
 

 

 

  

Abstract— In this paper we develop a new online adaptive 

control scheme, for partially unknown nonlinear systems, which 

converges to the optimal state feedback control solution for 

affine in the inputs nonlinear systems. The derivation of the 

optimal adaptive control algorithm is presented in a continuous-

time framework. The optimal control solution will be obtained 

in a direct fashion, without system identification.  

The algorithm is an online approach to policy iterations 

based on an adaptive critic structure to find an approximate 

solution to the state feedback, infinite-horizon, optimal control 

problem. 

I. INTRODUCTION 

daptive control is an on-line design approach which has 

the objective of maintaining consistent performance of 

systems which have known structure but unknown constant 

or slowly time-varying parameter values. An indirect 

adaptive control strategy has as first step the online 

estimation of the system parameters followed by model 

based controller design, whereas the parameters of a direct 

adaptive controller are directly identified, the plant being 

described in terms of the controller parameters [10], [20].  

Direct adaptive control techniques modify the parameters 

of the controller in the sense of minimizing the error between 

the desired output, i.e. the output of a reference model, and 

the output of the closed loop system. Thus, these techniques 

are not optimal in the sense of minimizing a formal 

performance function of the sort specified for optimal 

control.  

Optimal adaptive controllers can be obtained using the 

indirect approach. For linear systems with quadratic cost this 

requires the solution of the algebraic Riccati equation (ARE) 

associated with the optimal control. In the nonlinear case the 

solution of the well known Hamilton Jacobi Bellman (HJB) 

equation [16] needs to be found. However the HJB equation 

is generally difficult to solve. Techniques for obtaining 

approximate solutions for the HJB equation have been 

developed in [9], [2], [15]. All these methods are offline 

approaches which require prior knowledge of the system 

dynamics, thus the approximate optimal controllers derived 

using these techniques are not sensitive to changes in the 
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system dynamics and thus are not adaptive. Stabilizing 

adaptive controllers that are inverse optimal, with respect to 

some relevant cost not specified by the designer, have been 

derived and analyzed in [17], [14].  

This paper proposes an adaptive strategy to determine 

online an approximate optimal controller for partially 

unknown, affine in the input, nonlinear systems, without 

prior identification of the nonlinear system’s internal 

dynamics. The online strategy is constructed using a policy 

iteration technique, first formulated in [8], who alternates 

between policy evaluation and policy improvement steps. 

Various results using offline policy iterations for solving the 

optimal control problem have been presented and discussed, 

including convergence guarantees, in [12], [2], [1], [6].  

The main contribution of this paper is given by the online 

quality of the policy iteration algorithm, which at the same 

time does not require knowledge of the system internal 

dynamics, and thus can be viewed as a direct optimal 

adaptive control technique. Unlike the regular adaptive 

controllers which rely on online identification of the system 

dynamics followed by model based controller design, the 

policy iteration method we are proposing here relies on 

identification of the cost function associated with a given 

control policy followed by policy improvement in the sense 

of minimizing the identified cost.  

The convergence guarantees of the continuous time policy 

iteration technique to the optimal controller was given for 

linear systems in [12], as well as for nonlinear systems in 

both unconstrained and constrained control case in [2] and 

[1]. Implementation of these algorithms requires complete 

knowledge of the system dynamics. Online adaptive partially 

model free algorithms based on policy iteration algorithms 

for approximate optimal control have been developed in [18] 

and [21] for linear continuous time systems. Both approaches 

avoid the necessity of knowing the internal system dynamics. 

We now propose a new policy iteration technique that will 

solve in an online fashion, along a single state trajectory, the 

optimal control problem for continuous-time nonlinear 

systems using only partial knowledge about the system 

dynamics (i.e. the internal dynamics of the system need not 

be known). This is in fact a direct adaptive control scheme 

for partially unknown systems that converges to the optimal 

control solution without any knowledge on the plant internal 

description (i.e. the internal dynamics of the plant need not 

be in a specific parametric form).  

The following section of the paper includes a short 
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overview of nonlinear optimal control and the HJB equation, 

the derivation of the proposed algorithm with convergence 

analysis, the description of the adaptive controller structure, 

and the online implementation approach. The third section 

presents the adaptive optimal control results obtained in 

simulation while considering a linear and a nonlinear system. 

II. CONTINUOUS-TIME ADAPTIVE CRITIC SOLUTION FOR THE 

INFINITE HORIZON OPTIMAL CONTROL PROBLEM 

A. Optimal control and the continuous-time HJB equation 

Consider the time-invariant affine in the input dynamical 

system given by 

( ) ( ( )) ( ( )) ( ( ))x t f x t g x t u x t= +� ; 0(0)x x=  (1) 

with ( ) n
x t R∈ , ( ( )) n

f x t R∈ , ( ( )) n m
g x t R

×∈  and the input 

( ) m
u t U∈ ⊂ R . We assume that ( ) ( )f x g x u+  is Lipschitz 

continuous on a set 
nΩ⊆R  that contains the origin and that 

the dynamical system is stabilizable on Ω , i.e. there exists a 
continuous control function ( )u t U∈  such that the system is 

asymptotically stable on Ω .  

Define the infinite horizon integral cost 

0

0

( ) ( ( ), ( ))V x r x u dτ τ τ
∞

= ∫  (2) 

where ( , ) ( ) Tr x u Q x u Ru= +  with ( )Q x  positive definite, i.e. 

0, ( ) 0x Q x∀ ≠ >  and 0 ( ) 0x Q x= ⇒ = , m mR ×∈R  a positive 

definite matrix.   

Definition 1 [2] (Admissible policy) A control policy 

( )xµ  is defined as admissible with respect to (2) on Ω , 

denoted by ( )µ∈Ψ Ω , if ( )xµ  is continuous on Ω , 

(0) 0µ = , ( )xµ  stabilizes (1) on Ω  and 0( )V x  is finite 

0x∀ ∈Ω .  

For any admissible control policy ( )µ∈Ψ Ω , if the 

associated cost function  

0

0

( ) ( ( ), ( ( )))V x r x x d
µ τ µ τ τ

∞

= ∫  (3) 

is 1C , then a infinitesimal version of (3) is 

0 ( , ( )) ( ( ) ( ) ( )), (0) 0T
xr x x V f x g x x Vµ µµ µ= + + =  (4) 

where xV µ  denotes the partial derivative of the value 

function V µ  with respect to x , as the value function does 

not depend explicitly on time. Equation (4) is a Lyapunov 
equation for nonlinear systems which, given the controller 

( ) ( )xµ ∈Ψ Ω , can be solved for the value function ( )V xµ  

associated with it. Given that ( )xµ  is an admissible control 

policy, if ( )V xµ  satisfies (4), with ( , ( )) 0r x xµ ≥ , then 

( )V xµ  is a Lyapunov function for the system (1) with 

control policy ( )xµ .  

The optimal control problem can now be formulated: 

Given the continuous time system (1), the set ( )u∈Ψ Ω  of 

admissible control policies and the infinite horizon cost 
functional (2), find an admissible control policy such that the 
cost index (2) associated with the system (1) is minimized.   

Defining the Hamiltonian of the problem  
* *( , , ) ( ( ), ( )) ( ( ( )) ( ( )) ( ))T
x xH x u V r x t u t V f x t g x t u t= + + , (5) 

the optimal cost function *( )V x  satisfies the HJB equation  

 *

( )
0 min [ ( , , )]x

u
H x u V

∈Ψ Ω
= . (6) 

Assuming that the minimum on the right hand side of the 
equation (6) exists and is unique then the optimal control 
function for the given problem is  

* 1 *( ) ( ) ( )T
xu x R g x V x

−=− . (7) 

Inserting this optimal control policy in the Hamiltonian we 

obtain the formulation of the HJB equation in terms of *
xV  

* * 1 *

*

1
0 ( ) ( ) ( ) ( ) ( ) ( ) ( )

4

(0) 0

T T T
x x xQ x V x f x V x g x R g x V x

V

−= + −

=

. (8) 

This is a necessary and sufficient condition for the optimal 
value function [11]. For the linear system case, considering a 
quadratic cost functional, the equivalent of this HJB equation 
is the well known Riccati equation. 

In order to find the optimal control solution for the 
problem one only needs to solve the HJB equation (8) for the 
value function and then substitute the solution in (7) to 
obtain the optimal control. However, solving the HJB 
equation is generally difficult. It also requires complete 
knowledge of the system dynamics (i.e. the functions 

( ), ( )f x g x  need to be known). 

B. Adaptive optimal control algorithm based on policy 

iterations 

In the following we propose a new online iterative 

algorithm which will adapt to solve the infinite horizon 

optimal control problem without using knowledge regarding 

the system internal dynamics (i.e. the system function ( )f x ).   

Let ( )xµ  be an admissible policy for (1), such that the 

closed loop system is asymptotically stable on Ω . Then the 

infinite horizon cost for any ( )x t ∈Ω  is given by (3) and 

( ( ))V x tµ  serves as a Lyapunov function for (1).  The cost 

function (3) can be written as 

( ( )) ( ( ), ( ( ))) ( ( ))
t T

t

V x t r x x d V x t T
µ µτ µ τ τ

+

= + +∫ . (9) 

Based on (9) and (6), considering an initial admissible 

control policy (0) ( )xµ , the following policy iteration scheme 

can be derived 

1. solve for 
( )

( )
i

V xµ  using 

( ) ( )

( )

( )( ( )) ( ( ), ( ( ))) ( ( )),

(0) 0

i i

i

t T
i

t

V x t r x x d V x t T

V

µ µ

µ

τ µ τ τ
+

= + +

=

∫
 (10) 

2. update the control policy using 
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( )( 1)
( ) arg min{ ( , , )}

i
i

xx H x V
µ

µ

µ µ+ =  (11) 

which is  
( )( 1) 1( ) ( ) ( )
i

i T
xx R g x V xµµ + −=− . (12) 

Equations (10) and (12) formulate a new policy iteration 

algorithm to solve for the optimal control without making 

use of any knowledge of the system internal dynamics ( )f x . 

The implementation of the algorithm is straightforward and 

will be discussed in section II-D. This algorithm is an online 

version of the offline algorithms proposed in [1], [2] 

motivated by the success of the online adaptive critic 

techniques proposed by computational intelligence 

researchers [22], [19], [4]. 

C. Convergence analysis  

In this section we prove the convergence of the online 
optimal adaptive control algorithm. 

Lemma 1 Solving for 
( )i

V
µ

 in equation (10) is equivalent 

with finding the solution of the Lyapunov equation 
( ) ( )( ) ( )0 ( , ( )) ( ( ) ( ) ( )), (0) 0
i i

i T i
xr x x V f x g x x Vµ µµ µ= + + = .

 (13) 

Proof  

Since ( )iµ  is an admissible control policy over Ω  then 

the function 
( )i

V
µ

, defined as in (3), satisfies equation (13) 

with ( )( ( ), ( ( ))) 0; ( ) 0ir x t x t x tµ > ≠  and is a Lyapunov 

function of the system. Integrating (13) over the interval 
[t,t+T] one obtains  

( )

( )( ( ))
( ( ), ( ( )))

it T t T
i

t t

dV x t
dt r x x d

dt

µ

τ µ τ τ
+ +

− =∫ ∫ , 

which is equation (10) 

( ) ( )( )
( ( )) ( ( ), ( ( ))) ( ( ))

i i
t T

i

t

V x t r x x d V x t T
µ µτ µ τ τ

+

= + +∫ .  

This means that the solution of the Lyapunov equation (13) 
( )i

V
µ

 satisfies also equation (10). To complete de proof we 

will now show that equation (10) has a unique solution. 

Assume that there exists another cost function V , 

continuously differentiable, such that  

( )
( ( )) ( ( ), ( ( ))) ( ( )), (0) 0

t T
i

t

V x t r x x d V x t T Vτ µ τ τ
+

= + + =∫ .(14) 

This cost function also satisfies  
( )( ( )) ( ( ), ( ( )))iV x t r x t x tµ=−� . (15)  

Subtracting (15) from (13) we obtain  

( )

( )[ ( ) ( )]
[ ( ) ( ) ( )] 0

i T

id V x V x
f x g x x

dx

µ

µ
 

−  + =
  
 

 (16) 

which must hold for any ( )x t  on the system trajectories 

generated by the admissible policy ( )iµ . Thus 
( )

( ) ( ) ,
i

V x V x c xµ= + ∀ ∈Ω . The relation must hold for 0x=  

which implies that 0c=  and thus 
( )

( ) ( ),
i

V x V x xµ= ∀ ∈Ω , 

i.e. equation (10) has a unique solution.  █ 

Remark 1 Although the same solution is obtained whether 
solving the equation (10) or (13), solving equation (10) does 

not require any knowledge on the system dynamics ( )f x . 

From Lemma 1 it follows that the algorithm (10) and (12) 
is equivalent to iterating between (13) and (12), without 
using knowledge of the system internal dynamics. 

Theorem 1 (convergence) The policy iteration (10) and 
(12) converges to the optimal control solution on the 

trajectories having initial state 0x ∈Ω . 

Proof: In [2], [1] it was shown that using policy iteration 

conditioned by an initial admissible policy (0) ( )xµ , all the 

subsequent control policies will be admissible and the 
iteration (13) and (12) will converge to the solution of the 
HJB equation.   

Based on the proven equivalence between the equations 
(10) and (13) we can conclude that the proposed online 
adaptive optimal control algorithm will converge to the 
solution of the optimal control problem (2), on any subset 

( )

0

i

x

µ
Ω ⊂ Ω , without using knowledge on the internal dynamics 

of the controlled system (1). █ 

D. Online implementation of the algorithm without using 

knowledge of the system internal dynamics 

For the implementation of the iteration scheme given by 

(10) and (12) one only needs to have knowledge of the input 

to state dynamics, i.e. the function ( )g x , which is required 

for the policy update in equation (12). One can see that 

knowledge on the internal state dynamics, described by 

( )f x , is not required. The information regarding the system 

( )f x  matrix is embedded in the states )(tx  and )( Ttx +  

which are sampled online. 

In order to solve for the cost function 
( )

( )
i

V x
µ  in equation 

(10) we will use a neural network to obtain an approximation 

of the value function for any given initial state x∈Ω . Due to 

the universal approximation property [7], a neural network is 

a natural choice for this application. The cost function 
( )

( ( ))
i

V x t
µ  will be approximated by 

( ) ( ) ( )

1

( ) ( ) ( ) ( )
i i i

L
T

j j L L
j

V x w x x
µ µ µφ

=

= =∑ w φ  (17) 

which is a neural network with L neurons on the hidden layer 

and activation functions 1( ) ( ), (0) 0j jx Cφ φ∈ Ω = . 
( )i

jw
µ  

denote the weights of the neural network, ( )L xφ  is the 

vector of activation functions and 
( )i

L
µw  is the weight 

vector. Note that there exists an approximation error between 

the neural network and the true value of the cost function. 

This issue will be addressed in a future paper while we 

continue the following derivations assuming that the neural 

network is an exact description of the cost function.  
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Using the neural network description for the value 
function, equation (17), equation (10) can be written as   

( ) ( )( )
( ( )) ( , ( )) ( ( )).

i i
t T

T i T
L L L L

t

x t r x x d x t T
µ µµ τ

+

= + +∫w φ w φ

 (18) 
As the cost function was replaced with the neural network 
approximation, equation (18) will have the residual error  

( )( )
( ( )) ( , ( )) [ ( ( )) ( ( ))].

i
t T

i i T
L L L L

t

x t r x x d x t T x t
µδ µ τ

+

= + + −∫ w φ φ

 (19) 
From the perspective of temporal difference learning 
methods [5], [3] this error can be viewed as temporal 
difference residual error.  

Denote with 
( )

0

i

x
µΩ ⊂Ω  the trajectory generated by the 

control policy ( ) ( )i xµ , starting form the initial state 0x . 

Note that, as the proposed method is in the class of adaptive 
control techniques all the computations must be performed 
based on the information that can be acquired form the 
system along a trajectory generated by a given admissible 
control policy. 

To determine the parameters of the neural network 
approximating the cost function, in the least-squares sense, 
we use the method of weighted residuals. Thus we seek to 
minimize the objective  

( )

0

( ) ( )i

x

i i
L LS x x dxµ δ δ

Ω
= ∫ . (20) 

This amounts to ( )
( )

0

( )
( ) 0i

i
x

i
iL
L

L

d x
x dx

d
µ

µ

δ
δ

Ω
=∫

w
. 

Using the inner product notation for the Lebesgue integral 
one can write  

( )

( )

0

( )
, ( ) 0

i

i

x

i
iL
L

L

d x
x

d µ
µ

δ
δ

Ω

=
w

 

which is 
( )

( )

[ ( ( )) ( ( ))],[ ( ( )) ( ( ))]

[ ( ( )) ( ( ))], ( ( ), ( ( ))) 0

iT
L L L L L

t T
i

L L

t

x t T x t x t T x t

x t T x t r x s x s ds

µ

µ
+

+ − + − +

+ + − =∫

φ φ φ φ w

φ φ

 

Conditioned by 

[ ( ( )) ( ( ))],[ ( ( )) ( ( ))]
T

L L L Lx t T x t x t T x tΦ= + − + −φ φ φ φ  being 

invertible, then we obtain 

( )
1 ( )[ ( ( )) ( ( ))], ( ( ), ( ( )))

i
t T

i
L L L

t

x t T x t r x s x s dsµ µ
+

−=−Φ + − ∫w φ φ

 (21) 
To show that matrix Φ  is invertible the following technical 
results are needed. 

Definition 2 [13] (linearly independent set of functions) A 

set of functions { }
1

N

jφ  is said to be linearly independent if 

1

( ) 0
N

j j
j

c xφ
=

=∑  a.e. on R  implies that 1 0Nc c= = =� . 

Lemma 2 If the set { }
1

N

jφ is linearly independent and 

( )u∈Ψ Ω  then the set { }
1

( )
N

T
j f guφ∇ + is also linearly 

independent. 

For the proof see [2]. █ 
We now introduce a lemma proving that Φ can be 

inverted. 

Lemma 3 Let ( ) ( )xµ ∈Ψ Ω  such that ( ) ( ) ( )f x g x xµ+  is 

asymptotically stable. If the set { }
1

N

jφ  is linearly 

independent then 0T∃ >  such that ( )x t∀ ∈Ω  the set 

{ }
1

( ( ), ) ( ( )) ( ( ))
N

j j jx t T x t T x tφ φ φ= + −  is also linearly 

independent.  

Proof 

If the vector field ( ) ( ) ( )x f x g x xµ= +�  is asymptotically 

stable then along the system trajectories 

( ; ( ), ), ( )x t x tϕ τ µ ∈Ω , we have that 

( ( )) ( )( ( ; ( ), ))

( )( ( ; ( ), )) ( ( ))

x

t

t T

x

t

x t f g x t d

f g x t d x t T

φ φ µ ϕ τ µ τ

φ µ ϕ τ µ τ φ

∞

+

=− +

=− + + +

∫

∫

 (22) 

( ( )) ( ( )) ( )( ( ; ( ), ))

t T

t

x t T x t f g x t d
x

φ
φ φ µ ϕ τ µ τ

+
∂

+ − = +
∂∫

 (23) 

Suppose that the lemma is not true. Then for all 0T >  

there exists a nonzero constant vector Nc∈R  such that 

0x∀ ∈Ω  [ ( ( )) ( ( ))] 0Tc x t T x tφ φ+ − ≡ . This implies that 

0T∀ > , ( )( ( ; ( ), )) 0

t T
T

t

c f g x t d
x

φ
µ ϕ τ µ τ

+
∂

+ ≡
∂∫

 and thus, 

( )x t∀ ∈Ω , ( )( ( ; ( ), )) 0Tc f g x t
x

φ
µ ϕ τ µ

∂
+ ≡

∂
. This means that 

{ }
1

( )
N

T
j f guφ∇ + is not linearly independent contradicting 

Lemma 2. Thus 0T∃ >  such that 0( )x t∀ ∈Ω  the set 

{ }0
1

( ( ), )
N

j x t Tφ is also linearly independent.  █ 

Based on the result of Lemma 3, there exist values of T 

such that the matrix Φ is invertible and the parameters iW  of 

the cost function can be calculated. The selection of T for the 
online implementation is related to the excitation condition 
requirement and will be addressed in a future paper. 
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After the parameters of the parameters 
( )i

L
µw  of the 

neural network approximating the cost function 
( )

( ( ))
i

V x t
µ  

have been determined, the new improved control policy can 
be simply calculated as 

( )
( 1) 1 ( )

( ) ( )
i

T
i T L

L

x
x R g x

x

µϕ
µ + − ∂ 

=−  
∂ 

w . (24) 

 

The flowchart of the online algorithm is presented in Fig. 
1. 

 
The solution given by (18) can be obtained in real-time 

after a sufficient number of data points are collected along a 
single state trajectory. In practice, the matrix inversion in 
(18) is not performed, the solution of the equation being 
obtained using algorithms that involve techniques such as 
Gaussian elimination, backsubstitution, and Householder 
reflections. Equation (18) can also be solved by Recursive 
Least Squares (RLS) in which case a persistence of 
excitation condition is required. It has to be emphasized that, 
in order to successfully apply the algorithm, enough 
excitation must be present in the system. Thus, if the system 
state reached the equilibrium point (note that the algorithm 
iterates only on stabilizing controllers), the data measured 
from the system can no longer be used in the adaptive 
algorithm; in this case the system must be again excited to 
the previously considered initial state and a new experiment 
needs to be conducted having as starting point the last policy 
obtained in the previous experiment. 

The iterations will be stopped (i.e. the critic will stop 
updating the control policy) when the error between the 
system performance evaluated at two consecutive steps will 
cross below a designer specified threshold. Also, when this 
error becomes bigger than the above mentioned threshold the 
critic will take again the decision to start tuning the actor 
parameters. 

The next section presents the structure of the system with 
adaptive controller. 

E. Control system structure and implementation issues 

The proposed optimal adaptive procedure requires only 
measurements of the states at discrete moments in time, t  

and Tt + , as well as knowledge of the observed cost over 

the time interval ],[ Ttt + . Therefore there is no required 

knowledge about the system dynamics ( )f x  for the 

evaluation of the cost or the update of the control policy.  

However the ( )g x  matrix is required for the update of the 

control policy, using (13), and this makes the online tuning 
algorithm only partially model free. The control policy is 
updated at time t+T, after observing the state x(t+T) and it 
will be used for controlling the system during the time 
interval [t+T, t+2T]; thus the algorithm is suitable for online 
implementation from the control theory point of view. 

The structure of the system with the adaptive controller is 
presented in Fig. 2.  

 
Most important is that the system has to be augmented with 

an extra state )(tV , with ( ) TV Q x u Ru= +� , in order to extract 

the information regarding the cost associated with the given 
policy. It is shown that having little information about the 
system states, x, and the augmented system state, V, extracted 
from the system only at specific time values (i.e. 

( ), ( )x t x t T+  and )()( tVTtV −+ ), the critic is able to 

evaluate the performance of the system associated with a 
given control policy. Then a policy improvement takes place 
at time t+T.  

It is observed that the update of both the actor and the 
critic is performed at discrete moments in time. However, the 
control action is a full fledged continuous-time control, with 
its constant gain updated at discrete moments in time.  
Moreover, the critic update is based on the observations of 
the continuous-time cost over a finite sample interval. As a 
result, the algorithm converges to the solution of the 
continuous-time optimal control problem, as proven in II-C. 

III. OPTIMAL ADAPTIVE CONTROLLER DESIGN FOR A 

NONLINEAR SYSTEM 

In this section we illustrate the results of the adaptive 
optimal control algorithm considering the nonlinear system 
in [2] given by the equations 

3
1 1 2

2 1 2

x x x

x x x u

=− −

= + +

�

�

. (25) 

A. Linear case 

For a first case we consider a linear version of the system 
(25), not including the cubic term in the dynamics of the first 
state, described by the following equations 

0 1 0

1 1 1
x x u

−   
= +   
   

� . (26) 

The simulation was conducted using data obtained from 
the system at every 0.3s. For the purpose of demonstrating 
the algorithm the initial state is taken to be different than 

Start

Stop

0
1; ( ) ( )i xµ= ∈Ψ Ω

1i i← +

Yes

No

Initialization

Solving for the cost using least squares

Policy update
( 1)

( ) 1
( ) ( ) ( )

i
i T

xx R g x V x
µµ

−−=−

( ) 1 ( )[ ( ( )) ( ( ))], ( ( ), ( ( )))
i

t T
i

L L L

t

x t T x t r x s x s ds
µ µ

+
−=−Φ + − ∫w φ φ

( ) ( 1)i i

L L
µ µ ε

−

− <w w

Start

Stop

0
1; ( ) ( )i xµ= ∈Ψ Ω

1i i← +

Yes

No

Initialization

Solving for the cost using least squares

Policy update
( 1)

( ) 1
( ) ( ) ( )

i
i T

xx R g x V x
µµ

−−=−

( ) 1 ( )[ ( ( )) ( ( ))], ( ( ), ( ( )))
i

t T
i

L L L

t

x t T x t r x s x s ds
µ µ

+
−=−Φ + − ∫w φ φ

( ) ( 1)i i

L L
µ µ ε

−

− <w w

Start

Stop

0
1; ( ) ( )i xµ= ∈Ψ Ω

1i i← +

Yes

No

Initialization

Solving for the cost using least squares

Policy update
( 1)

( ) 1
( ) ( ) ( )

i
i T

xx R g x V x
µµ

−−=−

( ) 1 ( )[ ( ( )) ( ( ))], ( ( ), ( ( )))
i

t T
i

L L L

t

x t T x t r x s x s ds
µ µ

+
−=−Φ + − ∫w φ φ

( ) ( 1)i i

L L
µ µ ε

−

− <w w

 

Figure 1. Flowchart of the online algorithm 
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Figure 2. Structure of the system with adaptive controller 
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zero. The initial stabilizing controller was taken to be the 
truncated version of the initial stabilizing controller derived 
in [2] for the nonlinear system which is 

0 ( ) [0.4142   -2.35]x xµ = . (27) 

The cost function parameters, namely the Q and R 
matrices, were chosen to be identity matrices of appropriate 
dimensions. The following smooth function was used to 
approximate the cost function of the system  

2 2 4 3
1 2 1 1 2 1 2 3 2 4 1 5 1 2

2 2 3 4 6 5
6 1 2 7 1 2 8 2 9 1 10 1 2

4 2 3 3 2 4 5 6
11 1 2 12 1 2 13 1 2 14 1 2 15 2

( , ) x + x x + x + x x x +

+ x x + x x + x + x + x x +

+ x x + x x + x x + x x + x

V x x w w w w w

w w w w w

w w w w w

= +

.(28) 

In order to solve online for the neural network weights 

, 1,15iw i =  which parameterize the cost function, before each 

iteration step one needs to setup a least squares problem with 
the solution given by (13).  As the considered neural network 
has 15 weights we can setup a least squares problem by 
measuring the cost function associated with a given control 
policy over 15 time intervals T=0.3s, the initial state and the 
system state at the end of each time interval. In this way, at 
every 4.5s, enough data is collected from the system to solve 
for the cost function and perform a policy update. The result 
of applying the algorithm is presented in Fig. 3.   

 
The experiment was performed along the state trajectory 

having as initial state 0 [0.1 0.1]Tx = . The cost function 

converged to  

2 2
1 2 1 1 2 2( , ) 3.3784 -0.8284 2.6818V x x x x x x= + , (29) 

the last 12 parameters being close to zero. The resulting 
control policy is 

5 1 2( ) 0.4142 -2.6818x x xµ = . (30) 

This result is consistent with the solution of the Riccati 
equation underlying the optimal control problem in the linear 
case. 

From Fig. 3 it is clear that the parameters of the cost 
function, and implicitly the parameters of the control policy, 
converged after two iteration steps were performed. Thus, 
after two iteration steps the system will be controlled in an 
optimal fashion with the controller which was adapted on-
line without using knowledge about the system’s internal 
dynamics. 

B. Nonlinear case 

The proposed adaptive optimal control algorithm is now 
used with a nonlinear system (25). The required initial 
stabilizing controller for this system was (27) and the same 

initial state was chosen 0 [0.1 0.1]Tx = . The cost function 

was approximated as in (28). The evolution of the cost 
function parameters is presented in Fig. 4. 

 
The optimal controller obtained over this trajectory is 

3 2
5 1 2 1 1 2

2 3 5 4
1 2 2 1 1 2

3 2 2 3 4 5
1 2 1 2 1 2 2

( ) 0.4142 -2.6818 2.3889 2.9829

1.5202 0.3013 2.7257 2.6802

0.1213 1.1147 0.3917 0.016

x x x x x x

x x x x x x

x x x x x x x

µ = − + −

− + + − −

− + − −

.(31) 

Notice that the first terms are the same with the terms in the 
controller for the linear system (30). 

An experiment for a cost function using terms up to the 
power 8 was next performed and the result (the weights 
corresponding to the high order terms were close to zero) 
indicates that the 6th order polynomial (28) provides a good 
approximation for the cost function. 

IV. CONCLUSION 

In this paper we proposed a new adaptive controller based 
on policy iteration to solve on-line the continuous time 
optimal control problem without using knowledge about the 
system’s internal dynamics. Convergence of the proposed 
algorithm, under the condition of initial stabilizing 
controller, to the solution of the optimal control problem has 
been established. Simulation results support the effectiveness 
of the online adaptive optimal controller. 

Issues such as the neural network approximation error, the 
choice of the sampling time will be addressed in a future 
extended paper. 
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