
Preconditioned conjugate gradient algorithms with column
scaling

R. Pytlak
Institute of Automatic Control and Robotics

Warsaw University of Technology
02-525 Warsaw, Poland
r.pytlak@mchtr.pw.edu.pl

Abstract— The paper describes new conjugate gra-
dient algorithms which use preconditioning. The al-
gorithms are intended for general nonlinear uncon-
strained problems. In order to speed up the conver-
gence the algorithms employ scaling matrices which
transform the space of original variables into the space
in which Hessian matrices of functionals describing
the problems have more clustered eigenvalues. This is
done efficiently by applying BFGS or limited memory
BFGS updating matrices. Once the scaling matrix is
calculated, the next few iterations of the conjugate
gradient algorithms are performed in the transformed
space. The unique feature of these algorithms is the
application of the reduced–Hessian approach to eval-
uate directions of descent and the use of column
scaling to improve the conditioning. We believe that
the proposed algorithms are competitive to limited
memory quasi–Newton, or to other preconditioned
conjugate gradient algorithms.

I. Introduction

We consider the problem

min
x∈Rn

f(x) (1)

In general, we assume that the function f is continuously
differentiable, i.e., f ∈ C1.

We can use the conjugate gradient algorithm to solve
problem (1). In [9] a new family of conjugate gradient
algorithms was introduced based on methods proposed
in [16]. Their direction finding subproblem is given by

dk = −Nr{gk,−βkdk−1}, (2)

where gk = g(xk) = ∇f(xk) and Nr{a, b} is defined as
the point from a line segment spanned by the vectors a
and b which has the smallest norm, i.e.,

‖ Nr{a, b} ‖= min{‖ λa+ (1− λ)b ‖: 0 ≤ λ ≤ 1}, (3)

and ‖ · ‖ is the Euclidean norm. Let us notice that the
operation Nr{·, ·} can be easily performed.

If βk = 1 then we have the algorithm given in [16] and
when

βk =
‖gk‖2

|〈gk − gk−1, gk〉|
(4)

directions generated by (2) are equivalent to those pro-
vided by the Polak–Ribiére formula (under the assump-
tion that directional minimization is exact). (2) with (4)

give the algorithm that has not only superior numerical
properties but has also convergence properties better
than that of all existing versions of the Polak–Ribiére
algorithm.

The idea behind preconditioned conjugate gradient
algorithm is to transform the decision vector by linear
transformation D such that after the transformation the
nonlinear problem is easier to solve–eigenvalues of Hes-
sian matrices of the objective function of the new mini-
mization problem are more clustered which is beneficial
for the performance of a conjugate gradient algorithm.

If x̂ is transformed x:

x̂ = Dx (5)

then our minimization problem will become

min
x̂

[
f̂(x̂) = f(D−1x̂)

]
(6)

and for this problem the search direction will be defined
as follows

d̂k = −Nr{∇f̂(x̂k),−β̂kd̂k−1} (7)

Since we want to avoid to minimize f̂ with respect to
x̂ we need expressing the above search direction rule in
terms of f and x. First of all, notice that

∇f̂(x̂) = D−T∇f(x) (8)

therefore we can write

d̂k = −Nr{D−T∇f(D−1x̂k),−β̂kd̂k−1}. (9)

If we multiply both sides of (9) by D−1 we will get

dk = −λkD−1D−T∇f(xk) + (1− λk) β̂kdk−1, (10)

where 0 ≤ λk ≤ 1 and either

β̂k = 1 (11)

for the Fletcher-Reeves version, or

β̂k =
‖ĝk‖2

|〈ĝk − ĝk−1, ĝk〉|

=
gTkD

−1D−T gk

| (gk − gk−1)T D−1D−T gk|
(12)

for the Polak–Ribière version.

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

TuA16.6

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 534

The equation (10) can be stated as

dk = −λkH∇f(xk) + (1− λk) β̂kdk−1. (13)

where H = D−1D−T . This suggests that D should be
chosen in such a way that DTD is an approximation to
∇2
xxf(x̄) where x̄ is a solution of problem (1).
Moreover, D should be such that systems of linear

equations

DT ĝk = gk (14)
Ddk = d̂k (15)

which we have to solve at every iteration are easy to solve.
One can show that gTk dk ≤ −‖d̂k‖2–see [12] for details.

Now, let turn our attention to the BFGS updating
scheme:

Bk+1 = Bk −
Bksks

T
kB

T
k

sTkBksk
+
yky

T
k

sTk yk
(16)

Here, yk = gk+1−gk, sk = xk+1−xk. The multiplicative
form of the BFGS updating formula is given by

B−1
k+1 =

(
I − skzTk

)
B−1
k

(
I − zksTk

)
(17)

with

zk =
Bksk√

(sTk yk)(sTkBksk)
+

yk
sTk yk

. (18)

Powell in [8] assumes that B−1
k can be factorized as

DkD
T
k , then the corresponding updating formula for

Dk+1 is given by

Dk+1 =
(
I − skzTk

)
Dk. (19)

Powell in [8] takes formula (19) as the starting point for
his analysis. After some rather lengthy considerations he
arrives at the updating scheme for Dk+1:

dik+1 =


sk√
sT

k
yk

, i = 1,

dik −
(
yT

k d
i
k

sT
k
yk

)
sk, i = 2, 3, . . . , n.

(20)

A quasi–Newton algorithm with the factorization of B−1
k

given by DkD
T
k , where Dk is updated according to (20)

in exact arithmetic, is equivalent to the BFGS method.
However, Powell observes that if we rescale columns of
Dk of small length the numerical behavior of the quasi–
Newton method significantly improves. Although such
rescaling is the departure from the BFGS variable metric
algorithm it does not destroy the finite termination on a
quadratic ([8]).

Powell proposes the following column rescaling scheme.
First, the matrix obtained in (20) we denote by D̂k+1

while Dk+1 has columns defined by

dik+1 =

 d̂ik+1, i = 1,

d̂ik+1 max
[
1, σk

‖d̂i
k+1‖

]
d̂ik+1, i = 2, . . . , n,

with

σk = max
1≤l≤k+1

‖d̂lk+1‖.

Another column scaling strategy is proposed in [5].
Lalee and Nocedal follow original work by Powell but
they as the starting point take the factorization of the
matrix Bk in the form

Bk = VkV
T
k , (21)

where Vk is a lower Hessenberg matrix. Then they con-
struct an orthogonal matrix Qk which transforms Vk to
the lower triangular matrix Lk = VkQk. Since Qk is
orthogonal we have

Bk = VkQkQ
T
k Vk = LkL

T
k . (22)

It means that dk can be easily evaluated by using forward
and backward substitutions:

dk = −L−Tk L−1
k gk. (23)

Next, the BFGS update to the matrix Bk is made:

Bk+1 = WkW
T
k (24)

in such a way that the matrix Wk is lower Hessenberg.
To this end vector rk is determined by rk = LTk sk and
then an orthogonal matrix Ωk is found such that

‖rk‖e1 = ΩTk rk. (25)

The obvious proposition for Ωk is the product of at most
n Givens rotations. Eventually, columns of matrix Wk

are evaluated by

wik =

{
yk√
yT

k
sk

, i = 1,

LkΩkei, i = 2, 3, . . . , n.
(26)

One can show the matrix Wk with columns defined by
(26) satisfies (24).

Next, some columns of Wk are scaled giving the matrix
Vk+1. Two parameters σk > 0 and ρk > 0 such that
σk ≤ ρk are used to define scaling factors cik:

cik =


σk√
‖wi

k
‖

if ‖wik‖ < σk,
ρk

‖wi
k
‖ if ‖wik‖ > ρk

1 otherwise.

(27)

The coefficients cik, i = 1, . . . , n define a scaling diagonal
matrix Ck = diag[c1k, . . . , c

n
k] which applied to matrix Wk

gives the lower Hessenberg matrix Vk+1:

Vk+1 = WkCk. (28)

Lalee and Nocedal show in [5] that if the sequences
{σk} and {ρk} are bounded–for all k

σk ≤ σmax, ρk ≥ ρmin, (29)

for some positive constants σmax, ρmin, then {xk} gen-
erated by quasi–Newton algorithm with the Wolfe line
search rules is globally convergent for strictly convex
functions.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.6

535

II. Preconditioned shortest residuals
algorithm with column scaling

Incorporating column scaling to conjugate gradient al-
gorithms could follow two strategies discussed in [12]. We
remind that strategy S1 in [12] assumes that during some
number of iterations, say m, positive definite matrices
Bk are updated according to the BFGS rule and then
applied in nr preconditioned conjugate gradients iterates.
Column scaling is used while updating Bk.

If we use strategy S1 we have the following algorithm.
PSRCS Algorithm (The preconditioned method

of shortest residuals with column scaling)
Parameters: µ, η ∈ (0, 1), η > µ, {β̂k}, m, nr, m < nr

1. Choose an arbitrary x1 ∈ Rn, compute

d1 = −g1 (30)

and set k = 1, r = 0.
2. Find a positive number αk satisfying the Wolfe

conditions, i.e., αk which satisfies

f(xk + αkdk)− f(xk) ≤ −µαk‖d̂k‖2

g(xk + αkdk)T dk ≥ −η‖d̂k‖2

(the use of ‖d̂k‖2 instead of gTk dk is explained in
[12]). Substitute xk + αkdk for xk+1.

3. If ‖gk+1‖ = 0 then STOP.
If k+1 < (r+1)nr and k+1 > rnr +m go to Step
4).
If k + 1 = (r + 1)nr then substitute Vk+1 =√
γk+1In, Qk+1 = I and increase r by one.

If k+1 = (r+1)nr+m then substitute Lr = Lk+1.
Compute dk+1 by solving the equations

Lk+1z = −gk+1 (31)
LTk+1dk+1 = z (32)

where Lk+1 is such that Vk+1Qk+1 = Lk+1, Vk+1 =
Wk+1Ck+1, Bk+1 = Wk+1W

T
k+1, Bk+1 is obtained

from LkL
T
k by the BFGS formula and Ck+1 is given

by (27). Go to Step 5).
4. Solve the following equations with respect to dk+1:

Lr ĝk+1 = gk+1 (33)
d̂k+1 = −Nr{ĝk+1,−β̂k+1d̂k} (34)

LTr dk+1 = d̂k+1 (35)

5. Increase k by one and go to Step 2).
The global convergence of PSRCS Algorithm is a

straightforward conclusion of Theorem 6 in [12] and the
following lemma.

Lemma 1: Assume that the level set

D = {x ∈ Rn : f(x) ≤ f(x1)} (36)

is convex and there exist positive constants m and M
such that

m‖z‖2 ≤ zT∇2f(x)z ≤M‖z‖2 (37)

for all x ∈ D and z ∈ Rn. Let αk be chosen according to
the Wolfe conditions. If matrix Bk is obtained from the
positive definite matrix B1 by at most m updates using
the scheme: 1) Bk+1 is the BFGS update of the matrix
LkL

T
k ; 2) Bk+1 = Wk+1W

T
k+1; 3) Vk+1 = Wk+1Ck+1

where Ck+1 is the diagonal matrix based on σk+1 and
ρk+1 such that 0 < ρmin ≤ ρk+1 < ∞, 0 < σk+1 ≤
σmax < ∞; 4) Vk+1Qk+1 = Lk+1 where Qk+1 is an
orthogonal matrix and Lk+1 upper triangular. Then,
there exist positive constants c1 and c2 such that

trace(LkLTk) ≤ c1 (38)
det(LkLTk) ≥ c2. (39)

Proof: The proof heavily borrows from the analysis
presented in the proofs of Lemma 5 in [12] and Lemma
3.3 in [5] and so it is omitted.

Under the assumptions of Lemma 1 eigenvalues of
matrices LkLTk are uniformly bounded and are greater
than zero. The direct consequence of that is the following
theorem.

Theorem 2: Suppose that {xk} is generated by PSRCS
Algorithm and

(i) the assumptions of Lemma 1 hold,
(ii) βk is given by (12).

Then {xk} converges to the minimizer of f .
PSRCS Algorithm is not intended for problems with

many variables. Since matrices Lk are in general dense
the cost of one iteration is of order n2. In the next section
we introduce an algorithm which could be efficiently
applied to large scale unconstrained problems.

III. Preconditioned conjugate gradient based
reduced–Hessian algorithm

The algorithm presented in the previous section can be
inefficient when applied to large scale problems since it
is based on the full scaling matrix. The approach related
to the algorithm based on column scaling technique but
intended for large scale problems is discussed in [13], [14],
[15], [2] and [3].

Siegel in [13] and independently Fenelon ([1]) adopt
the conjugate–direction scaling algorithm to large scale
problems by referring directly to the concept of the
gradient space on which the curvature information is ac-
cumulated by quasi–Newton iterates. In the case of large
scale problems the number of iterations performed by
quasi–Newton algorithms before the approximate solu-
tion is found is usually much smaller than the number of
variables. This means that the dimension of the gradient
space which is relevant in quasi–Newton algorithms for
large scale problems is significantly smaller than n and
can be represented by its basis consisting of few, say m,
vectors.

Siegel in [13] (see also [1]) shows that the gradient
space can be associated with the space spanned by
the gradients evaluated up to the kth iteration–Gk =
span{g1, g2, . . . , gk}. For further discussion crucial is the
following result which we present in more general setting

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.6

536

than it is stated in [13]–its proof is an obvious modifica-
tion of the proof of Lemma 5.1 given in [14]).

Lemma 3: Consider an algorithm applied to minimize
function f whose second order derivatives are continuous
and which has the kth iteration defined as

dk = −B−1
k gk + βkdk−1 (40)

where βk is some number, Bk is obtained by applying
the BFGS update to the matrix Bk−1 with sTk yk > 0
and beginning from the diagonal matrix B1 = σI. Then,
dk ∈ Gk and if z ∈ Gk, w ∈ G⊥k we have

Bkz ∈ Gk, Bkw = σw (41)

Hkz ∈ Gk, Hkw =
1
σ
w (42)

where Hk is the BFGS matrix for an approximation of
the inverse of the Hessian matrix beginning from H1 =
1
σ I. Here, G⊥k is the subspace orthogonal to Gk.

Lemma 3 is the basis of the reduced–Hessian algorithm
introduced in [2]. Suppose that hk = dim(Gk) and that
the matrix Tk ∈ Rn×hk has columns which form the basis
of Gk. Since rank(Tk) = hk there exist matrices Qk ∈
Rn×n and Rk ∈ Rn×hk such that Qk is an orthogonal
matrix and Rk is a nonsingular upper triangular matrix
and the following holds ([4])

Tk = Qk

[
Rk
0

]
. (43)

If we divide Qk into full rank matrices Zk and Wk: Qk =
[Zk Wk] and transform the space of x variables to the
space of variables xQ by x = Qkx

Q then the matrix Bk
in the new space is stated as

QTkBkQk =
[
ZTk BkZk 0

0 σIn−hk

]
(44)

and the gradient gk as

QTk gk =
[
ZTk gk

0

]
. (45)

Lemma 4: Suppose that Zk is the result of orthogo-
nalizing the gradients g1, . . . , gk generated by the method
based on the direction formula (40) where Bk are defined
as in Lemma 3. If Dk and Gk are matrices of search
directions and gradients (Dk = [d1 d2 · · · dk], Gk =
[g1 g2 · · · gk]), then there are nonsingular upper triangular
matrices Sk and S̄k such that

Gk = ZkSk, Dk = ZkS̄k. (46)
Lemma 4 can be used to show that Zk provides also

the basis for the space Dk of search directions d1, . . . , dk.
Theorem 5: The spaces Gk and Dk generated by gradi-

ents and search directions of the methods based on (40)
with Bk defined as in Lemma 3 are identical.

From now on we assume that the dimension of the
reduced space is not greater than m. Theorem 5 states
that both directions d1, d2, . . . , dm and gradients g1,
g2, . . . , gm can be used to built the current reduced
space (notice that p1 ‖ g1). However, when we move to

iteration m + 1 then in order to keep the dimension of
the reduced space unchanged the new gradient gm+1 has
to replace one of the gradients gi, i = 1, . . . , k. If we
substitute g1 and p1 by gm+1 then the spaces spanned
by g2, g3, . . . , gm+1 and by d2, d3, . . . , gm+1 can no longer
be the same. Notice that dm ∈ Gm can have components
associated with g1 and since dm ∈ Dm it follows that
range([g2 · · · gm gm+1]) 6= range([d2 · · · dm gm+1]).

The choice of the space used in the limited memory
reduced–Hessian method influences the efficiency of the
method. In [3] (see also [6]) the convergence in a finite
number of iterations, in the case of strongly convex
quadratic functions and with the exact line searches, is
established for the method based on the space generated
by directions dk. Furthermore, it is claimed therein that
the method exhibits inferior performance if the space
defined by gradients gk is used instead.

The scheme for updating the used space goes as fol-
lows. At the start of iteration k the reduced space used
to compute dk has the basis consisted of columns of the
matrix

Db
k = [dl dl+1 · · · dk−1 gk] (47)

where l = k−m+1 (we assume that k > m+1). Then the
creation of Db

k+1 is done in three stages (for the simplicity
of presentation we assume that gk+1 is accepted–see [3]
for the explanation when it happens)

1. dk is evaluated using Db
k–the basis contains gk in

order to utilize the most recent information on
function f ,

2. gk in Db
k is replaced by dk giving D̄b

k–notice that
D̄b
k and Db

k differ by a single column yet according
to Theorem 5 they span the same subspace,

3. the first column is removed from D̄b
k and the gradi-

ent gk+1 is added to D̄b
k as its last column creating

Db
k+1.

In Stage 1) the following equations are solved

CTk zk = −ZTk gk (48)
Ckdk = zk (49)

with respect to zk and dk. Ck is the Cholesky factor of
the reduced BFGS approximation to the Hessian matrix:

CTk Ck = ZTk BkZk (50)

and Zk is such that

Db
k = ZkSk (51)

with Sk ∈ Rm×m being an upper triangular matrix.
In Stage 2) the matrix Zk does not have to be changed

(according to Lemma 4) but the last column of Sk,
which is equal to ZTk gk, has to be replaced by ZTk dk
forming the matrix S̄k. The form of the last column in
Sk and S̄k is the consequence of using the Gram–Schmidt
orthogonalization method in the basis creation. Suppose
that gk is added to the basis. As the result matrices S̄k
and D̄b

k are created–see [3] for details.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.6

537

In Stage 3) the gradient gk+1 is added as the last
column to D̄b

k yielding D̆b
k and Z̆k (cf. [3]). In the next

step of Stage 3) one column from D̄b
k has to be removed–

we assume that as the rule the column dl leaves D̄b
k. In

that case we have

D̆b
k =

[
dl D

b
k+1

]
(52)

and we find Zk+1 and Sk+1 (cf. [3]) such that

Db
k+1 = Zk+1Sk+1. (53)

The approach based on the limited memory reduced–
Hessian can be applied in a preconditioned conjugate
gradient algorithm. If we want to use the shortest resid-
uals algorithm as a conjugate gradient algorithm in
which we apply preconditioning we have to define scaling
matrix Dk such that x̂k = Dkxk at every iteration.
The matrix should be nonsingular and DT

kDk should be
equal to the quasi–Newton approximation of the Hessian
matrix: Bk = DT

kDk. We define Dk noting that the
reduced–Hessian quasi–Newton method also is based on
the transformation of variables by orthogonal matrices
Qk which are factors in the QR decompositions of the
basis matrices. In the space of xQk variables defined
by the equation x = Qkx

Qk the approximation to the
Hessian is represented by QTkBkQk and has the form
(44) and the gradient is represented by QTk gk as given
by (45). The next transformation x̂ = C̄kx

Qk , with C̄k
being the Cholesky factor of QTkBkQk, brings the Hessian
approximation in the space of x̂ variables to the identity
matrix. Eventually, the transformation from the space of
x variables to the space of x̂ variables is expressed by

x̂ = C̄kQ
T
k x (54)

and the matrix Dk used in the preconditioned shortest
residuals method is stated as

Dk = C̄kQ
T
k . (55)

The kth iteration of the preconditioned shortest resid-
uals algorithm is as follows

d̂k = −λkĝk + (1− λk)β̂kd̃k−1 (56)

(here d̃k−1 is vector transformed by the transformation
(55)) while in space of x variables is expressed (as can
be easily shown) by

dk = −λkB−1
k gk + (1− λk)β̂kdk−1. (57)

In order to get a viable method we have to show that
equations analogous to (14)–(15) are easy to solve. We
have

QkC̄kĝk = gk (58)
C̄kQ

T
k dk = d̂k (59)

and equations (58), due to Lemma 3, reduce to the
equations

C̄Tk ĝk =
[
ZTk gk

0

]
, (60)

where Zk is such that Qk = [Zk Wk] and ZTkWk = 0. On
the other hand, due to Lemma 4,

Dkdk−1 = C̄kQ
T
k dk−1

= C̄k

[
ZTk dk−1

0

]
=

[
CkZ

T
k dk−1

0

]
(61)

and we can show that equations (59) can be restated as

dk = ZkC
−1
k d̂Zk , (62)

where d̂Zk is the part of d̂k corresponding to Zk (the other
part is equal to zero).

The above analysis shows that the equation (56) can
be substituted by the equation

d̂Zk = −λkC−1
k C−Tk ĝZk + (1− λk)β̂kd̃Zk−1 (63)

since the parts of all vectors appearing in (56) corre-
sponding to the subspace spanned by columns of matrix
W are zero.

It remains to specify the coefficient β̂k in (56). We can
assume that β̂k = 1 and then we have the Fletcher–
Reeves version of the algorithm, or we evaluate β̂k ac-
cording to the rule

β̂k =
‖ĝk‖2

ĝTk (ĝk − g̃k−1)
(64)

where g̃k−1 is defined by

C̄Tk g̃k−1 =
[
ZTk gk−1

0

]
. (65)

to have the Polak–Ribiére version. The main effort in
solving equations (65) is associated with the calculation
of ZTk gk−1. Notice, however, that from the previous
iteration we have at our disposal ZTk−1gk−1 and that
matrix Zk differs from Zk by last column so we need
to evaluate only zTk gk−1 at the cost of n multiplications
and additions.

The evaluation of vector d̃k−1 in equation (56) requires
the same computational effort–it is obtained, according
to (61), by the formula

d̃k−1 =
[
CkZ

T
k dk−1

0

]
(66)

which implies that d̃Zk−1 = CkZ
T
k dk−1. Since ZTk−1dk−1 is

calculated in iteration k − 1, the main extra effort while
evaluating d̃k−1 is associated with zTk dk−1.

If the limited memory reduced–Hessian method is
considered then computations required for getting d̃k−1

and g̃k−1 differ from that described above since Zk+1 is
not simple enlargement of Zk by adding a new column
zk+1 and can be described by the formula

Zk+1 = ZkQ̆
T
k . (67)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.6

538

Q̆k is the product of m Givens rotations so the cost of
its applying to a given vector is proportional to m. Thus,
the evaluation

d̃k−1 = C̄kZkdk−1 = C̄kZk−1Q̆
T
k−1dk−1 (68)

bears the cost proportional to mn, while g̃k−1 satisfying
the equation

C̄Tk g̃k−1 =
[
Q̆kZ

T
k−1gk−1

0

]
(69)

can be determined at the cost proportional to m2 since
ZTk−1gk−1 is known from iteration k − 1.

We have all necessary ingredients to state the pre-
conditioned conjugate gradient based reduced–Hessian
algorithm.

R-HPCG Algorithm (Reduced–Hessian precon-
ditioned conjugate gradient algorithm)

Parameters: µ, η ∈ (0, 1), µ < η, σ1 > 0, positive
integer number m.

1. Choose an arbitrary x1, set h1 = 1, Db
1 = [g1],

Z1 = [g1/‖g1‖], S1 = [‖g1‖], C1 = [
√
σ1] and k = 1.

2. Calculate dk from d̂k that satisfies (56) where ĝk
is obtained according to formula (60), d̃k−1 due to
(68).
If gk is accepted then swap the last column of Db

k

with dk getting D̄b
k and S̄k. Otherwise set D̄b

k = Db
k,

S̄k = Sk. Substitute Ck for C̄k.
3. Find αk according to the Wolfe conditions. Substi-

tute xk + αkdk for xk+1.
4. If ‖gk+1‖ = 0 then STOP.

Otherwise do orthogonalization on the vectors from
Db
k and the gradient gk+1.

If gk+1 is accepted form D̆b
k from D̄b

k and Z̆k from
Zk and S̆k from S̄k. Set h

′

k = hk + 1
If gk+1 is rejected substitute D̄b

k, Z̄k, S̄k for D̆b
k,

Z̆k, S̆k. Set h
′

k = hk, update C̄k to C̆k.
Compute σk+1 and do reinitialization by replacing
σk with σk+1 (improve the Hessian approximation
in the space orthogonal to the reduced space by
changing the diagonal matrix).
If h

′

k = m + 1 then remove the first column of
matrix D̆b

k and create Db
k+1 from D̆b

k, Sk+1 from
S̆k, Zk+1 from Z̆k and Ck+1 from C̆k).
If h

′

k < m + 1 substitute D̆k, S̆k, Z̆k and C̆k for
Db
k+1, Sk+1, Zk+1 and Ck+1 respectively.

Calculate β̂k+1 according to (64) using g̃k defined
by (69) (with k − 1 replaced by k).
Increase k by one and go to Step 2).

The numerical algebra related to the update of C̄k to
C̆k, D̆b

k to Db
k+1, Z̆k to Zk+1 and C̆k to Ck+1 is given in

[3].

IV. Conclusions

The comparison in [3] shows the superiority of L-RHR
(in comparison to the code based on L-BFGS algorithm)
in terms of CPU time and the number of function

evaluations while requiring half the storage. R-HPCG
Algorithm is the extension of the L-HRH algorithm by
giving more flexibility with the inclusion in the formula
for dk the scaled previous direction. Furthermore, it is
rather straightforward to extend it to problems with box
constraints along the lines stated in [11]–the method in
[11] outperforms the benchmark code L-BFGS-B ([17])
on problems from the CUTE collections. The method
presented in the paper should inherit superior numerical
properties of the algorithm from [11] but at the same
time requires less computational effort.

References

[1] M.C. Fenelon, Preconditioned conjugate–gradient–type algo-
rithm for large–scale unconstrained optimization, Ph.D. the-
sis, Department of Operations Research, Stanford University,
Stanford, CA, 1981.

[2] P.E. Gill and M.W. Leonard, Reduced–Hessian quasi–
Newton methods for unconstrained optimization, SIAM J.
Optimization, Vol. 12, 209–237, 2001.

[3] P.E. Gill and M.W. Leonard, 2003 Limited–memory reduced–
Hessian methods for large–scale unconstrained optimization,
SIAM J. Optimization, Vol. 14, 380–401, 2003.

[4] G.H. Golub and Ch.F. Van Loan, Matrix computations, The
Johns Hopkins University Press, Baltimore, 1996.

[5] M. Lalee and J. Nocedal, Automatic column scaling strategies
for quasi–Newton methods, SIAM J. Optimization, Vol. 3,
637–653, 1993.

[6] M.W. Leonard, Reduced Hessian quasi–Newton methods for
optimization, Ph.D. thesis, Department of Mathematics, Uni-
versity of California, San Diego, CA, 1995.

[7] J. Nocedal, Updating quasi–Newton matrices with limited
storage, Mathematics of Computation 35, 773–782, 1980.

[8] M.J.D. Powell, Updating conjugate directions by the BFGS
formula, Math. Programming, Vol. 38, 29–46, 1987.

[9] R. Pytlak, On the convergence of conjugate gradient algo-
rithms, IMA J. Numerical Analysis 14, 443–460, 1994.

[10] R. Pytlak, An efficient Algorithm for large scale problems
with simple bound on the variables, SIAM J. on Optimiza-
tion, Vol. 8, 632–560, 1998.

[11] R. Pytlak and T. Tarnawski, Preconditioned conjugate gradi-
ent algorithms for large scale problems with box constraints,
Proceedings of American Control Conference, July 11–13,
New York, 1257–1262, 2007.

[12] R. Pytlak and T. Tarnawski, Preconditioned conjugate gra-
dient algorithms for nonconvex problems, Pacific Journal of
Optimization, Vol. 2, 81–104, 2006.

[13] D. Siegel, Implementing and modifying Broyden
class updates for large scale optimization, Report
DAMPT/1992/NA12, Department of Applied Mathematics
and Theoretical Physics, University of Cambridge, 1992.

[14] D. Siegel, The use of conjugate direction matrices in quasi-
Newton methods for nonlinear optimization, Ph.D. the-
sis, Department of Applied Mathematics and Theoretical
Physics, University of Cambridge, 1992.

[15] D. Siegel, Modifying the BFGS update by a new column
scaling technique, Mathematical Programming, Vol. 66, 45–
78, 1993.

[16] P. Wolfe, A method of conjugate subgradients for minimizing
nondifferentiable functions, in Mathematical Programming
Study 3, M.L. Balinski, P. Wolfe, eds., North–Holland: Ams-
terdam, 1975, 145–173.

[17] C. Zhu, R.H. Byrd, P. Lu and J. Nocedal, L–BFGS–B —
FORTRAN subroutines for large–scale bound constrained
optimization, Research Report, Northwestern University, De-
partment of Electrical Engineering and Computer Science,
1994.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuA16.6

539

