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Abstract—A class of dynamic neural network (DNN) ob-
servers involving a projection operator inside is considered.
Such observers seem to be useful when an uncertain nonlinear
system, affected by external perturbations, keeps its states in
an a priori known compact set, defined by the given state
constraints independently of the measurement noise effects.
Since the projection method introduces discontinuities into the
trajectory dynamics, the standard Lyapunov method is not
applicable to describe the convergence property of this class
of observers. This problem is suggested to be resolved using
a Lyapunov-Krasovski functional including both the estimation
error and the weights involved in the DNN description. The sta-
ble adaptive laws for the DNN-weights adjustment are derived.
The upper bound for the estimation error is obtained based on
Linear Matrix Inequality (LMI) technique implementation. An
illustrative example clearly shows the effectiveness of the sug-
gested approach. It deals with an environment control problem,
related to the soil contaminants degradation by ozonation.

I. INTRODUCTION

The majority of modern controllers assumes the availabil-
ity of the current state-vector of a system to be controlled.
However, in many practical situations only inputs and outputs
of a system are available (measurable). Therefore, one of
the frequent challenges for practical control engineers is to
design a workable state observer (or filter), based only on
the current available information [1]. Such observers are
often treated as software-sensors. The practical usefulness
of state observers is related not only with a possible sys-
tem monitoring and regulation but also with possibility to
detect (identify) failures occurred in the considered dynamic
system. Some common examples of the observers structures
are: based on the Lie-algebraic method [2], Lyapunov-like
observers [3], the high gain observation [4], recent structures
based on sliding mode technique [5], numerical approaches
as the set-membership observers [6] and etc.
All approaches mentioned above assume a complete

knowledge of the system structure (mathematical model)
for their design. Therefore the presence of disturbances,
uncertainties and nonlinearities pose a great challenge [1].
If the mathematical model of a considered process is incom-
plete or partially known, it is possible to take advantage of
the function approximation capacity of the artificial Neural
Network (NN) [7] involving it in the observer structure
designing [8],[9].
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There are known two types of NN: static one, [10], and
dynamic neural networks (DNN) [11]. The first one deals
with the class of global optimization problems trying to
adjust the weights of such NN to minimize an identification
error. The second approach, exploiting the feedback proper-
ties of the applied DNN, permits to avoid many problems
related to global extremum search converting the learning
process to an adequate feedback design [12], the DNN-
approach provides an effective instrument to attack a wide
spectrum of problems such as identification, state estimation,
trajectories tracking an etc. [12] [13]. Moreover DNN have
demonstrated perfect identification properties in the presence
of uncertainties and external disturbances, in other words,
they provide the robustness property.
In this paper we deal with the state estimation problem

for a special class of nonlinear uncertain systems affected by
additive bounded disturbances both in the state dynamics and
in the measurable outputs. Here we design a state observer
based on a special class of DNN containing the projection
operator. The adaptive behavior of this DNN structure is
carry out solving numerically two stable matrix differential
equations derived based on the stability analysis by the direct
Lyapunov’s method and LMI technique. The specific feature
of the considered control processes is that the state-vector
x(t) always belongs to a given compact set X even in the
presence of noise. For example, the so-called "nonnegative
systems" evidently have this property. It seems to be natural
that the generated state estimates x̂(t) also belong to the same
compact. To provide this property a projectional operator
(which mapping is never differentiable) in each integration
step is introduced.

II. ESTIMATION PROBLEMS UNDER STATE CONSTRAINTS
Consider the nonlinear continuous-time model given by

the following ODE:

ẋ(t) = f (x(t), u (t)) + ξ(t), x(0) is fixed
y(t) = Cx(t) + η(t)

(1)

where x(t) ∈ <n is the state-vector at time t ≥ 0, yt ∈ <m is
the corresponding measured output, available for a designer
at any time t, the known matrix C ∈ <m×n defines the state-
output transformation, u (t) ∈ <r is a bounded control action
(r ≤ n) belonging to the following admissible set Uadm :=
{u (t) : ku (t)k ≤ Υu <∞} , ξ(t) and η(t) are noises in the
state dynamics and in the output, respectively, f : <n×r →
<n.
In many practical problems a designer knows a priori that

the state-vector x (t) always belongs to a given compact set
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X (even in the presence of noise) which has a concrete
physical sense. For example, the dynamic behavior of some
reagents, participating in chemical reactions, always keep
nonnegative the current values.
The state estimation (observation) problem consists in

designing a vector-function x̂(t) ∈ Rn depending only on the
data {y (t) , u(t)}τ∈[0,t] available up to the time t in such a
way that it would be "close" to its real (but non-measurable)
state-vector x(t). The measure of that "closeness" depends
on the accepted assumptions concerning the state dynamics
as well as the noise effects. The most of observers, solving
this problem, also have an ODE-structure, usually given by
d

dt
x̂(t) = F

¡
x̂(t), u (t) , yτ∈[0,t], t

¢
, x̂0 is a fixed vector

(2)
Here the mapping F : <n × <r × <m × <+ → <n
defines the structure of the observer to be implemented. The
property of an observer, which we are looking for, is to keep
the generated state estimates x̂(t) always within the given
compact set X , that is,

x̂(t) ∈ X (3)

Indeed, for example, applying a linear feed-back u(t) =
Kx̂(t) with a high-gain K, may provoke a significant in-
stability effect of the corresponding close-loop dynamics if
any changing of a sign in x̂(t) are admissible. As is known
observation techniques consider partial or full knowledge of
a system mathematical model. In this paper it is shown that
for a wide class of models the projectional DNN observer
permits to avoid this constrain, namely, the function f (x, u)
in the model description (1) is admitted to be unknown
exactly (may be, belonging to some class) and fulfilling the
condition (3).

III. PROJECTIONAL DNN OBSERVERS

Let us consider the following observer referred hereafter
to as the projectional observer:

x̂(t)=πX{x̂(t-h(t))+
tR

τ=t−h(t)
F (x̂(τ), u (τ) , y(τ), τ) dτ},

(4)
Here t > h(0) and h (t) ∈ C1 is supposed to be given
and non-increasing positive function, that is, ḣ (t) ≤ 0. The
operator πX {·} is the projector to the given convex compact
set X satisfying the condition

kπX {x}− zk ≤ kx− zk (5)

for any x ∈ Rn and any z ∈ X . The operator πX {·} may be
defined non uniquely. An example of πX {·} is given below.
Example 1:

πX{x}= sat (x1) . . . sat (xn)
>

(6)

where for any i = 1 . . . n

sat(xi) :=

⎧⎨⎩ (xi)
− xi ≤ (xi)−

xi (xi)
− < xi < (xi)

+

(xi)
+ xi ≥ (xi)+

with (xi)− < (xi)
+ as an extreme point a priori known.

Remark 1: Notice that with the implementation of the
projectional operator, the trajectories {x̂ (t)} generated by
(4) are not differentiable for any t ≥ h(t) > 0.Structure of
DNN Observers
1) The complete information case: If the right-hand side

f (x(t)) of the dynamics (1) is known then usually the
structure F of the observer (2) is selected in the, so-called,
Luenberger-type form:

F (x̂(t), u (t) , y (t) , t)=f (x̂(t), u(t))+K (t) (y(t)-Cx̂(t))
(7)

So, it repeats the dynamics of the plant and, additionally,
contains the correction term, proportional to the output error
(see, for example, [14], [15], [3] and [16]). The adequate
selection of the matrix-gain K (t) provides a good-enough
state estimation .
2) The "grey-box" case: In the case when the right-

hand side f (x, u) of the dynamics (1) is unknown, there
is suggested to apply some approximation of it, say,
f̄ (x(t), u(t) |W (t)) where f̄ ∈ <n defines the approxi-
mative mapping depending on the time-varying parameters
W (t) which should be adjusted by a concrete "adaptation
law" suggested by a designer. According to the DNN-
approach [12], we may decompose f̄ (x(t), u(t) |W (t)) into
two parts: first one approximates the linear dynamics part
by a Hurwitz fixed matrix A ∈ <n×n (selected by the
designer) and nonlinear part is approximated by variable time
parameters W1,2(t) with "sigmoid" multipliers, that is:

f̄ (x(t), u(t) |W1,2(t)) :=
Ax(t)+W1(t)σ (x(t))+W2(t)ϕ (x(t))u(t)
A ∈ <n×n, W1(t) ∈ <n×p, σ (·) ∈ <p×1

W2(t) ∈ <n×q, ϕ (·) ∈ <q×r
(8)

The activation vector-function σ (·) and matrix-function ϕ (·)
are usually selected as functions with sigmoid-type compo-
nents, In (8) The constant parameters A as well as the time-
varying parameters W1,2(t) should be properly adjusted to
guarantee a good state approximation. Notice that for any
fixed matricesW1,2(t) =Ŵ1,2 the dynamics (1) always could
be represented as

ẋ(t) = Ax(t)+Ŵ1σ (x(t))+Ŵ2ϕ (x(t))u(t)+f̃(t)+ξ(t)
f̃(t) := f (x(t))− f̄

³
x(t) | Ŵ1,2

´
(9)

where f̃ (t) is referred to as a modelling error vector-field
called the "unmodelled dynamics". In view of the correspond-
ing boundedness property, the following upper bound for the
unmodelled dynamics f̃ (t) takes place:°°°f̃(t)°°°2

Λf
≤ f̃0 + f̃1 kx(t)k2Λ1

f̃

f̃0, f̃1 > 0; Λf ,Λ
1
f̃
> 0, Λf = Λ

>
f , Λ

1
f̃
=
³
Λ1
f̃

´>
(10)
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A. Structure of projectional DNN observers
Introduce the following projectional DNN observer:

x̂(t)=
πX {x̂(t− h(t))+

tR
τ=t−h(t)

[Ax̂(τ)+W1(τ)σ (x̂(τ)) +

W2(τ)(ϕ (x(τ))u(τ)+Ke(τ)] dτ}
e(t) := y(t)−Cx̂(t)

(11)

Here the weights matrices W1 (t) and W2 (t) supply the
adaptive behavior to this class of observers if they are
adjusted by an adequate manner. We derived (see Appendix)
the following nonlinear weight updating laws based on the
Lyapunov-like stability analysis:

Ẇ1 (t)= −k
−1
1 (t)

2
PΩ(t)σ| (x̂(t))−k̇1(t)W̃ 1 (t)

Ω(t) := ΠW̃ (t)σ (x̂(t))+2N'C
|e(t− h(t))

W̃1(t) :=W 1(t)− Ŵ 1

Π =(N' ('Λ3 + C|Λ2C)N'P + I)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(12)

Ẇ2 (t)= −k
−1
2 (t)

2
PΦ(t)u

>
(τ)ϕ

>
(x̂ (τ))−k̇2(t)W̃ 2 (t)

Φ(t) := ΞW̃ 2(τ)(ϕ (x̂(τ))u(τ) + 2N'C
|e(t− h(t))

W̃2(t) :=W 2(t)− Ŵ 2

Ξ =(N' ('Λ7 + C|Λ6C)N'P + I)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(13)

where:
N' = (C

|C +'I)
−1

, ' > 0

To improve the behavior of this adaptive laws, the matrix
Ŵ1,2 can be "provided" by one of the, so-called, training
algorithms (see, for example, [17] and [18]),

IV. UPPER BOUND FOR STATE ESTIMATION ERROR
A. Behavior of weights dynamics
Here we wish to show that under the adapting weights laws

(12) and (13) the weights W1 (t) and W2 (t) are bounded.
Theorem 1: If ki,t (i = 1, 2) in (12) and (13) satisfy

k̇1,t ≤ −
2 (k1 (t))

2
¯̄̄
tr
n
W̃ |
1 (t)PΩ(t)σ

| (x̂(t))
o¯̄̄

tr
n
W̃ |
1 (t) W̃1 (t)

o
+ ck1 (t) [k1 (t)− k1min]

k̇2,t ≤ −
2 (k2(t))

2
¯̄̄
tr
n
W̃2 (t)PΦ(t)u

>(t)ϕ> (x̂ (t))
o¯̄̄

tr
n
W̃2 (t)

|
W̃2 (t)

o
+ ck2(t) (k2(t)− k2,min)

(14)
then tr

n
W̃ |
1 (t) W̃1 (t)

o
is monotonically non-decreasing

function.
Proof: Considering the dynamics for the weight ma-

trix W̃1 (t) and the following candidate Lyapunov function
Vw (t) .

Vw (t) :=
1

2
tr
n
W̃ |
1 (t) W̃1 (t)

o
+

c

4
[k1 (t)− k1min]

2
+

where
[z (t)]+ :=

½
z (t) z (t) ≥ 0
0 z (t) < 0

one has

V̇w (t) := tr

½
W̃ |
1 (t)

µ ·
W1 (t)

¶¾
+2−1ck̇1 (t) [k1 (t)− k1min]

2
+

By (12) it follows

V̇w (t)=tr
n
W̃ |
1 (t)

³
-k
−1
1 (t)
2

h
PΩ(t)σ| (x̂(t)) -k̇1(t)W̃1 (t)

i´o
+

2−1ck̇1 (t) [k1 (t) -k1min]+ ≤
k−1(t)
2

¯̄̄
tr
n
W̃ |
1 (t)PΩ(t)σ

| (x̂(t))
o¯̄̄
+

2−1k̇1(t)
³
k−11 (t) tr

n
W̃ |
1 (t) W̃1 (t)

o
+2−1c [k1 (t) -k1min]+

´
The property V̇w (t) ≤ 0 results from (14).It is worth notice
that the learning law (12) and (13) must be realized on-line in
parallel with the gain-parameter adaptation procedure (14).

B. Main theorem on an upper bound for the observation
error

Hereafter we will assume that

A1) The class of the function f : <n → <n is Lipschitz
continuous in x ∈ X, that is, for all x, x0 ∈ X there
exist constants L1,2 such that

kf (x, u, t)− f (y, v, t)k ≤
L1 kx− yk+ L2 ku− vk ;
kf (0, 0, t)k2 ≤ C1;

x, y ∈ <n; u, v ∈ <m; 0 ≤ L1, L2 <∞
(15)

A2) The pair (A,C) is observable, that is, there exists
the gain matrix K ∈ <n×m such that matrix

Ã (K) := A−KC (16)

is stable.
A3) The noises ξt and ηt in the system (1) are uniformly

(on t) bounded such that

kξ(t)k2Λξ ≤ Υξ, kη(t)k
2
Λη
≤ Υη (17)

where Λξ and Λη are known "normalizing" non-
negative definite matrices which permit to operate
with vectors having components of different phys-
ical nature (for example, meters, mole/l, voltage
and etc.).

Theorem 2: Under assumptions A1-A3 and if there exist
matrices Λi = Λ|i > 0, Λi ∈ <n×n, i = 1 . . . 10, Q0 ∈
<n×n, K ∈ <n×m and positive parameters ', μ1, μ2 and
μ3 such that the following LMI⎡⎢⎢⎣

LMI1 0 0 0
0 LMI2 0 0
0 0 LMI3 0
0 0 0 LMI4

⎤⎥⎥⎦ > 0 (18)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC15.4

3654



with:
LMI1 :=

∙ −Γ(K,',μ1, μ2) P
P R

¸
LMI2 :=

∙
Θ1 Ã> (K)P

PÃ (K) μ1P

¸
LMI3 :=

∙
Θ2 Ŵ>

1 (K)P

PŴ1 μ2P

¸
LMI4 :=

∙
Θ3 Ŵ>

2 (K)P

PŴ2 μ3P

¸
where tr{Θi} < 1, i = 1, 2, 3 and

Γ(K, δ, μ1, μ2) =h
Ã> (K)P + PÃ (K) +Q (δ, μ1, μ2, μ3)

i
R−1 =

Λ−11 + Λ−19 + Λ−110 + Ŵ1Λ
−1
5

³
Ŵ1

´>
+ Ŵ2Λ

−1
8

³
Ŵ2

´>
Q (δ, μ1, μ2, μ3) =£kΛ5kLσ + kΛ8kLϕΥ2u + μ1 + μ2Lσ + μ3Υ

2
uLϕ

¤
I

+'
¡
Λ−13 + Λ−17

¢
+Q0

has positive definite solution P , then the projectional DNN
observer 11 with the weight’s learning laws, given by
(12),(13),(14), and with h(t) satisfying

lim
t→∞h(t)→ ε, 0 < ε << 1 (19)

provides the following upper bound for the "averaged esti-
mation" error

lim
T→∞

1

T

TR
τ=0

³
δ>(τ − h(τ))Q0δ(τ − h(τ)

´
dτ ≤

kΛ9k
µµ
kKk°°Λ−1η °°1/2Υη + °°°Λ−1ξ °°°1/2Υξ¶¶2

+ kΛ10k
°°°Λ−1

f̃

°°° ∙f̃0 + f̃1 kx (t)k2Λ1
f̃

¸
+ kKk2 kPk°°Λ−1η °°1/2Υη

+ kPk
°°°Λ−1

f̃

°°° hf̃0 + f̃1

°°°Λ1
f̃

°°°Diam(x)2i
+ kPk

°°°Λ−1ξ °°°Υξ + 2Υη

(20)

where: δ (t-h(t)) := x̂ (t-h(t))-x (t-h(t)) , Diam(x) =
sup
x,z∈X

kx-zk and Q0>0
The proof of this theorem is briefly exposed in the

appendix A.
Remark 2: It is easy to see that in the absence of noises

(ηt = ξt = 0) and unmodelled dynamics (f̃ = 0), we can
choose f̃0, f̃1,Υξ and Υη such that:

lim
T→∞

1

T

TZ
τ=0

³
δ>(τ − h(τ))Q0δ(τ − h(τ)

´
dτ → 0

V. NUMERICAL EXAMPLE
As it follows from the presentation above, to realized the

suggested approach one needs to fulfill the following steps:1)
Define the projector, 2) Select Matrices A and Ŵ (some hints
are given by [17] and [18] ),3) Select K such that A−KC

is stable, with C defined by the output of the system, 4) Find
P as the solution of the LMI problem (18).5) Introduce P
into the adapting weight law (12), (13) and (14) and realized
it on-line.
Example 2: The next simplified model (21) describes the

ozonization process when a contaminant is present in a soil
just with solid and gas phases involved [19]. It is worth
notice that the model is employed only as a data source,
any structural information has been used in the projectional
DNN observer design.
Vgasẋ1,t = V −1gas

£
WgasC

in
τ −Wgasx1,t − k1S1x4,tx3,t

−Kabs
t

¡
Qfree_abs
max − x2,t

¢¤
ẋ2 = Kabs

t

¡
Qfree_abs
max − x2,t

¢
ẋ3,t = k1S1x4,tx3,t, ẋ4,t = −k1G−1x4,tx3,t

⎫⎪⎪⎬⎪⎪⎭
(21)

Here in (21) yt = x1,t + ηt (see Figure 2) is the ozone
concentration (mole/L) at the output of the reactor assumed
to be measurable, x2,t (mole) is the ozone amount absorbed
by the soil which is not reacting with the contaminant,
x3,t (mole) is the ozone amount absorbed by the soil and
reacting with the contaminant, and x4,t (mole/g) is the
current contaminant concentration. The convex compact set
X according to the physical system constrictions is given as:

X:=

⎧⎪⎪⎨⎪⎪⎩
0 ≤ x1,t≤ x1,0

0 ≤ x2,t≤ Qfree_abs
max

0 ≤ x3,t≤ V gasC
in

0 ≤ x4,t≤ x4,0

⎫⎪⎪⎬⎪⎪⎭
and the corresponding observer parameters are defined by:

A =

⎡⎢⎢⎣
−2.6 0 0 0
0 −1.6 0 0
0 0 −2.24 0
0 0 0 −0.46

⎤⎥⎥⎦ ,K =

⎡⎢⎢⎣
0.01
0.01
−0.0001
−0.1

⎤⎥⎥⎦
Figures 1,and 2 represent the results of the x3 and x4
estimation from the output, comparing the projectional DNN
observer against a DNN observer without projection operator
in presence of "quasi-white noise" η(t) (amplitude = 0.6×
10−5) and with the same initial conditions in both cases.

VI. CONCLUSION
The suggested approach related to the DNN-projectional

state estimate problem for a special class of partially un-
known nonlinear system demonstrates good results when the
plant dynamics belongs to a given compact set (assumed
to be known a priori), even when external perturbations
are essensial. The complete convergence analysis for this
class of adaptive observer is presented. Also the boundedness
property of the adaptive weights in DNN is proven. Since
the projection method leads to discontinuous trajectories in
the estimated states, a nonstandard Lyapunov - Krasovski
functional is applied to derive the upper bound for estimation
error (in "average sense"), which depends on a noise power
(output and dynamics disturbances) and on an unmodelled
dynamic. It is shown that the asymptotic stability is attained
when both of these uncertainties are absent. The illustrative
example confirms the advantages which the suggested of
observers have being compared with traditional ones.
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VII. APPENDIX
Proof: Consider the next "nonstandard" energy-like

Lyapunov-Krasovkii funcational

V (t) =

tZ
t−h(t)

h
kδ(τ)k2p + k (τ) tr

n
W̃ | (τ) W̃ (τ)

oi
dτ

(22)
where W̃ (τ) := W (τ) − Ŵ . Since the problem under
consideration contains uncertainties and external output dis-
turbances we won’t demonstrate that the time-derivative of
this energetic function is strictly negative. Instead, we will
use it to obtain an upper bound for the averaged state
estimation error. Taking time derivative of (22) one has

V̇ (t) = kδ(t)k2p - kδ(t-h (t))k2p (1-ḣ (t) )+
k1 (t) tr

n
W̃ |
1 (t) W̃1 (t)

o
−h

k1 (t) tr
n
W̃ |
1 (t-h (t) )W̃ 1(t-h (t))

oi
(1-ḣ (t) )+

k2 (t) tr
n
W̃ |
2 (t) W̃2 (t)

o
−h

k2 (t) tr
n
W̃ |
2 (t-h (t))W̃2(t-h (t))

oi
(1-ḣ (t) )

let us define:
Ã := A−KC,

W̃i(t) :=W i(t)− Ŵi i = 1, 2
σ̃(t) :=σ (x̂(t))− σ (x(t))
ϕ̃(t) := ϕ (x̂(t))− ϕ (x(t))

Presenting the state estimation error δt as a function of the
available output, the estimation error et can represented as:

δ (t) = N' (−C|e (t) + C|η (t) +'δ (t))

N' := (C
|C +'I)−1

(23)
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' is a small positive scalar. Then, by the property (5), the
assumption A2-A3, an upper bound for each involved term
is determined:

V̇ ≤
h (t) δ>t−h(t)

h
Ã>(K)P + PÃ(K) + PR−1P+

Q (δ, μ1, μ2, μ3)] δt−h(t)+
h (t)3 [L1h(t)] + h(t) [L2h(t)]+

+2

tZ
τ=t−h(t)

³
e> (t− h (t))CN'PW̃1 (τ)σ (x̂ (τ))

´
dτ

+

tZ
τ=t−h(t)

h
σ> (x̂ (τ)) W̃>

1 (τ)PN' (CΛ2C +'Λ3)

N'PW̃1 (τ)σ (x̂ (τ))
i
dτ

+

tZ
τ=t−h(t)

σ| (x̂τ ) W̃
|
1 (τ)PW̃τσ (x̂τ ) dτ+

k1 (t) tr
n
W̃ |
1 (t) W̃1 (t)

o
−

k1 (t− h (t)) tr
n
W̃ |
1 (t− h (t))W̃1(t− h (t))

o
+

tZ
τ=t−h(t)

2
³
e> (t-h (t))CN'PW̃2(τ)(ϕ (x̂(τ))u(τ)

´
dτ+

tZ
τ=t−h(t)

h
u>(τ)ϕ> (x̂ (τ)) W̃>

2 (τ)PN' (C
|Λ6C+'Λ7)

N'PW̃2(τ)(ϕ (x̂(τ))u(τ)
i
dτ+

tZ
τ=t−h(t)

u|(τ)(ϕ (x̂(τ))| W̃>
2 (τ)PW̃2(τ)(ϕ (x̂(τ))u(τ)dτ+

k2 (t) tr
n
W̃ |
2 (t) W̃2 (t)

o
−

k2 (t− h (t)) tr
n
W̃ |
2 (t− h (t))W̃2(t− h (t))

o

Where:

Q (δ, μ1, μ2, μ3) :=£kΛ5kLσ + kΛ8kLϕΥ2u + μ1 + μ2Lσ + μ3Υ
2
uLϕ

¤
I

+'
¡
Λ−13 + Λ−17

¢
+Q0

L1h(t) = kΛ1k
°°°Ã°°°2 L2δ

4
+ kΛ5k LσL

2
δ

3
+

μ2
LσL

2
δ

3 + μ1
L2δ
3 + μ3

Υ2uLϕL
2
δ

3 + kΛ8k LϕΥ
2
uL

2
δ

3

R−1 := Λ−11 + Ŵ1Λ
−1
5

³
Ŵ1

´>
+

Ŵ2Λ
−1
8

³
Ŵ2

´>
+ Λ−19 + Λ−110

L2h(t) :=

kΛ9k
µµ
kKk°°Λ−1η °°1/2Υη + °°°Λ−1ξ °°°1/2Υξ¶¶2+

kΛ10k
°°°Λ−1

f̃

°°° ∙f̃0 + f̃1 kx (t)k2Λ1
f̃

¸
+ kPk

°°°Λ−1ξ °°°Υξ+
2Υη + kKk2 kPk

°°Λ−1η °°1/2Υη − δ>t−h(t)Q0δt−h(t)+

kPk
°°°Λ−1

f̃

°°° hf̃0 + f̃1

°°°Λ1
f̃

°°°Diam(x)2i
Considering:

Ã> (K)P + PÃ (K)+
PR−1P +Q (δ, μ1, μ2, μ3) ≤ 0

and the adaptation laws (12)(13) Finally we get:

V̇ ≤ h (t)
³
h (t)2 a+b-δ| (t− h (t))Q0δ (t− h (t))

´
(24)

where

a := kΛ1k
°°°Ã°°°2 L2δ

4
+ kΛ5k LσL

2
δ

3
+

μ2
LσL

2
δ

3 + μ1
L2δ
3 + μ3

Υ2uLϕL
2
δ

3 + kΛ8k LϕΥ
2
uL

2
δ

3

b := kΛ9k
µµ
kKk°°Λ−1η °°1/2Υη + °°°Λ−1ξ °°°1/2Υξ¶¶2+

+ kΛ10k
°°°Λ−1

f̃

°°° ∙f̃0 + f̃1 kx (t)k2Λ1
f̃

¸
+ kKk2 kPk°°Λ−1η °°1/2Υη+

kPk
°°°Λ−1

f̃

°°° hf̃0 + f̃1

°°°Λ1
f̃

°°°Diam(x)2
i
+

kPk
°°°Λ−1ξ °°°Υξ + 2Υη

So,

δ| (t− h (t))Q0δ (t-h (t)) ≤
³
ah (t)2+b

´
− V̇

h (t)

and integrating (24) we derive
TR
τ=0

δ| (τ−h(τ))Q0δ (τ−h (t) (τ)) dτ ≤
TR
τ=0

h¡
ah(τ)2 + b

¢− V̇
h(τ)

i
dτ

This implies
TR
τ=0

δ| (τ−h (t) (τ))Q0δ (τ−h (t) (τ)) dτ ≤

a
TR
τ=0

h (t)2 dτ + bT +
V0
h(0)

Dividing by T and taking the upper we finally get (20).
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