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Abstract— In this paper the problem of designing a de-
centralized robust controller for a plant describing a drag-
free satellite is addressed. From recent experiences in drag-
free control design we first derive an uncertain plant set
representative of many drag-free missions with non spherical
test masses. A performance requirement is imposed on the
absolute acceleration of the test mass along a measurement
axis. The main performance requirement is first broken down
into requirements on the uncertain closed loop behavior of
the system. The fulfillment of this new set of requirements
guarantees robust achievement of the overall system goal. Then
optimal single-input-single-output controllers are designed that
robustly achieve the desired level of performance. The method
proposed allows to properly account for the uncertainties in
the design plant retaining the decentralized structure of the
controller suggested by the peculiar features of the design plant.

I. INTRODUCTION

In recent years space has been considered for high preci-

sion physics experiments (see for example LISA Pathfinder

[1] and STEP [2]). In all these missions the drag-free satellite

concept plays a key role. The drag-free satellite contains a

cavity in which a test mass (or proof mass) is let free to

fly. The test mass is shielded by the surrounding spacecraft

against the disturbances acting on the surface so that its

motion is influenced only by the gravitational force and by

the small gravitational and electrostatic interaction existing

with the spacecraft. Both these contributions show spatial

dependence so that a stiffness-like interaction exists between

the proof mass and the spacecraft [3]. The accuracy level of

the free fall trajectory followed by the test mass depends

therefore on the capability of the control system to keep

the test mass at the center of the cavity. The free fall

requirements are usually specified as acceleration spectral

noise densities along a specific axis that is the sensitive axis

of the experiment. The control is actuated with high precision

continuous thrusters so that the spacecraft is forced to chase

the test mass in its purely gravitational motion at least along

the sensitive axis. However, for non-spherical proof masses,

an electrostatic suspension actuator must be included in order

to control the relative attitude of the test mass with respect

to the spacecraft.
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The requirements imposed by the scientific goal imply

challenging design tasks to be achieved both at a system level

and from a control synthesis point of view. From the system

design point of view the main objective is to reduce as much

as possible the dynamic couplings between the spacecraft and

the test mass. For this reason, in many past investigations

(see [1] and [2]) it is assumed that the couplings among the

different degrees of freedom are highly reduced. This allows

to tackle the control design procedure as a synthesis of a set

of single-input-single-output (SISO) controllers completely

ignoring the coupling effects. In all these cases no structured

uncertainty is considered in the design plant so that the

achievement of the top level performance requirement of

the whole system in the presence of perturbations must be

checked a posteriori.

In this paper the problem of designing a decentralized

robust controller for a plant describing a two-degrees-of

freedom drag-free satellite is addressed in a more systematic

way. A design plant representative of the most modern

drag-free satellites ([1], [4]) is first defined. Then a two

stage design technique is proposed. In the first phase the

measurement relation is exploited to derive bounds on the

individual closed loop responses, that, when satisfied, guar-

antee the robust performance of the overall system. In the

second phase, a recently developed control design technique

[5] based on the mixed structured singular value is used

to synthesize SISO controllers that robustly achieve the

performance specified by the individual bounds.

The proposed methodology allows for the direct design of

a decentralized controller that automatically achieves robust

performance and, on the other hand, it helps to assess if the

overall system goal is achievable by independent controller

designs.

A. Notation

Let R+ denote the non negative real numbers, C+ denote

the closed right half complex plane and C
m×n denote com-

plex matrices of dimension m× n. The maximum singular

value of a matrix A∈C
m×n is denoted by σ(A). AT (resp. A∗)

is the transpose (resp. complex conjugate transpose) of A ∈
C

m×n and ||A||F denotes the Frobenius norm of the matrix A.

The k×k identity matrix and zero matrix are denoted by Ik,

and Ok respectively and ⊗ denotes the Kronecker product.

A real rational matrix function Γ(s) of a complex variable s

is such that Γ(s)∈RH ∞ if it is bounded and analytic in the

open complex right half plane. The || · ||∞ norm of a m× n

matrix function Γ(s) is defined by ||Γ||∞ := sup
ω

σ(Γ( jω)).

Finally, diagN
i=1(Ai) with Ai ∈ C

mi×ni , i = 1, ..,N denotes the
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∑i mi × ∑i ni block diagonal complex matrix composed of

Ai, i = 1, ..,N.

II. PLANT MODEL

The drag-free satellite can be divided in two different

subsystems, the spacecraft and the experiment on board. The

experiment includes a cavity (or housing) that contains a

partially free flying cubic proof mass. Position and attitude

of the test mass with respect to the spacecraft are measured

by means of an electrostatic sensor. In the direction of

the sensitive axis high precision Field Emission Electric

Propulsion (FEEP) thrusters are used to control the position

of the satellite such that the proof mass remains in the center

of the cavity. A suspension actuation system is required to

align the test mass attitude to the one of the satellite (see [3]

and references therein). The design of the attitude control for

the spacecraft is assumed and is not described in the present

paper.

In the remainder of this section the linearized equations

describing the motion of the test mass with respect to the

spacecraft are derived. In particular, the simplified model in

this paper considers only the displacement along the space-

craft x body axis and the rotation φ around the spacecraft

z body axis. However, the control design technique here

developed is general and can be easily applied to more

complex dynamic models. The set of linearized equations

describing the relative motion of the test mass with respect

to the spacecraft is [4]:

q̈ = M−1
q [ fe + fexp + fh +Muq̈SC] (1)

where q = [x,φ ]T , Mq = diag(mT M, IT M) represents the proof

mass generalized mass matrix (mass plus inertia), Mu is the

sensitivity of the test mass dynamics to the spacecraft linear

(ẍSC) and angular (φ̈SC) acceleration, expressed in the vector

q̈SC. The generalized forces (forces and torques) acting on

the test mass are divided in three contributions fe, fexp and

fh. A brief description of the three terms is presented in the

following:

• fe are the external generalized forces acting on the test

mass.

• fexp are the gravitational generalized forces acting be-

tween test mass and the experiment.

• fh are the the electrostatic generalized forces acting

between electrode housing and the test mass.

Both fexp and fh show spatial dependence so that it is

convenient to represent them by means of a series expansion:

fh = fh0
+ fsus +Khq (2)

fexp = fexp0
+Kexpq (3)

where fsus are the electrostatic suspension generalized forces

acting on the test mass and Kexp := ∂ fext/∂q and Kh :=
∂ fh/∂q are the corresponding stiffness matrices. Moreover,

a direct cross-talk is included in the electrostatic actuation.

The relation between the commanded suspension forces Fsus

and the real ones fsus can be expressed by

fsus = (I +HIS)Fsus

where HIS is the actuation cross-talk matrix.

The approximated linearized equation of motion of the

spacecraft is

q̈SC = M−1
SC [ fdist + fDF ] (4)

where MSC is the spacecraft generalized mass matrix and fdist

is the external disturbance acting on the spacecraft. Assuming

that the satellite is placed in a low disturbance environment,

for example in the Earth-Sun Lagrangian point [1], the main

contribution to the disturbance force acting on the satellite

is solar radiation drag.

TABLE I

NUMERICAL DATA OF THE DRAG-FREE SATELLITE

Parameter Numerical Value

mSC 500 kg

ISC 500 kg ·m2

mT M 1 kg

IT M 6 ·10−4 kg ·m2

K :=

[

Kxx Kxφ

Kφx Kφφ

] [

2 0.003

0.006 0.004

]

·10−6 N
m

HIS :=

[

0 hIS

hIS 0

] [

0 0.5

0.5 0

]

fDF contains the force and torque acting on the spacecraft

due to the drag-free control. This action is provided by means

of FEEP thrusters, modeled here as a first order system

with a characteristic rise time of approximately 0.3 sec. The

selected rise time takes into account the delays introduced

by the electronic devices driving the thrusting actuators.

Substituting (2), (3) and (4) into (1) yields the following

expression:

q̈ = M−1
q {Kq+ fsus + fT M +(MuM−1

SC )( fdist + fDF)} (5)

where K = Kexp + Kh and fT M = fh0
+ fexp0

+ fe is the dis-

turbance force directly acting on the proof mass (dominated

by the electrostatic interaction). The numerical values of the

physical characteristics of the system are displayed in Table

I whereas the frequency content of the disturbance forces are

displayed in Figure 1 together with the measurement noise

associated to the electrostatic sensor. They are all consistent

with those given in [1] describing a similar system.

In order to translate the science objective into controller

requirements the measurement equation must be derived.

In the example considered in this paper, a performance

requirement is imposed on the residual absolute acceleration

along the x axis. This can be expressed as a function of the

noises on the coordinates x and φ and of the suspension

actuation and disturbance forces acting upon the test mass

as:

y = m−1
T M[ fT Mx +hISFsusφ

+Kxxx+Kxφ φ ]. (6)

Uncertainty is introduced in the plant model to take into

account the unknown behavior of the system. In particular,

the force interaction between the spacecraft and the test

mass is difficult to estimate and, therefore, an uncertainty

of ±50% with respect to the nominal value listed in Table I
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Fig. 1. Input and read out disturbance weights.

is considered on both K and HIS. Moreover, an uncertainty of

±5% on the scale factor and an uncertainty of ±50% on the

FEEP characteristic time takes into account the undetermined

behavior of the thruster.

III. DERIVATION OF SPECIFICATIONS FOR

DECENTRALIZED CONTROL DESIGN

In this work the control design will be considered suc-

cessful if the residual absolute acceleration acting on the

test mass along the x direction is kept below

S
1/2

y ≤ 2 ·10−14

[

1+

(

f

3mHz

)2
]

m

s2

1√
Hz

(7)

in the measurement bandwidth (MBW) f ∈ [1,30] mHz

in the presence of uncertainty as defined in the previous

section. This requirement represents the technological goal of

missions currently under development (see [1]) and therefore

it will be taken here as reference. Moreover, a decentralized

controller structure is assumed in this work where the test

mass x position is fed back by means of the thruster actuation

(drag-free controller KDF ) and the attitude error is fed back

by means of the suspension actuation (suspension controller

KSUS). This situation is encountered when the requirement

of (7) must be satisfied together with a requirement on

the orientation of the spacecraft. Being the main science

objective to reduce the residual action on the test mass along

the x direction, the choice to control the test mass x position

with the thruster is highly recommended.

The constraint imposed on the controller structure does

not allow, in principle, the application of the classical

µ−synthesis technique (D−K iteration) to the MIMO sys-

tem. An attractive alternative solution is to break down the

nearly diagonal uncertain plant into two different SISO plants

neglecting in the definition of the uncertain plant set the off

diagonal elements of the stiffness matrix. This approximation

is justified by the fact that, as can be seen from the numerical

values listed in Table I, the stiffness matrix is highly diagonal

dominant. The resulting simplified plant is therefore the one

shown in Fig. 2 where we define

ΓDF = 1

s2− Kxx
mT M

ΓFEEP

ΓSUS = 1

s2−
Kφφ
IT M

.

Note that, hIS together with the off-diagonal elements of

K appear also in the measurement equation. Therefore, an

uncertainty on these parameters may still be critical for

the achievement of the top level requirement and must be

properly accounted for.

SUS
*

SUS
K

DF
*

DF
K

IK

x
K

TM
d

SC
d

x

I

IS
h

�

�

Fig. 2. Decoupled MIMO block diagram of the drag-free satellite system.

To this end, we write the closed loop expression of both

the two individual loops and we substitute it into (6) to obtain

an approximation of the closed loop measurement equation

y(s) ≈ m−1
T M{ fT Mx +Kxx[SDF ΓDF dSC −TDF ηx]+

+Kxφ [SSUSΓSUSdT M −TSUSηφ ]}+
+hIS(1+Kxxm−1

T MSDF ΓDF)[−TSUSdT M −TSUS/ΓSUSηφ ]
(8)

where the standard notation is used for the sensitivity and

complementary sensitivity functions both for the drag-free

and the suspension loops. Note that the coupling between

the suspension and drag-free loops is taken into account in

the derivation of (8). In this paper the measurement equation

in (8) is used to break down the requirements in (7) into

independent requirements on the closed loop behavior of

the drag-free and suspension loops. The fulfillment of these

requirements is a sufficient condition of robust performance

of the overall system. Then a novel control design technique

(see [5]) is used to synthesize SISO controllers that robustly

achieve the individual requirements. The synthesis algorithm

involves the iterative solution of an optimization problem

aimed at maximizing the size of the performance weights,

used to shape the design of the individual controllers, to

achieve desired specifications. This optimization is restricted

by the constraint that there exists an internally stabilizing

controller that achieves robust performance with respect to

the maximized weights. The designer is only required to

specify the plant uncertain set and some frequency dependent

functions, dubbed optimization directionalities, that reflect,

in a qualitative way, the desired performance requirements

over all frequency. The specification of the optimization

directionality functions is easier than the direct design of the

performance weights and can be easily derived by the infor-

mation about the way the different exogenous disturbances

enter in the performance cost in (8).

IV. CONTROL SYNTHESIS TECHNIQUE

In this work the optimization based synthesis technique

introduced in [5] is used to design the suspension and drag-

free controllers. In the following, for the sake of complete-

ness, a brief description of the synthesis method is given.
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The interested reader can find a more detailed description in

the referenced paper.

First of all let us define a set of uncertain matrices with a

given structure:

∆ := {∆ = diag[In1
⊗∆1, .., Ing ⊗∆g, Ing+1

⊗∆g+1,

.., Ing+d
⊗∆g+d ] : ∆i = ∆T

i ∈ R
ki×ki ∀i ∈ {1, ..,g}

and ∆i ∈ C
ki×ki ∀i ∈ {g+1, ..,g+d}}.

(9)

where ∑
g+d
i=1 niki = r. A set of uncertain stable transfer

function matrices with structure ∆ can be then defined as:

Π∆ := {∆(s) ∈ RH ∞ : ∆(s0) ∈ ∆ ∀s0 ∈ C+, ||∆||∞ ≤ 1}.
(10)

Most linear time invariant closed loop systems subject to

perturbations can be redrawn into the form depicted in Fig.

3(a), where Γ(s) is the known part of the plant partitioned

consequently with the interconnection. In Fig. 3(a), ∆(s) ∈
Π∆ represents a stable perturbation with r inputs and r

outputs whereas K(s) is an internally stabilizing controller

with p inputs and q outputs. The system is subject to

the exogenous disturbances d and the control objective is

measured in terms of the the error signals e. The required

performances of the closed loop system are included in

the design by means of the diagonal frequency dependent

performance weight W ∈ W := {diagn
i=1[wi] : wi ∈ RH ∞}

with i = 1, ..,n. The system achieves robust performance in

the presence of uncertainty if

||WFu(Fl(G,K),∆)||∞ < 1 (11)

where Fu(·, ·) and Fl(·, ·) are the lower and upper linear

fractional transformations (see [6] for further details). The

condition in (11) can be rewritten in terms of the supremum

of the structured singular value (denoted by µ [6])

sup
ω

µ∆T

[(

I 0

0 W ( jω)

)

Fl(Γ( jω),K( jω))

]

< 1 (12)

where ∆T := {diag(∆,∆p) : ∆ ∈ ∆, ∆p ∈ C
m×n} denotes the

total uncertainty structure with respect to which the struc-

tured singular value is computed (see Fig. 3(b)). However,

for common applications upper and lower bounds of µ∆ are

computed. A classical µ design problem with given perfor-

mance and robustness specifications involves the search for a

controller that minimizes the left hand side of (12). In other

cases it may be desirable to maximize the performance of the

system subject to the condition in (12). The control synthesis

problem may be then reformulated as in [7]:

min
W

J(W ) subject to

min
K

sup
ω

µ∆T

[(

I 0

0 W ( jω)

)

Fl(Γ( jω),K( jω))

]

< 1

(13)

where J(W ) is an objective function that captures the per-

formance preferences of the design and K is the set of all

internally stabilizing controllers for the system Fl(Γ,K). In

this case the optimization algorithm simultaneously synthe-

sizes the controller and the weighting functions to maximize

the closed loop performance of the system in some sense. A

pointwise in frequency solution of the optimization problem

in (13) is proposed in [7] in the case of purely complex

structured uncertainty. In the following a brief description of

the synthesis method capable to handle both parametric and

complex uncertainties is given.

*

K

'

W

rr

q p

nn

K

'

p'

))(),(( sKsFl *

W

I

a) b)

*

Fig. 3. Generalized block interconnection for synthesis and analysis.

A. Objective Function Definition

The objective function in (13) must be able to capture

the performance preferences of the design that in common

practice are reflected as gain requirements on the closed loop

transfer functions. These gain requirements are usually han-

dled by penalizing each output of the closed loop system with

a weight, wi( jω), whose magnitude reflects the inverse of the

desired specification bound. The objective function in (13)

shall then represent a cumulative measure across frequency

that reflects qualitatively the desired inverse performance

weights shape.

Following the work in [7], let [ωL,ωH ] be a synthesis

frequency range and υi( jω) be n given stable minimum

phase transfer functions. Let us define

J(W ) =
1

∫ logωH

logωL
∑

n
i=1

1
|wi( jω)/vi( jω)|2 d(logω)

. (14)

The direction of steepest ascent in maximizing the function in

(14) over any one weight wi( jω) at any one frequency ω in

the frequency interval [ωL,ωH ] corresponds to the smallest

ratio |wi( jω)/υi( jω)|. Consequently, the functions υi( jω)
are called optimization directionalities because they can be

specified so that they qualitatively direct the maximization

where desired. Therefore |υi( jω)| should be set at a large

value (resp. small) at frequencies and in channel directions

where the magnitude of the performance weight wi( jω) is

required to be large (resp. small) in order to capture the

desired performance objectives. Defining an optimization

directionality matrix as ϒ( jω) := diag(υ1( jω), ..,υn( jω)),
then (similar to [7]) the cost function in (13) can be defined

as:

J(W ) =
1

||ϒW−1||2
[ωL,ωH ]

,

where ||X ||[ωL,ωH ] :=
√

∫ log10 ωH

log10 ωL
||X( jω)||2F d(logω). Note

that only the argument of the optimization is of interest.
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Therefore the maximization of the cost can be replaced by

the minimization of the reciprocal of J(W ) as will be seen

in the next subsection.

B. Search Space Definition

In every optimization problem a crucial issue is the defini-

tion of the search space. First of all, since µ∆(M) = µ∆(MT ),
the optimization problem in (13) can be equivalently rewrit-

ten in terms of the dual system

min
W∈W

||ϒW−1||2[ωL,ωH ] subject to

min
K∈K

sup
ω

µ∆T

[

Fl(Γ,K)( jω)T diag[Ir,W ( jω)]
]

< 1
(15)

so that the inverses of the performance weights will appear

in subsequent manipulations independently to form a convex

constraint.

Now, in order to define an efficient solution algorithm, the

robust performance constraint written in terms of µ∆T
will be

replaced with a convex upper bound. Such an upper bound

involves the definition of matrix scalings G and D allowed

to vary in sets D and G that depend on the structure of

the perturbation matrix ∆ (see [6] for further details). The

following lemma from [6] defines an upper bound on the

structured singular value:

Lemma 1: [6] Let M ∈ C
r×r and ∆ ∈ ∆. Then

µ∆(M) ≤
inf

D∈D ,G∈G
min

β
{β : M∗DM + j(GM−M∗G)−β 2D ≤ 0}

(16)

This result can be reformulated in a more convenient way

exploiting the result from the following Lemma

Lemma 2: [5] Given a complex matrix M ∈ C
r×r, D ∈D ,

G ∈ G , β > 0 and γ ∈ [0,1], then

σ

((

DMD−1

β
− jG

)

(

I +G2
)− 1

2

)

≤ γ (17)

if and only if

Ω(M, Ĝ, D̂,β ,γ) :=
[

M∗D̂M + j(ĜM−M∗Ĝ)− (βγ)2D̂
√

1− γ2Ĝ
√

1− γ2Ĝ −D̂

]

≤ 0

(18)

where D̂ = D∗D ∈ D and Ĝ = βD∗GD ∈ G .

By virtue of Lemma 2 an equivalent reformulation of the

upper bound in (16) is:

Ω(M,G,D,β ,1) ≤ 0. (19)

Note that by adding the fictitious uncertainty block ∆p ∈
C

n×n to handle robust performance problems, the scaling

matrices associated to the augmented uncertainty structure

∆T are diag[D, In], D ∈ D and diag[G,0n], G ∈ G where the

last entry in the D−scales has been normalized to unity. The

following lemma provides an equivalent reformulation of the

upper bound on µ∆T

[

Fl(Γ,K)( jω)T diag[Ir,W ( jω)]
]

.

Lemma 3: [5] Given a closed loop system Fl(Γ,K) ∈
RH ∞ and performance weights W ∈ W . Then, ∀ω ∃Dω ∈
D ,Gω ∈ G ,γω ∈ [0,1] and βω > 0 such that

Ω(Fl(Γ,K)( jω)T diag[Ir,W ( jω)], diag[Gω ,0n],

diag[Dω , In], βω , γω) ≤ 0
(20)

if and only if ∀ω ∃Dω ∈ D ,Gω ∈ G ,γω ∈ [0,1] and βω > 0

such that

Ω(Fl(Γ,K)( jω)T , diag[Gω ,0n], diag[Dω , In], βω , γω) ≤
diag[0r, (βω γω)2(Wω − In), 0r+n]

where Wω = [W ( jω)∗W ( jω)]−1.
With the result from lemma 3, and using the aforementioned

upper bound of µ , the optimization problem in (13) is

replaced by the following one:

min
W∈W

||ϒW−1||2[ωL,ωH ] such that

∀ω ∃Dω ∈ D ,Gω ∈ G and βω ∈ (0,1) satisfying

Ω(Fl(Γ,K)( jω)T ,diag[Gω ,0n],diag[Dω , In],βω ,1) ≤
diag[0r,β

2
ω(Wω − In),0r+n].

(21)

When K is held fixed, the search space in (21) can be

characterized by a set of LMI constraints, uncoupled at

each ω , and simultaneously quasi-convex in Dω , Gω , Wω

and βω . This fact is used to propose an iterative solution

algorithm that can be divided in two phases. In the first one

the controller K is fixed and we find the biggest possible

performance weights and scalings given a fixed level of

uncertainty and a given controller K. In the second phase

the scalings and the weights are absorbed in the generalized

plant and an optimal controller is designed via H∞ synthesis

techniques. Further details on the solution algorithm are

given in [5].

V. DESIGN RESULTS

The synthesis technique outlined in the previous section

is exploited to design the drag-free and suspension SISO

controllers. First the top level requirement in (7) is broken

down into specifications on the drag-free and suspension

loops respectively. Such specifications, given in the MBW,

are shown in Table II and are derived from the closed

loop measurement relation in (8) in which we substitute the

worst case combination of parameters. Then the synthesis

technique outlined in section IV is used to separately design

the two SISO controllers. In this paper, for the sake of

conciseness, only the design of the suspension controller is

described in detail. However, as mentioned in [1], this is the

axis that presents the greatest challenges from the control

design point of view.

The inputs to the synthesis algorithm for the suspension

controller design are shown in Fig. 4. The performance

weights W1 and W2 are automatically defined by the synthesis

algorithm to shape S and T Γ−1. In particular, the high mag-

nitude of υ1( jω) at low frequencies (below 1mHz) implies

that the optimization algorithm should maximize W1 at low
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TABLE II

SPECIFICATIONS ON THE INDIVIDUAL LOOPS

Variable Specification in the MBW

x 3.05 ·10−9

[

1+
(

f
3mHz

)2
]

m√
Hz

φ 2.33 ·10−6

[

1+
(

f
3mHz

)2
]

rad√
Hz

uES 2.33 ·10−11

[

1+
(

f
3mHz

)2
]

rad

s2
√

Hz

*K

1
W

d
W

2
W

r

d

(a) Suspension controller design
set-up.

10
−4

10
−2

10
0

10
0

10
1

10
2

Frequency (Hz)

M
a

g
n

it
u

d
e

υ
1

υ
2

(b) Optimization directionalities.

Fig. 4. Input to the synthesis algorithm for suspension controller design.

frequencies. This is necessary to attenuate the disturbances

in input to the suspension loop. On the other hand the high

magnitude of v2( jω) at high frequencies (above 1mHz) states

that the optimization problem should maximize as much as

possible W2 in the MBW. This will limit the effect of the

inertial sensor readout noise on the suspension control force

that couples directly with the measurement equation. The

optimization problem in (21) is approximated through grid-

ding on a frequency grid of 150 points in the range between

[10−5Hz,101Hz]. The resulting controller is, after proper

order reduction, of 4th order. The algorithm converges after 5

iterations. In Fig. 5 the pointwise in frequency magnitudes of

the inverses W1 and W2 in output to the synthesis algorithm

are shown together with the nominal closed loop transfer

functions S and T Γ−1. The magnitude plot of each uncertain

closed loop sensitivity function falls below the corresponding

weight since robust performance is guaranteed. In Fig. 6 the

response of the system from input disturbance and read out

noise to control signal, obtained closing the suspension loop

shown in Fig. 2 with the designed controller is displayed. In

this figure it is possible to see that the worst case transfer

function from read out noise to actuation signal (line with

“bullet” markers) clears the performance requirements.

As a final remark note that the fully coupled closed

loop uncertain system achieves robust performance being the

maximum value of µ over frequency 0.85.

VI. CONCLUSION

This work addresses the problem of the design of a

robustly performing decentralized controller for a high ac-

curacy drag-free satellite with cubic test mass. First an

uncertain design plant set representative of the most modern

drag-free satellites missions has been defined. The measure-

ment equation has been exploited to perform a worst case

performance breakdown to derive requirements on the closed
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Fig. 5. S and T Γ−1 plots and corresponding performance weights in output
to the synthesis algorithm.
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Fig. 6. Closed loop response of the nominal suspension SISO system in
terms of suspension control signal.

loop transfer functions of the individual loops. A recently

developed iterative algorithm that performs an optimized

trade off between achievable performance and limitations due

to uncertainty or plant dynamics, has been then considered

to independently design the controller of each loop. The

resulting design technique has shown to be easy and allows

to properly account for the uncertainty appearing in both the

design plant and in the measurement equation while retaining

the decentralized structure of the controller.
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