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Abstract— We discuss a framework for defining physical open
systems on higher-dimensional complexes. We start with the
formalization of the dynamics of open electrical circuits and
the Kirchhoff behavior of the underlying open graph or 1-
complex. It is discussed how the graph can be closed to an
ordinary graph, and how this defines a Dirac structure on
the extended graph. Then it is shown how this formalism can
be extended to arbitrary k-complexes, which is illustrated by
a discrete formulation of heat transfer on a two-dimensional
spatial domain.

I. INTRODUCTION

The work described in this paper is motivated by various
developments. In physical systems modeling and simulation,
recently much work has been done on developing compu-
tational tools for complex physical systems described by
pde’s, which retain the underlying physical characteristics
and system geometry. This has been done using mixed finite
element methods, or by setting up a discrete calculus that
mimicks the continuous differential-geometric calculus used
in the geometric description of systems of pde’s (e.g., the
development of discrete differential forms). Another develop-
ment concerns the recent explosion in activity on networks of
dynamical systems, analyzing and controlling the dynamics
of systems which are interconnected by a network, usually
represented as a graph. The this paper is aimed at providing
a framework for the study of physical dynamics on higher-
dimensional networks, represented by k-complexes. Older
references in this spirit include [9], [10].

We start by considering the case of electrical circuits,
where the network is described by an (oriented) graph, or
equivalently by a 1-complex. We recall how Kirchhoff’s laws
can be rephrased in this language, and we emphasize the
concept of an open graph and the corresponding Kirchhoff
behavior, which is important for the purpose of intercon-
necting graphs. We also show how this framework fits into
the setting of interconnecting systems by power-conserving
interconnections as done, for example, in port-Hamiltonian
systems theory [11], [12].

Next we show how this framework extends to arbitrary k-
complexes, and how it allows for the definition of dynamics
on open k-complexes, as illustrated by the example of
(discrete) heat conduction on a 2-dimensional complex.
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II. GRAPHS AND KIRCHHOFF BEHAVIOR

An oriented graph1 G, see e.g. [3], consists of a finite set
N of nodes (sometimes called vertices) and a finite set B of
branches (also called edges). Furthermore, there is mapping
from B to the set of ordered pairs of N . Thus to any branch
b ∈ B there corresponds an ordered pair (n,m) ∈ N 2

representing the starting node n and the final node m of
this branch. An oriented graph is completely specified by its
incidence matrix D, which is an n̄ × b̄ matrix, n̄ being the
number of nodes and b̄ being the number of branches, with
(i, j)-th element dij equal to 1 if the j-th branch is a branch
towards node i, equal to −1 if the j-th branch is a branch
originating from node i, and equal to 0 otherwise.

Given an oriented graph we define its node space Λ0 as
the real vector space of all functions from N to R. Clearly
Λ0 can be identified with Rn̄. Furthermore, we define its
branch space Λ1 as the vector space of all functions from B
to R. Again, Λ1 can be identified with Rb̄.

In the context of an electrical circuit Λ1 will be the vector
space of currents through the branches in the circuit. The
dual space of Λ1 will be denoted by Λ1, and defines the
vector space of voltages over the branches. Furthermore, the
duality product < V |I > of a vector of currents I ∈ Λ1

with a vector of voltages V ∈ Λ1 is the total power over the
circuit. Similarly, the dual space of Λ0 is denoted by Λ0 and
defines the vector space of potentials at the nodes.

We note that, since both Λ0 and Λ1 have a canonical
basis corresponding to the individual nodes, respectively,
branches, there is a standard Euclidean inner product on both
spaces, and thus both Λ0 and Λ1 can be identified with Λ0,
respectively Λ1, such that the duality product becomes this
standard inner product.

The incidence matrix D can be also regarded as the matrix
representation of a map

∂ : Λ1 → Λ0

called the incidence operator2. The adjoint map of the
incidence operator ∂ is the linear map

d : Λ0 → Λ1

which is called the co-incidence (or co-boundary) operator.
The matrix representation of the map d is given by the
transposed incidence matrix DT .

1In fact, we will be considering multi-graphs since we allow for the
existence of multiple branches between the same pair of nodes.

2In the literature this operator is usually called the boundary operator.
Because of possible confusion with the use of the word ’boundary’ for the
nodes of the system that can interact with the environment we shall deviate
from this use of terminology.
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The triple (Λ1,Λ0, ∂) as defined above is, what is called
in algebraic topology, a 1-dimensional complex, which is a
special type of k-complex, with k any natural number. The
elements of Λ0 and Λ1 are called 0-chains, respectively 1-
chains. The elements of the dual spaces Λ0 and Λ1 are called
0-cochains, respectively 1-cochains. Formulating results in
this language will facilitate the generalization to higher-
dimensional complexes as will be done in Section III.

It is a well-known property [3] of any incidence operator
∂ and the corresponding incidence matrix D that

11TD = 0 (1)

where 11 denotes the vector with all components equal to 1.
From this property it follows that the rank of the incidence
matrix D is at most n̄− 1. In fact, the rank is given as [3]

rankD = n̄− kG (2)

where kG is the number of components of the graph G. (A
component is a maximal subgraph which is connected, that
is, every two nodes are linked by a path of, -non-oriented-,
branches.). Thus in case of a connected graph, rankD =
n̄− 1.

A. Kirchhoff’s laws for graphs

In this subsection we recall the formulation of Kirchhoff’s
laws for graphs as can be found e.g. in [1], [3]. Consider an
oriented graph G specified by its incidence operator ∂ or co-
incidence operator d. Kirchhoff’s laws associated with the
graph can be expressed as follows. Kirchhoff’s current laws
(KCL) are given as

∂I = 0 (3)

while Kirchhoff’s voltage laws (KVL) take the form

V ∈ im d. (4)

The graph theoretic interpretation [3] is that the kernel of the
incidence operator is the cycle space of the graph, while the
image of the co-incidence operator is its cut space, while
furthermore the cycle space is the orthogonal complement
(with respect to the duality product) of the cut space. This
leads to the equivalent way of formulating Kirchhoff’s laws
as the fact that the total current along any cut is equal to zero,
and the total voltage over every cycle is zero. Equivalently
we can write Kirchhoff’s voltage laws as

V = dφ (5)

for some 0-cochain φ, which has the physical interpretation
of being the potential at every node. Hence Kirchhoff’s
voltage laws express that any voltage distribution V over the
graph (circuit) corresponds to a potential over every node.
Using the matrix representation of the incidence operator ∂
as the incidence matrix D, Kirchhoff’s laws are written in
matrix notation as

DI = 0, V = DTφ (6)

Tellegen’s theorem automatically follows from Kirchhoff’s
laws. Indeed, take any current distribution I satisfying Kirch-
hoff’s current laws, and any voltage distribution V satisfying

Kirchhoff’s voltage laws. Then, by definition of the co-
incidence operator d as the adjoint of the incidence operator
∂ we obtain (with

∑
b and

∑
n denoting the sum over all

the branches, respectively nodes, of the graph)∑
b

VbIb =
∑

b

(dφ)bIb =
∑

n

φn(∂I)n = 0 (7)

since I satisfies Kirchhoff’s current laws ∂I = 0. In partic-
ular, Tellegen’s theorem implies that for any actual current
and voltage distribution over the circuit the total power is
equal to zero.

We summarize the Kirchhoff behavior BK(G) of a graph
G with incidence operator ∂ as

BK(G) := {(I, V ) ∈ Λ1 × Λ1 | I ∈ ker ∂, V ∈ im d} (8)

It immediately follows that the Kirchhoff behavior defines a
Dirac structure. Recall [5], [11], [12] that a subspace D ⊂
V ×V ∗ for some vector space V defines a Dirac structure if
D = D⊥ where ⊥ denotes the orthogonal complement with
respect to the indefinite inner product <<,>> on V × V ∗

defined as

<< (v1, v∗1), (v2, v∗2) >>:=< v∗1 |v2 > + < v∗2 |v1 >,

with v1, v2 ∈ V, v∗1 , v∗2 ∈ V ∗, where <|> denotes the duality
product between V and V ∗. For finite-dimensional vector
spaces V one can equivalently characterize a Dirac structure
by the property that < v∗|v >= 0 for every (v, v∗) ∈ D and
that dimD = dimV .

B. Kirchhoff’s laws for open graphs

Next we wish to define open graphs G and their resulting
Kirchhoff behavior. An open graph G is obtained from an
ordinary graph with set of nodes N by identifying a subset
Ne ⊂ N of external nodes. The interpretation of Ne is that
these are the nodes that are open to interconnection with
other graphs. The complementary subset Ni := N −Ne are
the internal nodes of the open graph.

Kirchhoff’s current laws apply to an open graph G in a
different manner than to an ordinary (closed) graph, since
the ordinary Kirchhoff’s current laws would imply that the
currents over every branch incident on a terminal node
are zero, which is not what we want for interconnection.
Furthermore, by Tellegen’s theorem, the ordinary Kirchhoff’s
laws would imply that the total power in the circuit is equal
to zero, thus implying that there cannot be any ingoing or
outgoing power flow. Hence we will modify Kirchhoff’s
current laws by requiring that the incidence operator ∂ maps
the vector of currents I to a vector that has zero components
corresponding to the internal nodes, while for the external
nodes the image is equal to (minus) the external current Ie

∂I +
[
Ie
0

]
= 0, (9)

where for simplicity of notation we have reordered the nodes
in such a manner that the external nodes come first. The
dimension of the vector Ie of external currents is equal to the
number n̄e of external nodes in the set Ne. The vector Ie can
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be regarded to be belonging to the space of chains associated
with the leaves3 emanating from the external nodes Ne. (The
external nodes together with the leaves are called terminals
in [13].) We will denote the vector space of external currents
by Λe. Kirchhoff’s voltage laws remain unchanged, and will
be written as

V = dφ = d

[
φe

φi

]
(10)

where φe denotes the vector of the potentials at the external
nodes and φi the vector of potentials at the internal nodes.
This results in the following Kirchhoff behavior for open
graphs:

BK(G) := {(I, V, Ie) ∈ Λ1 × Λ1 × Λe |

∂I +
[
Ie
0

]
= 0, ∃φ s.t. V = dφ} (11)

By computing as before, cf. (7), the total power we now
obtain (with ni ∈ Ni and ne ∈ Ne denoting the internal,
respectively, external nodes)∑

b VbIb =
∑

b(dφ)bIb =
∑

n φn(∂I)n =∑
ni
φni(∂I)ni +

∑
ne
φne(∂I)ne = −

∑
ne
φneIne

(12)
since I satisfies the Kirchhoff’s current laws (∂I)ni = 0 and
(∂I)ne = −Ine , where Ine denotes the current along the leaf
emanating from the external node ne. Thus, for open graphs
the total power is not zero but equal to −

∑
ne
φne

Ine
.

Even though the vector of potentials φe at the external
nodes is not uniquely determined by the vector V of voltages,
the expression

∑
ne
φne

Ine
is uniquely determined, and in

a circuit context has the interpretation of being the outgoing
power (through the external nodes). In fact, the freedom in
the choice of the total vector φ corresponding to the same
vector of voltages V is given by all vectors ψ such that dψ =
0, or in matrix notation DTψ = 0. Writing as before φ =[
φe

φi

]
we see that the freedom in the choice of φe is given by

all vectors ψe such that for some ψi it holds that DT
e ψe +

DT
i ψi = 0, where De is the submatrix of D consisting of

the first n̄e rows (corresponding to the external nodes) and
Di is the submatrix consisting of the last n̄− n̄e rows. Then,
because of the modified Kirchhoff’s laws (9) it follows that
for any such ψe we have

ψT
e Ie = −ψT

e DeI = ψT
i DiI = 0 (13)

and thus the right-hand side of (12) is indeed independent
of the choice of φe.

Note that the kernel of DT can be easily characterized.
Indeed, by the property (1) 11 ∈ kerDT , and thus by (9)

0 = 11TDI =
∑
ne

Ine (14)

Hence the external part of the Kirchhoff behavior of an open
graph is constrained by the obvious fact that all external
currents sum up to zero.

3The definition of an oriented graph can be extended by allowing for
’branches’ (properly called leaves) that are incident on only one node.

In general, see e.g. [3], the rank of D is equal to n̄− kG ,
where kG denotes the number of connected components of
the graph G. For example, if G consists of two connected
components, then, if we reorder the nodes in two subsets
in such a way that the first nodes correspond to the first
component, and the last ones to the second, then the vectors[
11
0

]
and

[
0
11

]
span the kernel of DT . In the case of

external nodes this implies that both the sum of the currents
corresponding to the external nodes belonging to the first
component as well as the sum of the currents of the external
nodes belonging to the second component are equal to zero,
which is obvious from a circuit point of view (see also [13]).

An important consequence of the above is that we may
always close an open graph G to an ordinary graph Ḡ.
Consider first the case that G is connected. Then we may
add one virtual node n0, and virtual edges from this virtual
(’ground’) node to every external node ne ∈ Ne, in such a
manner that the Kirchhoff behavior of this graph Ḡ extends
the Kirchhoff behavior of the open graph G. In fact, to the
virtual node n0 we may associate an arbitrary potential φn0

(a ground-potential), and we may rewrite the righthand-side
of (12) as (since

∑
e Ine = 0)

−
∑
ne

(φne − φn0)Ine = −
∑
ne

VneIne (15)

where Vne
:= φne

−φn0 and Ine
denote the voltage, respec-

tively current, over the virtual edge towards the external node
ne (corresponding to the leaf of the open graph). It follows
that

Proposition 2.1: Consider an open connected graph G.
The projection of the Kirchhoff behavior BK(Ḡ) of the
extended graph Ḡ (in the variables I, V, Ie, Ve) onto the
variables I, V, Ie is equal to the Kirchhoff behavior BK(G).
If the open graph G consists of more than one component,
one extends the graph by adding a virtual node to every
component containing external nodes, while the above propo-
sition remains to hold.

The consequence of this ’closing’ operation of an open
graph with external nodes is that one can associate to the
open graph a Dirac structure, involving the pairs of dual
variables I, V and Ie, Ve. This Dirac structure encodes the
power structure of the graph, and since < Ve|Ie > equals
external power the pair Ie, Ve constitutes a power port.

C. Constitutive relations

Next to the Kirchhoff behavior an electrical circuit consists
of constitutive relations for every branch. They specify for a
branch b a relation between the current variable Ib and the
voltage variable Vb. The simplest case is a resistive relation
between Ib and Vb such that VbIb ≤ 0. In the case of a
capacitive relation one defines an additional energy variable
Qb (denoting the charge) together with a real function
Hb(Qb) denoting the electric energy stored in the capacitor.
The complete constitutive relations are then given by

Q̇b = −Ib, Vb =
dHb

dQb
(Qb) (16)
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Alternatively, in the case of an inductor one specifies the
magnetic energy Hb(ϕb), where ϕb denotes the flux, together
with the dynamic relations

ϕ̇b = −Vb, Ib =
dHb

dϕb
(ϕb) (17)

Substituting these constitutive relations into the Kirchhoff
behavior (and corresponding Dirac structure) defined by the
graph results in a port-Hamiltonian system description, see
e.g. [11], [12].

D. Interconnection of graphs and Kirchhoff behavior

Let us consider two open graphs GA and GB with respec-
tive sets of external nodes NA

e and NB
e . Suppose we want

to interconnect them over a set of shared external nodes

N̄ ⊂ NA
e ∩NB

e

This may be done by identifying the shared nodes corre-
sponding to the two graphs, leading to an interconnected
open graph GA ‖ GB with resulting set of internal nodes

NA
i ∪NB

i ∪ N̄

(after the interconnection we will regard the shared external
nodes as being internal), thus leading to a remaining set of
external nodes

(NA
e − N̄ ) ∪ (NB

e − N̄ )

The total set of nodes of the interconnected graph will be
denoted as NA ‖ NB , and the resulting space of 0-chains
by ΛA

0 ‖ ΛB
0 .

The resulting incidence operator ∂A ‖ ∂B : ΛA
1 × ΛB

1 →
ΛA

0 ‖ ΛB
0 is given as follows. Reorder the set of nodes

NA ‖ NB of GA ‖ GB in such a manner that the nodes
corresponding to only GA come first, those corresponding to
only GB come second, while the shared nodes N̄ come last.
Then define

∂A ‖ ∂B(IA, IB) :=

 ∂A(IA)
∂B(IB)

∂A(IA) + ∂B(IB)

 (18)

where we consider the appropriate components of ∂A and
∂B . The interconnected Kirchhoff behavior BK(GA) ‖
BK(GB) is simply defined as the Kirchhoff behavior of the
interconnected graph GA ‖ GB . The following proposition is
easy to prove.

Proposition 2.2: Let GA and GB be open graphs. Then

BK(GA ‖ GB) = BK(ḠA) ◦BK(ḠB) (19)

where ◦ denotes the composition of Dirac structures, cf. [4].

III. CONSERVATION LAWS ON HIGHER-DIMENSIONAL
COMPLEXES

A. Kirchhoff behavior on k-complexes

Kirchhoff’s laws for electrical circuits can be regarded
as a prime example of conservation laws, defined on 1-
complexes. In this section we will extend the theory of the
previous section to higher-dimensional complexes.

An k-complex Λ is specified by a sequence of real
linear spaces4 Λ0,Λ1, · · · ,Λk, together with a sequence of
incidence operators

Λk
∂k→ Λk−1

∂k−1→ · · ·Λ1
∂1→ Λ0

∂0→ 0

with the property that

∂j−1 ◦ ∂j = 0, j = 1, · · · , k

The vector spaces Λj , j = 0, 1 · · · , k, are called the spaces
of j-chains. Each Λj is generated by a finite set of j-cells
(like branches and nodes for graphs) in the sense that Λj is
the set of functions from the j-cells to R. A typical example
of a k-complex is a triangularization of a k-dimensional
manifold, with the j-cells, j = 0, 1, · · · , k, being the sets
of vertices, edges, faces, etc..

Denoting the dual linear spaces by Λj , j = 0, 1 · · · , k, we
have the following dual sequence

Λ0 d1→ Λ1 d2→ Λ2 · · ·Λk−1 dk→ Λk

having the analogous property

dj ◦ dj−1 = 0, j = 2, · · · , k

The elements of Λj are called j-cochains.
Consider any k-complex Λ, with k-chains α ∈ Λk and

k-cochains β ∈ Λk. We define, similarly as in the case of a
graph (1-complex) its Kirchhoff behavior as

BK(Λ) := {(α, β) ∈ Λk × Λk |
∂kα = 0,∃φ ∈ Λk−1 s.t. β = dkφ}

(20)

We will still refer to ∂kα = 0 as Kirchhoff’s current laws
(KCL), and to β = dkφ as Kirchhoff’s voltage laws (KVL).
As before, it is immediately seen that BK(Λ) ⊂ Λk×Λk is a
Dirac structure. In particular, it follows that < β | α >k= 0
for every (α, β) ∈ BK(Λ), where < ·|· >k denotes the
duality product between the dual linear spaces Λk and Λk.

B. Open k-complexes

Next we consider an open k-complex, by identifying a
subset N e

(k−1) of the set of all (k − 1)-cells, called the
external (k − 1)-cells. Define the linear space of functions
from this subset of (k − 1)-cells to R as Λ̄ ⊂ Λk−1 . As
before, Kirchhoff’s voltage laws remain unchanged

β = dkφ, (21)

while Kirchhoff’s current laws are modified into

∂kα+
[
αe

0

]
= 0 (22)

where αe denotes the vector of external currents associated
to the external (k−1)-cells. By computing as before the total
power we obtain for any α and β satisfying (21, 22)

< β | α >k=< dkφ | α >k=< φ | ∂kα >k−1=

< φ |
[
−αe

0

]
>k−1= − < φe | αe >k−1

(23)

4In algebraic topology [6] one usually starts with abelian groups Λj .
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where φe is the vector of potentials at the external (k − 1)-
cells.

Note that there exist many φ with dkφ = β for the same β,
and thus in general there will exist many φe for the same β
in the left-hand side. Recall from the case of graphs that the
value of the righthand-side actually does not depend on this
choice of φe. The same holds in the k-complex case too. In
fact, the freedom in choosing φ such that dkφ = β for a given
β is given by all ψ ∈ Λk−1 such that dkψ = 0, or in matrix
notation DT

k ψ = 0, where Dk is the matrix representation
of the incidence operator ∂k. Hence, with Dke denoting the
submatrix of Dk corresponding to the external (k− 1)-cells
and Dki denoting the submatrix corresponding to the internal
(k− 1)-cells, the freedom in φe is given by all ψe such that
for some ψi it holds tha DT

keψe + DT
kiψi = 0. Thus, since

Dkeα = −αe and Dkiα = 0,

< ψe|αe >k−1= ψT
e αe = −ψT

e Dkeα = ψT
e Dkiα = 0

(24)
and we conclude that < φe | αe >k−1 is independent of the
choice of φe.

Similar to graphs it follows that the Kirchhoff current laws
for open k-complexes Dkeα = −αe imply certain constraints
on the incoming ’currents’ αe. Indeed, by the fact that

∂k−1 ◦ ∂k = 0 (25)

it follows that D(k−1)eαe = 0. Furthermore, the existence of
any other map L such that LDke = 0 will yield additional
constraints Lαe = 0.

As in the case of graphs, this allows us to close an
open k-complex. This is done by completing the open k-
complex (Λ,Λe) by an additional set of (k − 1)-cells and
k-cells, without changing the Kirchhoff behavior. Because
of space limitations we leave the details to another paper.
For interconnection of open k-complexes we may proceed in
the same way as for graphs: we start from two k-complexes
ΛA and ΛB , with external (k − 1)-cells NA

k−1, respectively
NB

k−1, and identify a subset of shared (k − 1)-cells. Details
are also left to a future paper.

IV. DISSIPATIVE PORT-HAMILTONIAN DYNAMICS ON
k-COMPLEXES

Consider an (open) k-complex Λ, together with its Kirch-
hoff behavior as defined before. Dynamics on the k-complex
can be defined in various ways. Similar to the case of elec-
trical circuits we can define constitutive relations for every
k-cell, by specifying a relation between every component of
Λk and Λk. As in the case of an electrical circuit this can
be a relation of static resistive type, or a dynamic relation.

In this section we will define dynamics in a different way
by specifying one type of dynamical relations between Λk

and Λk, together with resistive relations between Λk−1 and
Λk−1. This will define a port-Hamiltonian dynamics, which
is dissipative (because of the presence of resistive relations)
and of relaxation type since there is only one type of physical
energy (and thus no oscillations between different types of
physical energy occur).

The definition of dissipative port-Hamiltonian dynamics
used in this section is as follows. (Other options are left for
a future paper.) On the k-complex Λ, with ∂k : Λk → Λk−1

and dk : Λk−1 → Λk, we define the following relations

fx = dke, fx ∈ Λk, e ∈ Λk−1

f = −∂kex, ex ∈ Λk, f ∈ Λk−1

(26)

It is immediately checked that this defines a Dirac structure
D ⊂ Λk × Λk × Λk−1 × Λk−1. This allows us to define
a dissipative port-Hamiltonian dynamics by imposing the
following constitutive relations. First we associate to every
k-cell an energy storage, leading to

ẋ = −fx, ex =
∂H

∂x
(x), x ∈ Λk (27)

with H(x) the total energy storage H(x), and x ∈ Λk the
total vector of energy variables. Furthermore, we associate
to every (k − 1)-cell a (linear) resistive relation, leading to

e = −Rf, R = RT ≥ 0 (28)

Substituted in (26) this yields the relaxation dynamics

ẋ = −dke = dk Rf = −dk R∂k
∂H

∂x
(x), x ∈ Λk (29)

with the property that

dH

dt
= −(∂k

∂H

∂x
(x))T R∂k

∂H

∂x
(x) = −fT Rf ≤ 0 (30)

For an open complex with external (k−1)-cells and external
’currents’ Λ̄ ⊂ Λk−1 the definition is modified as follows.
Instead of (26) we consider

fx = dk

[
e
eb

]
, fx ∈ Λk,

[
e
eb

]
∈ Λk−1, eb ∈ Λ̄k−1

[
f
fb

]
= −∂kex, ex ∈ Λk,

[
f
fb

]
∈ Λk−1, fb ∈ Λ̄k−1

(31)
with fb, eb corresponding to the external (k − 1)-cells, and
f, e corresponding to the internal cells. Imposing the same
storage relations (27) and resistive relations (28) we arrive
at

ẋ = −dr
k R∂

r
k

∂H
∂x (x)− db

keb

fb = −∂b
k

∂H
∂x (x)

(32)

where we have split dk as dk =
[
dr

k db
k

]
and ∂k =[

∂r
k

∂b
k

]
(according to the division of the (k − 1)-cells into

internal cells corresponding to resistive behavior and external
cells corresponding to interconnection). This defines a port-
Hamiltonian system with inputs eb and outputs fb.

A. Example: Heat transfer on a 2-complex

The above formulation of systems of conservation laws
and dissipative port-Hamiltonian systems on k-complexes
will be illustrated with the model of heat transfer in a
2-dimensional medium (for instance a plate). Instead of
first considering the pde-model and then discretizing, we
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will directly consider the dynamics on a 2-complex (as for
instance arising from the triangulation of the 2-dimensional
spatial domain). We assume the medium to be undeformable
(hence mechanical work is neglected) and that there is no
mass transfer.

We will write the heat transfer in terms of the conservation
of internal energy. (An alternative description [7] is the
representation in terms of the entropy, arising from the en-
tropy balance equation [8], [2].) Let us identify the physical
variables as chains and cochains of the given 2-complex.
First, the internal energy u of the 2-complex corresponds
to a 2-cochain, thus u ∈ Λ2 (with every component of u
denoting the energy of the corresponding 2-cell).

The thermodynamic properties are defined by Gibbs’ re-
lation, and generated by the entropy function s = s(u) ∈
C∞

(
Λ2

)
as thermodynamic potential. Since we consider

transformations which are isochore and without mass trans-
fer, Gibbs’ relation reduces to the definition of the vector of
intensive variables eu which is (entropy-)conjugated to the
vector of extensive variables u by

eu =
∂s

∂u
(u) (33)

(In fact, the components of the vector eu are equal to the
reciprocal of the temperature in each 2-cell.) Being a gradient
vector it follows that eu ∈ Λ2.

Furthermore, the heat conduction is given by the heat
flux e ∈ Λ1, describing the heat flux through every 1-
cell (edge). This flux arises from thermal non-equilibrium,
defined by the fact that the temperature is varying over
the 2-cells (or equivalently, in our formulation, by the fact
that the components of the vector eu ∈ Λ2 are different
from each other). Its conjugate vector of variables is the
thermodynamical driving force vector, denoted by f ∈ Λ1

and given as the vector of the differences of the reciprocals
of the temperatures of the 2-cells with common edges (1-
cells), and thus defined by

f = −∂2eu (34)

By the classical Fourier’s law expressed here in terms of
the vector eu and the thermodynamic generating force f ∈
Λ1, the flux of entropy due to thermal non-equilibrium is
expressed as

e = R(eu) f, (35)

with R(eu) = RT (eu) ≥ 0 a semi-positive linear mapping
Λ1 → Λ1 depending on the heat conduction coefficients.
(Note the sign-difference with (28).) Finally the energy
conservation law is expressed by

du

dt
= −d2e (36)

Hence the resulting system is a dissipative port-Hamiltonian
system (of relaxation type) defined on the 2-complex, with
vector of state variables x given by the internal energy vector
u, and Hamiltonian s(u). Note that by (30) the entropy s(u)

satisfies
ds

dt
= (∂2

∂s

∂u
(u))T R(eu) ∂2

∂s

∂u
(u) = fT R(eu) f ≥ 0

(37)
expressing the fact that the entropy s(u) is monotonously
increasing. (Note again the sign-difference with the treatment
above, where the Hamiltonian H was decreasing.)

The exchange of heat through the boundary of the system
can be incorporated as above, cf. (31, 32), by splitting the
edges (1-cells) into internal edges with the resistive relation
(35) and external (boundary) edges.

V. CONCLUSIONS

A basic framework has been laid down for the formulation
of open physical systems on k-complexes, generalizing the
graph-theoretic formulation of electrical circuit dynamics.
This has been illustrated by the example of heat transfer on
a 2-complex. This simple example already shows how one
can directly define a finite-dimensional (port-Hamiltonian)
dynamics, capturing the physical meaning of the involved
variables and retaining the conservation laws, without the
need to formulate the dynamics as a set of pde’s (and
possibly to discretize the pde’s later on).

In future work we will apply and extend the framework
to different classes of dynamical systems on k-complexes
corresponding to different physical settings. Furthermore, by
the extension to open k-complexes we will derive finite-
dimensional boundary-control models. Finally, it seems of
interest to extend the recently intensively studied theory of
networks of systems to dynamical systems connected by
higher-dimensional complexes.
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