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Abstract— In this paper, we present a systematic procedure
for obtaining closed-loop stable output-feedback model pre-
dictive control based on reduced-order models. The design
uses linear state estimators, and applies to open-loop stable
systems with hard input- and soft state constraints. Robustness
against the model reduction error is obtained by choosing
the cost function parameters so as to satisfy a linear matrix
inequality condition. We also show by means of an example,
that performance is maintained even when the model reduction
error is relatively large.

I. INTRODUCTION

In this paper, we develop a novel approach for achieving

exponential stability of model predictive control (MPC)

based on reduced order models. The use of model re-

duction techniques along with MPC is desirable in many

applications, in order to reduce the online complexity in

implementations that would otherwise run too slowly. In [8]

we demonstrated how a significant reduction in complexity

could be achieved by truncating only a few number of states,

in particular when the MPC horizons are large. The online

complexity reduction comes at the cost of introducing an

approximation error in the closed-loop system. With the

introduction of the approximation error, questions concerning

closed-loop stability and feasibility arise. These are very

important issues to address, since controllers designed based

on reduced-order models might stabilize the reduced-order

model and not the plant [11].

Our results hinge on the previous work [14], [15], [16] on

robust output-feedback MPC for systems with uncertainties.

In this paper we specialize these results to the case of

reduced-order models. We ensure stability by choosing the

cost function parameters so as to satisfy a set of linear

matrix inequality (LMI) conditions, thereby guaranteeing a

decreasing Lyapunov function at each time step. To the

best of our knowledge, this is the first result that deals

systematically with the model reduction error in model

predictive control. The results make MPC more attractive

for a number of systems that would otherwise be excluded

due to the high complexity of the resulting controllers.

In order to guarantee feasibility of the MPC problem, we

adopt the soft constraints formulation of [16], in which an

additional horizon is introduced to reduce the number of the

slack variables. Consequently, the size of the optimization
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problem is also reduced compared to standard approaches,

such as [21]. This extra feature fits nicely into our design,

since our goal is to to make our MPC procedure more

efficient by introducing reduced-order models.

The traditional MPC strategy requires significant online

computation, limiting the use of this kind of controller to

processes with small system state dimension or relatively

slow dynamics, since the optimization problem that is solved

at each sampling time can otherwise become large. Remedies

such as “input blocking”, short horizons etc. are commonly

used to reduce the complexity and online computational

times. Fast implementation of model predictive control in

real-time systems has been considered, among others, by

[4] and [20]. Also, it was proposed in [2] to solve multi-

parametric quadratic programs (mpQPs) that can be used to

obtain explicit solutions to the MPC problem, such that the

control input can be efficiently computed by evaluating a

piecewise affine function of the system state. Still, as the

state dimension and the control horizon and the number of

constraints are increased, a large increase in both offline and

online complexity follows. The current paper addresses these

issues by using reduced-order models.

The paper outline is as follows: In Section II we de-

scribe the system formulations that we will consider. The

nominal state-feedback design presented in Section III lays

the foundation for the reduced-order MPC described in

Section IV, where we also prove stability of the procedure

and demonstrate performance through a numerical example.

Concluding remarks can be found in Section V.

Throughout we use the following notation: ‖x‖2
P denotes

xT Px, [a, · · · , c] denotes
[
aT · · · cT

]T
and In denotes

the n × n identity matrix.

II. SYSTEM DESCRIPTION

We consider a stable, linear, discrete-time plant, described

by the known model

x
p
k+1 = Apx

p
k + Bpuk (1a)

y
p
k = Cpx

p
k, (1b)

where xp ∈ R
n, u ∈ R

m and y ∈ R
p denote the state, input

and output, respectively, and the matrices Ap, Bp and Cp are

of appropriate dimensions. Here, p denotes the “plant”. The

system is subject to the following constraints

V uk ≤ v, ∀k ≥ 0 (2a)

Hx
p
k ≤ h, ∀k ≥ 0, (2b)

where V ∈ R
nv×m, v ≥ 0, and H ∈ R

nh×n.
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The input constraints (2a) are “hard”, and must be re-

spected at all time, whereas the state constraints (2b) are

“soft”, and will be treated by penalizing constraint violation

in the MPC cost function. This is a natural assumption, since

input constraints, such as actuator- and valve limitations

are physical limitations that cannot be exceeded. State-

and output constraints, on the other hand, often represent

“desireables” rather than absolute limitations.

A. REDUCED-ORDER NOMINAL MODEL

The plant model (1) is assumed to be of such a dimension

that the online computational requirements conflict with the

time available to compute the control input. For the purpose

of MPC design, we therefore generate a reduced-order model

(ROM), by reducing the order of (1) using an appropriate

model reduction technique, such as, for instance, balanced

truncation [18], balanced residualization [12] or optimal

Hankel norm approximation [1], [3], [10]. These are all

rigorous methods with a priori error bounds and stability

guarantee, provided that (1) is stable. Model reduction tech-

niques are standard textbook material, and good references

can, for instance, be found within the robust control literature

[23], [19].

The nominal model obtained by model reduction is de-

noted by

xk+1 = Axk + Buk (3a)

yk = Cxk, (3b)

where x ∈ R
nx such that nx < n, y ∈ R

p, A ∈ R
nx×nx ,

B ∈ R
nx×m and C ∈ R

p×nx . The nominal model must

respect the constraints (2). To enable this, we make the

following assumption:

Assumption 1: It is assumed that the constraints (2b)

apply to the outputs of (1), and consequently apply naturally

to the outputs of (3). This can easily be achieved by choosing

any states that should be constrained as outputs of the plant.

Remark 1: Associated with the reduced-order model is

an approximation error that can be quantified in general

terms as follows: When substituting (3) for (1), the minimum

achievable Hankel norm of the error system is equal to the

(nx + 1)-st Hankel singular value of the original system (1)

[1], [6], [7]. This error needs to be accounted for in the

controller design.

III. NOMINAL CASE WITH STATE FEEDBACK

In this section we present the soft-constrained state-

feedback MPC policy proposed in [16] for the nominal

system (3), when disregarding the approximation error. The

state-feedback policy will subsequently be used in Section IV

to develop a robust output-feedback policy for the system (1)

based on the reduced-order model (3).

The following optimization problem leads to an MPC

scheme with guaranteed nominal stability:

[
PN,Nε

]
: J∗ (x) = min

U,ε,e
J (x, U, ε, e)

s.t.







x0 = x

xi+1 = Axi + Bui

V ui ≤ v, ∀i ∈ {0, · · · , Nu − 1}
ui = 0, ∀i ≥ Nu

Hxi ≤ h + ǫi, ∀i ∈ {0, · · · , Nǫ − 1}
Hxi ≤ h + HAi−Nǫe, ∀ ∈ i {Nǫ, · · · , N − 1}
TxN ≤ t + TAN−Nǫe,

(4)

Here, U = [u0, · · · , uNu−1] and ε = [ǫ0, · · · , ǫNǫ−1] are

the sequence of Nu inputs and Nǫ slack variables to be

optimized over the horizons Nu and Nǫ, and e ∈ R
nx is an

additional vector of slack variables that has been introduced

to “summarize” constraint violation beyond the prediction

time i = Nǫ − 1. N is the prediction horizon. Further,

J (x, U, ε, e) , ‖[x, U, ε, e]‖2
P (5)

is the cost function, for some appropriate matrix P whose

selection will be explained below, and the matrix T and

the vector t describe a “terminal constraint set”. T and t

can e.g. be chosen so that the terminal constraint set equals

the maximal output admissible set associated with the state

constraints (2b) (see e.g. [5]). We let U∗, ε∗ and e∗ denote

the optimal values of U , ε and e, resulting from
[
PN,Nε

]
.

Remark 2: Note that by choosing the ingredients in
[
PN,Nε

]
in an appropriate way (see [16]), the formulation

is equivalent to the standard soft-constrained MPC in [21].

Some special features of our particular formulation is how-

ever crucial in our quest for robustly stable MPC based on

reduced-order models.

To help describe various conditions on
[
PN,Nε

]
and on the

cost function matrix P , consider the following autonomous

prediction system:






xn+1

Un+1

εn+1

en+1







=







A [B 0 · · · 0] 0 0
0 Γ (Nu, nu) 0 0
0 0 Γ (Nǫ, nh) H̄

0 0 0 A







︸ ︷︷ ︸

Ā0







xn

Un

εn

en







,

(6)

where H̄ , [0, · · · , 0, H ], and where Γ
(
N̄ , n̄

)
is a ma-

trix such that, using Ū =
[
ū0, · · · , ūN̄−1

]
, we have

Γ
(
N̄ , n̄

)
Ū =

[
ū1, · · · , ūN̄−1, 0

]
, that is

Γ
(
N̄ , n̄

)
=












0 In̄ 0 · · · 0
... 0 In̄

. . .
...

...
...

. . .
. . . 0

... 0 · · · 0 In̄

0 0 · · · 0 0












∈ R
N̄n̄×N̄n̄. (7)

Remark 3: Note that if Nǫ = N and P satisfies

ĀT
0 PĀ0 − P + C̄T

0 diag [Q, R, S] C̄0 = 0, (8)
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where Ā0 is defined in (6), Q ∈ R
nx×nx , Q ≥ 0, R ∈

R
m×m, R > 0, S ∈ R

nh×nh , S > 0, and where the matrix

C̄0 is such that C̄0 [x, U, ε, e] = [x, u0, ǫ0], then the cost

function (5) satisfies

J (x, U, ε, e) = ‖xNu
‖
2
PF

+

Nu−1∑

i=0

(

‖xi‖
2
Q + ‖ui‖

2
R

)

+ ‖e‖
2
Π +

N−1∑

i=0

‖ǫi‖
2
S , (9)

where AT PF A − PF = −Q and AT ΠA − Π = −HT SH ,

and where xi is given by
[
PN,Nε

]
[16].

The state-feedback MPC design proposed in [16] is based

on
[
PN,Nǫ

]
as follows:

Algorithm 1: (Nominal State-Feedback MPC)

Offline: (i) Choose any integers N , Nu and Nǫ satisfying

N ≥ Nu ≥ 1, N ≥ Nǫ ≥ 1.

(ii) Choose any matrices Q ≥ 0, R > 0 and S > 0.

(iii) Choose P that satisfies (8).

(iv) Choose any T and t such that the set XF , {x|Tx ≤ t}
satisfies

Ax ∈ XF , ∀x ∈ XF , XF ⊆ {x|Hx ≤ h} . (10)

Online: At each time step k ≥ 0, solve
[
PN,Nε

]
, using

x = xk, then apply uk =
[
I 0 · · · 0

]
U∗ (x) to (3).

The following theorem establishes closed-loop stability

when applying Algorithm 1 to the nominal system (3),

disregarding the “plant” (1) altogether.

Theorem 1: The closed-loop system under Algorithm 1

is globally exponentially stable. Moreover, the closed-loop

trajectories satisfy

∞∑

k=0

‖xk‖
2
Q + ‖uk‖

2
R + ‖ǫ∗k‖

2
S ≤ J∗ (x0) , (11)

where ǫ∗k denotes the first block component of ε∗ (xk).
Proof: This is theorem 3 in [16], where the proof can

be found.

We have now established stability of the MPC design of

Algorithm 1, when applied to (3) only. Next, we take model

approximation errors into account.

IV. REDUCED-ORDER MPC WITH OUTPUT

FEEDBACK

In this section, we propose an output-feedback MPC

procedure based on the reduced-order model (3), in which

we take into account the error introduced through the model

reduction process. We also prove closed-loop stability when

applying this controller to the plant (1).

The MPC control input is computed based on the reduced-

order state vector xk at each time step, and xk should there-

fore be estimated by an observer based on measurements y
p
k

from the plant. For simplicity, we consider a linear estimator

of the form

x̂k+1 = Ax̂k + Buk + L (yp
k − Cx̂k) , (12)

where x̂k denotes the estimated reduced state at time step

k, and we choose L such that (A − LC) is Schur (i.e. the

eigenvalues lie strictly inside the unit disc).

When uncertainties are taken into account, we will make

use of the following matrix function:

Σ{Q,R,S} (P ) , ĀT
0 PĀ0 − P + C̄T

0 diag [Q, R, S] C̄0 (13)

The “nominal” cost function matrix, denoted by P0, is

retrieved by solving Σ{Q,R,S} (P ) = 0, i.e.

Σ{Q,R,S} (P0) = 0. (14)

Requiring Σ{Q,R,S} (P ) ≤ 0 implies P ≥ P0. We will use

Σ{Q,R,S} (P ) at a later stage to search for a P that gives a

cost function for the robust case that is an upper bound on

the nominal cost.

The proposed output-feedback policy for the system, con-

sidering the uncertainties, can now be described as follows:

Algorithm 2: (Output-Feedback MPC)

Offline: (i) Design a state estimator (12).

(ii) Choose any integers N , Nu and Nǫ satisfying N ≥ Nu ≥
1, N ≥ Nǫ ≥ 1.

(iii) Choose any matrices Q ≥ 0, R > 0 and S > 0.

(iv) Choose any matrix P satisfying Σ{Q,R,S} (P ) ≤ 0.

(v) Choose any T and t such that the set XF = {x|Tx ≤ t}
satisfies (10).

Online: At each time step k ≥ 0, solve
[
PN,Nε

]
using x =

x̂k, then apply uk =
[
I 0 · · · 0

]
U∗ (x̂k) to (1).

Remark 4: Note that the only difference between Algo-

rithm 2 and Algorithm 1 is the introduction of a state estima-

tor, and the requirement that P satisfies Σ{Q,R,S} (P ) ≤ 0.

Since Ā0 is stable, we can always find such a P .

A. ROBUST STABILITY TEST

Next, following the approach of [16], we propose LMI

conditions on the cost function matrix P that are sufficient

for closed-loop stability. To this end, we define the aug-

mented state

x̄ , [xp, x̂] , (15)

where xp is the plant state and x̂ is the estimated ROM state.

The dynamics of x̄ in closed-loop are described by

x̄k+1 = Āx̄k + B̄µk, x̄0 = [x0, x̂0] (16)

x̂k = C̄x̄k, (17)

where

Ā =

[
Ap 0
LCp A − LC

]

(18)

B̄ =

[
BpD1

BD1

]

(19)

C̄ =
[
0 I

]
, (20)

and D1 =
[
I 0 · · · 0

]
is such that uk = D1µk, where

µk = [U∗
k , ǫ∗k, e∗k] contains the minimizers of

[
PN,Nε

]
at

time step k. The matrix L is the gain of the state estimator

(12).

For the purpose of stability analysis, we need to establish

a feasible solution µF
k+1 to

[
PN,Nε

]
at time step k+1, based
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on the optimal solution µk at the previous time step k. The

following lemma establishes the existence such a solution.

Lemma 1: Let Ā and B̄ be defined as in (18) and (19).

Then

F1 = KF

[
LCp −LC

]
(21)

and

F2 =





Γ (Nu, nu) 0 0
0 Γ (Nǫ, nh) H̄

0 0 A



 , (22)

are such that

µF
k+1 = F1x̄k + F2µk (23)

is a feasible solution to
[
PN,Nε

]
at time step k + 1. Here,

KF =
[
0, H, HA, · · · , HANǫ−1, ANǫ

]
, (24)

is a particular feasible solution.

Proof: The proof follows from Lemma 5 in [16].

As the final step towards our stability test, we need to find

a suitable cost function matrix P . To this end we introduce

the following definitions:

Ω (Ω0, P ) ,

[
Ω0 0
0 0

]

+ DT
P PDp, (25)

with

DP =

[
C̄ 0
0 Inµ

]

, (26)

and Ω0 ∈ R
(n+nx)×(n+nx).

Φ (Ω0, P ) ,

[
Ā B̄

F1 F2

]

Ω (Ω0, P )

[
Ā B̄

F1 F2

]

− Ω (Ω0, P ) .

(27)

The stability test for Algorithm 2 can now be stated as

follows.

Theorem 2: Assume that, for a given P , there exists a

matrix Ω0 ∈ R
(n+nx)×(n+nx) such that,

Ω (Ω0, P ) > 0 (28a)

Φ (Ω0, P ) < 0, (28b)

where Ω (Ω0, P ) is as defined in (25) and Φ (Ω0, P ) is as de-

fined in (27). Then the closed-loop system under Algorithm

2 is exponentially stable.

Proof: Proving stability follows the well-known path

[17] of first showing recursive feasibility, and then showing

that there exists a Lyapunov function for the closed-loop

system that decreases at each time step. Feasibility at each

time step has been established in Lemma 1. Now, consider

the Lyapunov function candidate

V (x̄, µ) ,

∥
∥
∥
∥

[
x̄

µ

]∥
∥
∥
∥

2

Ω(Ω0,P )

, (29)

which is positive definite in view of (28a), and where µ

denotes the minimizers of
[
PN,Nε

]
, i.e. µk = [U∗

k , ǫ∗k, e∗k].

At time step k, we have

V ∗
k , V (x̄k, µk) =

∥
∥
∥
∥

[
x̄k

µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(30)

= ‖x̄k‖
2
Ω0

+

∥
∥
∥
∥

[
C̄x̄k

µk

]∥
∥
∥
∥

2

P

(31)

= ‖x̄k‖
2
Ω0

+

∥
∥
∥
∥

[
x̂k

µk

]∥
∥
∥
∥

2

P

(32)

= ‖[x̄k]‖
2
Ω0

+ J∗
k , (33)

where x̂ takes the place of the nominal state. Similarly, at

the next time step k +1, the Lyapunov function candidate is

given by

V ∗
k+1 , V (x̄k+1, µk+1) =

∥
∥
∥
∥

[
x̄k+1

µk+1

]∥
∥
∥
∥

2

Ω(Ω0,P )

(34)

= ‖[x̄k+1]‖
2
Ω0

+ J∗
k+1. (35)

Now µF
k+1, as in (23), can be used to derive a bound for

V ∗
k+1. Since

V F
k+1 , V

(
x̄k+1, µ

F
)

=

∥
∥
∥
∥

[
x̄k+1

F1x̄k + F2µk

]∥
∥
∥
∥

2

Ω(Ω0,P )

(36)

= ‖x̄k+1‖
2
Ω0

+
∥
∥
[
x̂k+1, U

F
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
(37)

and

V ∗
k+1 = ‖[xk+1, x̂k+1]‖

2
Ω0

+ J∗
k+1, (38)

we have that

(δV )k+1 , V (x̄k+1, µk+1) − V
(
x̄k+1, µ

F
k+1

)
(39)

= ‖x̄k+1‖
2
Ω0

+ J∗
k+1 − ‖x̄k+1‖

2
Ω0

(40)

−
∥
∥
[
x̂k+1, U

F
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P

= J∗
k+1 −

∥
∥
[
x̂k+1, U

F
k+1, ǫ

F
k+1, e

F
k+1

]∥
∥

2

P
, (41)

and it follows that

(δV )k+1 ≤ 0, (42)

due to the optimality of J∗
k+1, and since µF

k+1 is feasible

(but most likely sub-optimal). Obviously, this implies

V ∗
k+1 ≤ V F

k+1. (43)

Now, it remains to show that

V F
k+1 − V ∗

k ≤ α‖x̄k‖
2, (44)

for (some arbitrarily small) scalar α > 0. For that purpose,

we use the property (28b). At time step k, we have

[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

]

(45)

=

[
x̄k

µk

]T [
Ā B̄

F1 F2

]T

Ω (Ω0, P )

[
Ā B̄

F1 F2

] [
x̄k

µk

]

− V ∗
k .

(46)
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Now, note that
[

Ā B̄

F1 F2

] [
x̄k

µk

]

=

[
Āx̄k + B̄µk

F1x̄k + F2µk

]

(47)

=

[
x̄k+1

µF
k+1

]

, (48)

where µF
k+1 is the feasible solution, as defined in equation

(23). By inserting (48) into (46), we have that

[
x̄k

µk

]T

Φ (Ω0, P )

[
x̄k

µk

]

(49)

=

[
x̄k+1

µF
k+1

]T

Ω (Ω0, P )

[
x̄k+1

µF
k+1

]

− V ∗
k (50)

=

∥
∥
∥
∥

[
x̄k+1

µF
k+1

]∥
∥
∥
∥

Ω(Ω0,P )

− V ∗
k (51)

= V F
k+1 − V ∗

k (52)

Since the inequality (28b) is strict it then follows that (44)

holds for some α > 0.

B. ROBUST DESIGN

Following [16] and [15], we next propose a semi-definite

program (SDP) that may be used to compute a matrix P ≥
P0 that satisfies the stability criterion (28) and is as “close”

as possible to the nominal cost function matrix P0. That is:

inf
P1,P2,Ω0

trace (P1) + qtrace (P2) (53a)

s.t.







P = diag{P1, P2}
Σ{Q,R,S} (P ) ≤ 0
Φ (Ω0, P ) < 0
Ω (Ω0, P ) > 0

(53b)

where q > 0 is a scalar, and where we have also added the

structural constraint P = diag{P1, P2}, such that the cost

(5) takes the form J (x, U, ε, e) = ‖[x, U ]‖2
P1

+ ‖[ε, e]‖2
P2

.

Regarding the feasibility of the above SDP, we have the

following strong result (which is proven in [9]):

Theorem 3: If the matrices, Ap and A − LC, are both

stable, then the problem (53) is feasible.

In the sequel, we denote by P ∗ a feasible and (near) optimal

solution to (53).

Remark 5: Since Σ{Q,R,S} (P ∗) ≤ 0, we have that P ∗ ≥
P0, where P0 is as in (14).

By use of P = P ∗ we obtain the following robust design.

Algorithm 3: (Robust Output-Feedback MPC)

Offline: (i) Choose any integers N , Nu and Nǫ satisfying

N ≥ Nu ≥ 1, N ≥ Nǫ ≥ 1.

(ii) Choose any T and t such that the set XF = {x|Tx ≤ t}
satisfies (10).

(iii) Choose any observer gain such that A − LC is stable.

(iv) Choose any matrices Q ≥ 0, R > 0 and S > 0 and

determine P = P ∗ by solving (53).

Online: At each time step k ≥ 0, solve
[
PN,Nε

]
using x =

x̂k, then apply uk =
[
I 0 · · · 0

]
U∗ (x̂k) to (1).

In [9], we address the important question of conservatism

of the above robust reduced-order design. Specifically, we

show that, under a reasonable assumption, the proposed

design is non-conservative in the sense that P ∗ ≈ P0

provided that the neglected dynamics ∆(z) , Cp(zI −
Ap)

−1Bp − C(zI − A)−1B are sufficiently small.

C. NUMERICAL EXAMPLE

We consider a 6th order plant given by

Ap =











0.28 0.25 −0.19 −0.22 0.03 −0.50
0.25 −0.47 0.30 0.17 −0.11 −0.11
−0.19 0.30 0.46 0.09 −0.02 −0.08
−0.22 0.17 0.09 0.60 −0.06 0.14
0.03 −0.11 −0.02 −0.06 0.46 −0.13
−0.50 −0.11 −0.08 0.14 −0.13 −0.23











Bp =
[
1.0159 0 0.5988 1.8641 0 −1.2155

]T
and

Cp =
[
1.2920 0 0 0.2361 0.8428 0

]
. The system

has a zero at z = 6.83, outside the unit circle, and is

consequently non-minimum phase. The output y
p
k is subject

to soft unit bound constraints, and the input uk is subject

to hard unit bound constraints. We choose Nu = N = 10,

Nǫ = 2, Q = I , R = 0.1 and S = 1000I .

First, we reduce the system order from n = 6 to nx = 5
and nx = 4 using balanced reduction, and we impose the

same constraints on the reduced-order models. Reduced-

order models with nx = 5 and nx = 4 leads to model

reduction errors ‖∆(z)‖∞ = 6.9885×10−6 and ‖∆(z)‖∞ =
0.0221, respectively. The plant is initialized at x

p
0 =

[−0.9044, −9.1380, −2.5036, 0.6696, −0.0821, −4.0350]
while the observer is initialized at x̂0 = C+y

p
0 , where C+

denotes the Moore-Penrose pseudoinverse of C, and y
p
0

is the initial plant output. The SDP (53) is solved using

MATLAB with YALMIP [13] and SeDuMi [22].

Fig. 1 compares the closed-loop responses of different

robust MPC designs computed using Algorithm 3. The figure

also shows the response when using the associated nominal

design (NMPC), which is algorithm 3 but using P = P0 as

in (14).

For this initial condition, the open-loop response over-

shoots the upper output constraint by 14%, and so the robust

design is good at keeping its soft constraints. Fig. 1 suggests

that the robust MPC is not overly conservative when the

model uncertainty is relatively small.

If we proceed by truncating to nx = 3, the model reduc-

tion error increases by an order of magnitude to ‖∆(z)‖∞ =
0.1373. In this case, the nominal MPC design fails severely,

as illustrated in Fig. 2. In fact, the output for the nominal

design oscillates between its soft constraints. On the other

hand, the “robustified” design still performs well.

V. CONCLUSIONS

In this paper we have developed a procedure for obtain-

ing closed-loop stability of output-feedback MPC based on

reduced-order models. The procedure uses the information

available in the original plant model in the offline phase of

determining the cost function parameters. Since our main

objective is to design an efficient online controller, it is

reasonable to put extra work into the offline stage.
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Fig. 1. Top: NMPC using the plant as the nominal model. Center: NMPC
(dotted) and robust MPC (solid) using a ROM with nx = 5. Bottom: NMPC
(dotted) and robust MPC (solid) using a ROM with nx = 4.
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Fig. 2. NMPC (dotted) and robust MPC (solid) using a ROM with nx = 3.

For large-scale systems, this procedure may be too com-

putationally demanding, since we require solving LMIs in-

volving the full system matrices. It seems feasible to further

develop the procedure described here by treating parts of the

dynamics as model uncertainty.
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