
On- and off-line model identification for power management of Web
service systems

Mara Tanelli, Danilo Ardagna and Marco Lovera

Abstract— In the context of Web services, hosting centers
need to comply with the Service Level Agreements (SLAs)
stipulated with their customers while minimizing the oper-
ating costs, mainly related with the energy expenses due to
servers operations. The problem can be effectively formalized
using system identification and control theory: the SLAs are
translated into set-points for the response time of the servers
and tracking performance are traded-off with energy saving
objectives on the basis of suitable models for server dynamics.
Two approaches are analysed for modeling such systems:
recursive and LPV state space system identification methods.
The suitability of both identification methods is investigated and
their performance assessed on experimental data measured on
a custom implementation of a workload generator and a micro-
benchmarking Web service application.

I. INTRODUCTION

In recent years, large service centers have been setup to
provide computational capacity on demand to many cus-
tomers who share a pool of IT resources. Furthermore, with
the development of the Service Oriented Architecture (SOA),
multiple service providers can offer functionally equivalent
Web services which may differ for their Quality of Service
(QoS) parameters. At run time, service requestors address
their invocation to the most suitable provider according to
their QoS preferences. QoS requirements are difficult to
satisfy because of the high variability of Internet workloads.
To handle workload variations, many service centers employ
autonomic self-managing techniques (see, e.g., [1], [2], [3]),
such that resources are dynamically allocated among running
Web services on the base of short-term demand estimates.
An emerging problem in this context is related to energy
management. Power consumption per rack (i.e., the modules
where physical servers are installed) has increased from
1kW in 2000 to 8kW in 2006 and is expected to rise to
20kW by 2010. IT analysts predict that, by 2012, up to 40%
of an enterprise’s technology budget will be consumed by
energy costs, [4]. To reduce energy costs, early autonomic
techniques switched servers on and off based on the service
center workload, [2]. More recent proposals, see e.g., [5], [6]
have started reducing the frequency of operation of servers by
exploiting the Dynamic Voltage Scaling (DVS) mechanisms
available on new servers. DVS varies both CPU supply
voltage and operating frequency. The adoption of DVS is

The work of M. Tanelli and M. Lovera has been partially supported
by MIUR project ”New methods for Identification and Adaptive Control
for Industrial Systems”. M. Tanelli, D. Ardagna and M. Lovera are with
the Dipartimento di Elettronica e Informazione, Politecnico di Milano,
Piazza Leonardo da Vinci 32, 20133 Milano, Italy {tanelli, ardagna,
lovera}@elet.polimi.it. M. Tanelli is also with the Dipartimento di In-
gegneria dell’Informazione e Metodi Matematici, Università degli Studi di
Bergamo, Viale Marconi 5, 24044 Dalmine, Italy.

very promising, as power consumption is proportional to the
cube of the operating frequency, while servers performance
varies linearly with the operating frequency. Furthermore,
DVS does not introduce any system overhead.

Several research contributions have proposed autonomic
self-managing techniques and can be classified mainly in
two categories: (i) utility-based optimization techniques, and
(ii) feedback control-theoretic approaches. Utility-based ap-
proaches have been introduced to optimize the degree of user
satisfaction by expressing their goals in terms of user-level
performance metrics. Typically, the system is described by
means of a performance model based on queueing theory,
embedded within an optimization framework. Utility based
approaches can handle multiple decision variables (e.g.,
admission control, resource allocation, load balancing, etc.)
but are based on the assumption that the system is at steady
state. Hence, these techniques are effective on a medium term
control time horizon, e.g., half an hour, [2], [5]. Vice versa,
genuine control-theoretic approaches can accurately model
system transients and can adjust the system configuration
within a very short time frame. The first control-oriented
contributions applied to the management of Web services
are reported in [7] and use feedback control to limit the
utilization of bottleneck resources by means of admission
control and resource allocation.

In the practice of control engineering, when a single
control system must be designed to guarantee satisfactory
closed-loop operation of a given plant in many different
operating conditions, two broad classes of methods are
available, namely gain scheduling and adaptive control: as is
well known, a wide body of design techniques is available for
both approaches, which can be reliably exploited provided
that the corresponding modelling issues (off- and on-line,
respectively) can be effectively dealt with.

As far as gain scheduling is concerned, Linear Paramet-
rically Varying (LPV) models ([8], [9], [10], [11], [12])
have been proposed as a way of dealing with this kind of
problems. In this paper, the results obtained in the identifi-
cation of LPV models for the performance control of Web
services are presented. Specifically, the suitability of LPV
subspace model identification (SMI) methods for this task is
verified. With respect to the approach presented in [5], where
input/output (I/O) LPV identification was considered, the
method adopted here is more appropriate to provide system
models tailored to LPV control design, as they are directly
identified in state space form and avoid all the issues - not
addressed in [5] - related with equivalence notions between
I/O and state space LPV realizations. Furthermore, state
space LPV identification allows a straightforward extension

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThB03.2

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4497

to the MIMO case, which is needed if more that one class
of customers needs to be taken into account.

On the adaptive control side, the paper deals with the
problem of recursively estimating a model for the dynamic
response of the web server to varying workload conditions by
resorting to recursive subspace model identification (RSMI)
methods (see [13]), which have now reached a sufficient level
of maturity both on the algorithmic and the theoretical side.

II. PROBLEM STATEMENT

In this paper, a Web server that manages client requests
to access a Web service application in a single queue with
a FIFO policy is considered. In the queueing theory con-
text, [14], the following quantities are commonly employed
to describe the incoming workload over a time interval
[k∆t, (k + 1)∆t], where ∆t is the sampling time:
• λk indicates the rate at which the requests arrive to the

server;
• sk represents the service time, which is defined as the

amount of time needed to process a request if the
queue is empty. In common Web services applications,
this quantity represents the CPU server time needed to
serve the customer. Note, of course, that sk is inversely
proportional to the server CPU frequency. When phys-
ical servers are endowed with DVS capabilities, the
effect of - say - lowering the CPU frequency when
a light workload is present in the system, causes an
increase of the effective CPU time needed to serve a
request. Thus, the effective service time can be defined
as su,k = sk/uk. The inverse of such quantity is
commonly referred to as the service rate and indicated
with µk;

• Tk is the server response time, that is the overall time
a request stays in the system, which is given by the
sum of the service time of such request and the time it
spends in the queue before accessing the server;

As already mentioned, classical queueing theory provides
a description of the system which relies on steady-state
assumptions, and it is therefore reliable only over long time
horizons. For control purposes, a dynamical model of the
application server capable of capturing transients must be
derived. We recall, in fact, that the aim of our work is to
obtain a control-oriented dynamical description of the server
behavior. The final control system will need to operate at a
very fine grained time resolution (e.g., seconds), in order to
ensure that SLAs requirements are met while minimizing
energy costs. Furthermore, as the behavior of the server
response time is highly time varying and the workload
conditions change substantially within the same business day,
the LPV and the recursive frameworks seem very promising
for modeling such systems.

More precisely, in this work we focus on state space LPV
models, in the form

xk+1 = A(δk)xk +B(δk)uk

yk = C(δk)xk +D(δk)uk,
(1)

where δ ∈ Rs is the parameter vector and x ∈ Rn, u ∈
Rm, y ∈ Rl. It is often necessary to introduce additional

assumptions regarding the way in which δk enters the system
matrices. In the following we will focus on two model
classes.

1) Affine parameter dependence (LPV-A):

A(δk) = A0 +A1δ1,k + . . .+Asδs,k (2)

and similarly for B, C and D, and where by δi,k, i =
1, . . . , s we denote the i-th component of vector δk.
This form can be immediately generalised to polyno-
mial parameter dependence.

2) Input-affine parameter dependence (LPV-IA): this is a
particular case of the LPV-A parameter dependence in
which only the B and D matrices are considered as
parametrically-varying, while A and C are assumed to
be constant: A = A0, C = C0.

III. OFF-LINE STATE SPACE LPV IDENTIFICATION
ALGORITHMS

Identifying LPV models in general state space form is a
difficult task. It is usually convenient to consider first the
simplest form, i.e., the LPV-IA one, as its parameters can be
retrieved by using conventional subspace model identification
(SMI) algorithms for LTI systems by suitably extending
the input vector. In this work the MOESP class of SMI
algorithms has been considered. LPV-IA models also provide
a useful initial guess for iterative methods which can be used
for the identification of fully parameterised models in LPV-A
form, along the lines of [8], [11].

Indeed, the classical way to perform linear system identi-
fication is by minimizing the error between the real output
and the predicted output of the model. A similar approach
can be used for LPV state-space systems of the form (1).
Letting the system matrices of (1) be completely described
by a set of parameters θ, identification can be carried out by
minimizing the cost function

VN (θ) :=
N∑

k=1

||yk − ŷk(θ)||22 = ET
N (θ)EN (θ),

with respect to θ, where

ET
N (θ) =

[(
y1 − ŷ1(θ)

)T

· · ·
(
yN − ŷN (θ)

)T
]
,

yk denotes the measured output and ŷk(θ) denotes the output
of the LPV model to be identified. In general, the mini-
mization of VN (θ) is a nonlinear, nonconvex optimization
problem. Different algorithms exist to numerically search
for a solution to such an optimization problem. One popular
choice is a gradient search method known as the Levenberg-
Marquardt algorithm [15].

An important question that arises is how to choose the
parameters θ to describe the system matrices in (1). Here a
full parameterization is used: the interested reader is referred
to [8] for a detailed discussion of the issues associated with
the nonuniqueness of such a parameterisation.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB03.2

4498

IV. ON-LINE STATE SPACE IDENTIFICATION ALGORITHMS

The problem of recursive subspace model identification
(RSMI) has been an active area of research in recent years
(see, e.g., [13] and the references therein). In this paper we
will focus on the algorithms discussed in the cited references,
which recursively estimate the {A,B,C,D} state space
matrices of an LTI model at each new data acquisition
and can be therefore applied in a straightforward way to
the recursive estimation of LPV-IA models. The proposed
methods are based on the estimation of a basis for the
observability subspace from the input-output (I/O) relation

yf (t) = Γfx(t) + Hfuf (t) + Gfef (t) =
= Γfx(t) + Hfuf (t) + bf (t) (3)

where the stacked vectors yf , uf and ef are defined as

yf (t) =
[
yT (t) · · · yT (t+ f − 1)

]T ∈ Rnyf×1 (4)

with f > nx, Γf is the observability matrix

Γf =
[
CT (CA)T · · ·

(
CAf−1

)T]T , (5)

Hf is the block Toeplitz matrix of the impulse responses
from u to y and bf = Gfef with Gf the block Toeplitz
matrix of the impulse responses from e to y. The class of
techniques considered herein is based on the application of
the so-called propagator method to the recursive estimation
of Γf . To this purpose, note that letting Yf ∈ Rnyf×N ,
Uf ∈ Rnuf×N and Bf ∈ Rnyf×N be the Hankel I/O data
matrices defined as

Yf (t̄) =
[
yf (t) · · · yf (t+N − 1)

]
, (6)

with N >> f > n and t̄ = t+N + f − 2, equation (3) can
be written in matrix form as

Yf (t̄) = ΓfX(t̄) + HfUf (t̄) + Bf (t̄), (7)

where X(t̄) =
[
x(t̄) · · · x(t̄+N − 1)

]
. As is well

known from the off-line SMI literature, a quantity directly
related to the observability subspace can be obtained by
computing the projection Zf of Yf on the kernel of Uf

Zf (t̄) = Yf (t̄)ΠU⊥f
(t̄) = (ΓfX(t̄) + Bf (t̄)) ΠU⊥f

(t̄).
(8)

Considering now the time update of Zf

Zf (t̄) =
[
Zf (t̄− 1) zf (t̄)

]
, (9)

it is clear that the observation vector zf (t̄) will carry all the
relevant information for the estimation of the observability
subspace contained in the data at time t̄. Therefore, a two-
step procedure for the recursive estimation of the system
matrices can be devised:

1) the update of the observation vector zf from the I/O
measurements by considering a recursive formulation
of the orthogonal projection performed in (8);

2) the estimation of a basis of Γf from this observation
vector via the propagator method.

In this paper, the update of the observation vector is
performed using the matrix inversion lemma. The idea (see
[13]) is to recursively update the quantity

Zf (t̄) = Yf (t̄)
{

I−UT
f (t̄)

(
Uf (t̄)UT

f (t̄)
)−1

Uf (t̄)
}
(10)

at each new data acquisition, letting

Uf (t̄) =
[√
βUf (t̄− 1) uf (t̄)

]
(11)

Yf (t̄) =
[√
βYf (t̄− 1) yf (t̄),

]
(12)

where 0 < β ≤ 1 is a forgetting factor, by applying the

matrix inversion lemma to
(
UfUT

f

)−1

.
Once the observation vector is estimated, the second step

of the recursive subspace identification procedure consists
in the online update of the observability matrix using the
propagator method. Since Γf ∈ Rnyf×nx with nyf > nx,
the extended observability matrix has at least nx linearly
independent rows, which can be gathered in a submatrix Γf1 .
Then, the complement Γf2 of Γf1 can be expressed as a
linear combination of these nx rows. So, there is a unique
linear operator Pf ∈ Rnx×(nyf−nx), named propagator,
such that Γf2 = PT

f Γf1 . Furthermore, it is easy to verify
that

Γf =
[
Γf1

Γf2

]
=
[

Γf1

PT
f Γf1

]
=
[
Inx

PT
f

]
Γf1 . (13)

Thus, since rank {Γf1} = nx,

spancol {Γf} = spancol

{[
Inx

PT
f

]}
. (14)

Equation (14) implies that it is possible to estimate the
observability matrix (in a particular basis) by estimating the
propagator. This operator can be estimated from

zf (t̄) = Γf x̃(t̄) + b̃f (t̄). (15)

Indeed, applying a data reorganization to the observation vec-
tor so that the first nx rows of Γf are linearly independent,
(15) can be partitioned as

zf (t) =
[
zf1(t)
zf2(t)

]
=
[
Inx

PT
f

]
Γf1 x̃(t) +

[
b̃f1(t)
b̃f2(t)

]
(16)

where zf1 ∈ Rnx×1 and zf2 ∈ R(nyf−nx)×1 are the
components of zf corresponding to Γf1 and Γf2 respectively.
In the noise free case, it is easy to show that

zf2 = PT
f zf1 . (17)

In the presence of noise, this relation no longer holds.
However, by assuming we have collected (or are about to
collect) N I/O measurements, an estimate of the propagator
Pf can be obtained by minimising the criterion

JIV (Pf) =
∥∥∥R̂zf2ξ(N)−PT

f R̂zf1ξ(N)
∥∥∥2

F
, (18)

where ξ ∈ Rnξ×1 is an instrumental variable, assumed
uncorrelated with the noise but sufficiently correlated with
the state vector x, in the sense that Refξ = 0 and
rank {Rxξ} = nx.

By assuming that the input is sufficiently “rich”, JIV in
(18) can be optimised recursively using the EIVPM algorithm
(see [13] for details).

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB03.2

4499

V. EXPERIMENTAL RESULTS

A. Testbed setting and experiment design

In the experimental framework, a workload generator and
a micro-benchmarking Web service application have been
used. The workload generator is based on a custom extension
of the Apache JMeter 2.3.1 workload injector, [16], which
allows to generate workload according to an open model [14]
with a Poisson arrival process. Several analyses of actual
e-commerce site traces, see for example [17], have shown
that the Internet workload follows a Poisson distribution
with a good approximation. The micro-benchmarking Web
service application is hosted within the Apache Tomcat 6.0
application server, [18], where the number of concurrent
threads has been limited to one in order to implement a FIFO
scheduling. The Web service is a Java servlet designed to
consume a fixed CPU time which allows to emulate the DVS
of the physical server (a Pentium D machine with no DVS
support). The adoption of a micro benchmarking application
allows to validate the effectiveness of our approach both
for computational intensive applications (where each request
requires a significant CPU time) and workload intensive
applications (where incoming requests require few CPU
milliseconds only and the high computational requirements
are due to the high number of incoming requests). The
application has been instrumented to accurately determine
the service time of each request; note, however, that this is
not a limitation as there exist several techniques to assess
the number of CPU cycles consumed by requests both at ap-
plication level (e.g., the Application Resource Measurement
API, [19]) or at operating system level (e.g., kernel-based
measurements, [1]). For system identification purposes, the
incoming request rate λ varies stepwise every 1 minute,
with values between 0.15 req/s and 1.5 req/s. Note that, even
though the average request rate is only changed each minute,
the arrival times of the single requests treq do not uniformly
span the time interval, but are generated as samples of an
exponential distribution with parameter λ, i.e., treq ∼ E(λ).

Fig. 1. Time history of the server utilization used in identification
experiments.

During each time interval, each request requires a fixed
deterministic service time s varied between 0.06 s and 1.1 s.
Overall, 1,000 intervals have been considered and the average
utilization of the physical server (defined as ρ = λs, [7]),

has been varied between 1% to 95%, in order to analyze the
behavior of the physical server under light load and close
to saturation conditions. Figure 1 shows a plot of the server
utilization ρ used in the identification tests.

Fig. 2. Time history of the request rate applied during a validation test.

For model validation, a synthetic workload inspired by a
real-world usage has been employed. The incoming workload
reproduces a 24 hour trace obtained from an Internet Web
site. The workload injector is configured to follow a Poisson
process with request rate changing every minute according
to the trace. Figure 2 reports, as an example, the request rate
applied during a validation test. The request rate follows
a bimodal distribution with two peaks around 12.00 and
16.00 (see Figure 2). The application service time follows
a log-normal distributions (as observed for several real
applications, [17]), such that, in each 1 minute time interval,
the standard deviation is four times larger than the average
service time. To emulate the DVS of a physical server, the
average service time has been scaled to obtain su,k = sk/uk,
where uk ∈ {0.1, 0.2, . . . , 1} emulates the DVS of a physical
server with 10 CPU frequency levels.

During the test, the average utilization of the physical
server has been limited to 90%, to account for the fact that
real systems usually implement admission control or other
overload protection mechanisms in order to provide QoS
guarantees, [7].

B. Off-line identification results

We consider as input the scaled service time su,k and
two possible choices for the scheduling parameters, namely
the server utilization (i.e., p1 = λ s, see also [5]) and the
server utilisation and its square (that is, p2 =

[
λ s (λ s)2

]
).

The system output is the service response time Tk. The
model order - after some comparative analysis - was set to
n = 2 (which is same used in [5]), and the sampling time
was initially set to ∆t = 1 min. To quantitatively evaluate
the models, both on identification and validation data, two
metrics based on the results obtained in simulation (note that
the focus on prediction would not be appropriate as the aim
is to evaluate control-oriented models) will be considered:
the percentage Variance Accounted For (VAF), defined as

V AF = 100
(

1− V ar[yk − ysim,k]
V ar[y(k)]

)
, (19)

where yk is the measured signal and ysim,k is the output
obtained simulating the identified model and the percentage

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB03.2

4500

average simulation error eavg, computed as

eavg = 100
(
E [|yk − ysim,k|]

E [|yk|]

)
. (20)

In [20], based on the collected identification data, a com-
parison between the estimation performance of LPV-IA and
LPV-A models was performed, which led to the conclusion
that the LPV-IA model with scheduling parameters p2 offers
performances which are very close to those of the fully
parametrised LPV-A model in terms of VAF and even better
in terms of eavg . Due to the decisive advantage offered by
the simpler LPV-IA model structure, from here on we will
focus on this type of models only. Figure 3 shows the results
obtained with LPV-IA models on the identification data.

Fig. 3. Detail of the measured (solid line) and simulated response time
obtained with an LPV-IA model with p1 = λ s (dashed line) and p2 =
[λ s (λ s)2] (dash-dotted line) on identification data.

Fig. 4. Detail of the measured (solid line) and simulated response time
obtained with ∆t = 1 min and the identified LPV-IA models with p1 = λ s
(dashed line) and p2 = [λ s (λ s)2] (dash-dotted line) on validation data:
light load case (top) and heavy load case (bottom).

Further, the LPV-IA models performance (with both
choices of the scheduling parameters) has been tested on the
validation data collected based on the bimodal request rate
shown in Figure 2. The first results are shown in Figure V-B,
where a detail of the measured and simulated response time
is shown both in the light load (top) and heavy load (bottom)
part of the data. By inspecting these figures it is apparent
that the models cannot fully capture the heavy workload
intensity, which results in a significant underestimation of the
response time in heavy load conditions. This is confirmed by
the quantitative analysis shown in Table I, where VAF and

eavg metrics obtained on validation data with the LPV-IA
models identified with sampling interval ∆t = 1 min are
reported. To better analyze the results, note that in Table I
the partial results on the light load part of the day (1-8)h
and on the heavy load part of the day (9-20)h are also given.
These data show that the identified models are extremely
effective at light load (notably the performance in validation
is better than that in identification), but lose generalization
capabilities when tested at heavy load.

Valid. Performance ∆t = 1 min LPV-IA(p1) LPV-IA(p2)
VAF on 24h 58.14% 65.18%
VAF light load (1-8)h 91.7% 89.8%
VAF heavy load (9-20)h 52.4% 60.1%
eavg on 24h 25.7% 19.37%
eavg light load (1-8)h 20.9% 10.5%
eavg heavy load (9-20)h 29.2% 24.17%

TABLE I
PERFORMANCE OF THE IDENTIFIED MODELS WITH ∆t = 1 MIN ON

VALIDATION DATA.

This is due to the fact that, using as sampling interval
∆t = 1 min, the request rates used as inputs in the iden-
tification phase are stepwise constant, and cannot account
for the non-uniformity of the single arrival times within the
interval itself. By analyzing the effective arrival times at
which the single requests are issued in the system, the high
correlation between such data and the peaks in the response
time is apparent. To capture this variability, the sampling
interval must be reduced. To this end, we processed again
the identification data to extract the average values over a
sampling interval ∆t = 10s and two new LPV-IA models,
one with p1 = λ s and the other with p2 = [λ s (λ s)2]
have been identified (see Figure 5 for a plot of a detail of
the results).

Fig. 5. Detail of the measured (solid line) and simulated response time
obtained with ∆t = 10 s an LPV-IA model with p1 = λ s (dashed line)
and p2 = [λ s (λ s)2] (dash-dotted line) on identification data.

It is interesting to analyse the performance of such models
on validation data: on heavy load validation data, the effec-
tiveness of having reduced the sampling interval is apparent:

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB03.2

4501

now the models are capable of providing a response time
which correctly follows the peaks of the measured one. This
can be appreciated in the quantitative analysis shown in Table
II, where VAF and eavg metrics obtained on validation data
with the LPV-IA identified with sampling interval ∆t = 10 s
are reported. Overall, these final models allow to obtain a
validation VAF of 71.5% and an eavg = 7.4%, which can be
regarded as very good performances, especially for control
purposes. Unfortunately, our results cannot be quantitatively
compared to those in [5] - where I/O LPV identification was
employed - as no performance metrics for the identification
part were provided.

Valid. Performance ∆t = 10 s LPV-IA(p1) LPV-IA(p2)
VAF on 24h 54.01% 71.5%
VAF light load (1-8)h 78.6% 80.2%
VAF heavy load (9-20)h 48.5% 67.1%
eavg on 24h 20.3% 7.4%
eavg light load (1-8)h 20.02% 2.5%
eavg heavy load (9-20)h 22.5% 9.25%

TABLE II
PERFORMANCE OF THE IDENTIFIED MODELS WITH ∆t = 10S ON

VALIDATION DATA.

C. On-line identification results
The RSMI algorithm presented in Section IV has been

applied directly to the validation dataset corresponding to the
request rate time history illustrated in Figure 2, considering
three different choices for the definition of the input vector
u, namely u1 = s, u2 = [s λ s] and u3 = [s λ s (λ s)2].
More precisely, the role of the choice of the forgetting factor
β in the RSMI algorithm has been analysed.

A picture of the achievable performance as a function of
both model structure and forgetting factor is provided by
Table III: as can be seen from the results reported therein,
it is possible to obtain an almost perfect simulation of the
measured server response time by feeding the model with
information on the actual server utilisation and by choosing
a sufficiently small forgetting factor. Clearly, the choice of
small values of β implies that the estimated state space
matrices will have a very high variability.

VAF (∆t = 1 min) RSMI(u1) RSMI(u2) RSMI(u3)
β = 0.75 87.40% 96.06% 99.53%
β = 0.95 55.34% 68.82% 83.98%
β = 1 31.13% 48.68% 65.01%
eavg (∆t = 1 min) RSMI(u1) RSMI(u2) RSMI(u3)
β = 0.75 29.02% 15.16% 6.01%
β = 0.95 55.88% 45.59% 33.40%
β = 1 81.12% 64.94% 46.91%

TABLE III
PERFORMANCE OF THE RSMI ALGORITHM ON VALIDATION DATA WITH

∆t = 1 MIN.

VI. CONCLUDING REMARKS AND FUTURE WORK

This paper presented the results obtain in the application
of on- and off-line model identification methods for the

performance control of Web services. Specifically, the suit-
ability of subspace LPV and recursive identification methods
has been checked against experimental data measured on
a custom implementation of a workload generator and a
micro-benchmarking Web service application. Future work
will be devoted to further validate our approach on real
applications and to extend the models considering a multi-
class framework.

REFERENCES

[1] B. Urgaonkar and P. Shenoy, “Sharc: Managing CPU and Network
Bandwidth in Shared Clusters,” IEEE Transactions on Parallel and
Distributed Systems, vol. 15, no. 1, pp. 2–17, 2004.

[2] D. Ardagna, M. Trubian, and L. Zhang, “SLA based resource allo-
cation policies in autonomic environments,” Journal of Parallel and
Distributed Computing, vol. 67, no. 3, pp. 259–270, 2007.

[3] B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. N.
Tantawi, “Analytic modeling of multitier Internet applications,” ACM
Transaction on Web, vol. 1, no. 1, January 2007.

[4] V. Metha, “A Holistic Solution to the IT Energy Crisis,” 2007.
[Online]. Available: http://greenercomputing.com/

[5] W. Qin and Q. Wang, “Modeling and control design for performance
management of web servers via an LPV approach,” IEEE Transactions
on Control Systems Technology, vol. 15, no. 2, pp. 259–275, 2007.

[6] D. Kusic and N. Kandasamy, “Risk-Aware Limited Lookahead Control
for Dynamic Resource Provisioning in Enterprise Computing Sys-
tems,” in ICSOC 2004 Proc., 2004.

[7] T. Abdelzaher, K. G. Shin, and N. Bhatti, “Performance Guarantees
for Web Server End-Systems: A Control-Theoretical Approach,” IEEE
Transactions on Parallel and Distributed Systems, vol. 15, no. 2,
March 2002.

[8] L. Lee and K. Poolla, “Identification of linear parameter-varying
systems using nonlinear programming,” ASME Journal of Dynamic
Systems, Measurement and Control, vol. 121, no. 1, pp. 71–78, 1999.

[9] M. Lovera, M. Verhaegen, and C. T. Chou, “State space identification
of MIMO linear parameter varying models,” in Proceedings of the
International Symposium on the Mathematical Theory of Networks
and Systems, Padua, Italy, 1998, pp. 839–842.

[10] B. Bamieh and L. Giarré, “Identification of linear parameter varying
models,” in Proc. of the IEEE Conference on Decision and Control,
Phoenix, AZ, USA, 1999.

[11] V. Verdult, “Nonlinear system identification: A state-space approach,”
Ph.D. dissertation, University of Twente, Faculty of Applied
Physics, Enschede, The Netherlands, 2002. [Online]. Available:
http://www.tup.utwente.nl

[12] F. Previdi and M. Lovera, “Identification of a class of nonlinear
parametrically varying models,” International Journal on Adaptive
Control and Signal Processing, vol. 17, pp. 33–50, 2003.

[13] G. Mercère and M. Lovera, “Convergence analysis of instrumental
variable recursive subspace identification algorithms,” Automatica,
vol. 43, no. 8, pp. 1377–1386, 2007.

[14] L. Kleinrock, Queueing Systems. John Wiley and Sons, 1975.
[15] J. J. Moré, “The Levenberg-Marquardt algorithm: Implementation and

theory,” in Numerical Analysis, ser. Lecture Notes in Mathematics,
G. A. Watson, Ed. Berlin: Springer Verlag, 1978, vol. 630, pp. 106–
116.

[16] Apache, “Apache JMeter.” [Online]. Available:
http://jakarta.apache.org/jmeter/index.html

[17] L. H. Gomes, C. Cazita, J. M. Almeida, V. Almeida, and W. M. Jr.,
“ Workload Models of SPAM and Legitimate E-mails,” Performance
Evaluation, vol. 64, no. 7-8, pp. 690–714, 2007.

[18] Apache, “Apache Tomcat.” [Online]. Available:
http://tomcat.apache.org/

[19] The Open Group, “Application Resource Measurement - ARM.”
[Online]. Available: http://www.opengroup.org/tech/management/arm/

[20] M. Tanelli, D. Ardagna, and M. Lovera, “LPV model identification
for power management of web service systems,” in Submitted - 2008
IEEE Multi-conference on Systems and Control, San Antonio, USA.,
2008.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB03.2

4502

