lowpass-filtering
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Fig. 10. Velocity commands and corresponding robot path
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(a) Commanded direction of wheels
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(b) Commanded change in direction of wheels

Fig. 11. Resulting set point values for steering direction and steering rate
for desired twist ~t, filtered twist and filtered spherical ICM (twist ~t∗)

branching of the solutions addressed in section IV-B. This

branching appears in form of the π-difference between the

desired steering direction for the time interval from 4.5 to

8.5 seconds.

VI. CONCLUSION AND FUTURE WORK

In this work the problem of wheel coordination for over-

actuated mobile robots is addressed. After a kinematical

classification of the observed system the concept of the

Instantaneous Centre of Motion (ICM) was recapitulated.

Special attention was paid to the ICM’s potential regarding

wheel coordination, its numerical drawbacks and the corre-

sponding implications on applied control strategies.

To overcome these numerical drawbacks and enable the

application of basic control strategies the usage of an ICM

representation based on spherical coordinates was motivated.

It was shown that control of the ICM within this represen-

tation is literally equivalent to control of the generalized

velocities in their spherical representation. This means that

for the system considered the spherical coordinates form a

basis of a subspace in the kinematical constraints’ nullspace.

Finally, a formalism that directly transforms the spherical

ICM trajectory back into a trajectory within the configuration

space of the mobile robot was derived.

The derived transformations were adopted to the particular

mechanics of the Care-O-bot 3 system. The addressed plat-

form control module - responsible for wheel coordination -

was realized in a Matlab Simulink environment. Comparison

of the resulting curves for wheel steering direction and wheel

steering rate proved the validity of the proposed approach

and revealed its advantages over control within the Cartesian

Space.

While, the proposed method delivers an efficient approach

to wheel coordination by decomposing the kinematical con-

straints it does not yet account for other constraints, e.g.

limits of the steer or drive velocities. Thus, future work will

focus on investigating control strategies that allow tackling

this problem.
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