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Abstract— We study the problem of reaching a consensus in
the values of a distributed system of agents with time-varying
connectivity in the presence of delays. We consider a widely
studied consensus algorithm, in which every agent forms a
weighted average of its own value with the values received from
its neighboring agents. We study an asynchronous operation
of this algorithm using delayed agent values. Our focus is
on establishing convergence rate results for this algorithm. In
particular, for general network topologies, we provide a bound
on the time required to reach consensus, which is an explicit
function of the system parameters including the delay bound
and the bound on agents’ intercommunication intervals.

I. INTRODUCTION

There has been much recent interest in distributed co-
operative control problems, in which several autonomous
agents try to collectively accomplish a global objective.
Most recent literature in this area focuses on the consen-
sus problem, where the objective is to develop distributed
algorithms for agents to reach an agreement or consensus on
a common decision. Consensus problem arises in a number
of applications including coordination of UAVs, information
processing in wireless sensor networks, and distributed multi-
agent optimization.

A widely studied algorithm, proposed and analyzed by
Tsitsiklis [19] (see also [21]) involves at each time step
every agent computing a weighted average of its own value
with values received from some of the other agents. The
convergence properties of the consensus algorithm have
further been studied under different assumptions on agent
connectivity and information exchange in [9] and [5]. The
work [19] established upper bounds on the convergence time
of this algorithm, which is exponential in the number of
agents m. Under some conditions, including doubly stochas-
ticity of the agent weights and no delay, recent work [12]
presented tight upper bounds on the convergence time, which
is quadratic in m. Despite much work on the consensus
algorithm, there has not been a systematic study of the
convergence rate of this algorithm in the presence of delays.
The presence of delays is a good model for communication
networks where the delays are associated with transmission
of agent values. Establishing the rate properties of consensus
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algorithms in such systems is essential in understanding the
robustness of the system against dynamic changes.

In this paper, we study convergence and convergence rate
properties of the consensus algorithm in the presence of
delays. Our analysis is based on reducing the consensus
problem with delays to a problem without delays by using
state augmentation (i.e., by introducing a new agent in the
system for each delay element). The state augmentation
allows us to represent the evolution of agent values using
linear dynamics. Under the assumption that all delays are
bounded, we provide convergence results and convergence
rate estimates for the agents’ values. Our rate estimates are
per iteration and highlight the dependence on the system
parameters including the delay bound.

Other than the works cited above, our paper is also related
to the literature on the consensus problem and “average”
consensus problem (a special case, where the goal is to reach
an agreement on the average of the initial values of the
agents); see [6], [16], [17], [18]. Recently, the implications
of noise and quantization effects on the asymptotic behavior
of consensus algorithms have been investigated in [10],
[8], [12]. Consensus algorithms also play a key role in
the development of distributed optimization methods. The
convergence properties of such methods have been studied
in [20], [11], [3], and more recently in [15], [14].

There has also been some work on the convergence of
consensus algorithms in the presence of delays. In particular,
[4] studied convergence of (average) consensus under sym-
metric delays for a continuous model of agent updates, i.e.,
a model that represents the evolution of agent values using
partial differential equations (which is in contrast with the
slotted update rule studied in this paper). The convergence
of consensus algorithms for non-symmetric delays and a
discrete time model has been studied in [7]. Other related
works are [1], [2], where the rate of convergence of the
consensus algorithms is estimated in the presence of delays,
assuming special topologies for agent connectivity; namely
the existence of repetitive [1] or permanent [2] spanning-
trees in the communication graph.1

Recent work [13] studied the convergence rate of delayed

1This assumption of communication “from-one-to-all” is in contrast with
the setting in the present paper, where communication “from-all-to-all” is
assumed.
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consensus algorithms for general network topologies using
the convergence properties of infinite products of stochastic
matrices. In this paper, we provide a novel analysis which
allows us to establish improved bounds on the convergence
rate estimates for general network topologies.

The paper is organized as follows: In Section II, we
formulate the consensus problem and state our assumptions.
In Section III, we discuss an equivalent consensus problem
without a delay, but with an enlarged number of agents, and
we provide our main convergence and rate of convergence
results. In Section IV, we provide concluding remarks.

Regarding notation, for a matrix A, we write [A]ji to
denote the matrix entry in the i-th row and j-th column.
We write [A]i and [A]j to denote the i-th row and the j-th
column of the matrix A, respectively. A vector a is said to
be a stochastic vector when ai ≥ 0 for all i and

∑
i ai = 1.

A square matrix A is said to be a (row) stochastic matrix
when each row of A is a stochastic vector. For a scalar t, we
write btc to denote the largest integer less than or equal to
t. For a set of vectors {zi, i ∈ I}, the vector maxi∈I zi

(or mini∈I zi) denotes the componentwise maximum (or
minimum) of the vectors zi, i ∈ I.

II. CONSENSUS PROBLEM

In this section, we formulate the consensus problem and
state our assumptions on agent connectivity and local infor-
mation exchange.

A. Statement of the Consensus Problem with Delay

We consider a network with m agents. The neighbors
of agent i are the agents j communicating with agent i
over a directed link (j, i). Each agent updates and sends its
information to its neighbors at discrete times t0, t1, . . .. We
index agents’ estimates and other information at time tk by
k. We use xi(k) ∈ Rn to denote agent i estimate at time tk.

Each agent i updates its estimate xi(k) by combining it
with the available (potentially delayed) estimates xj(s) of its
neighbors j. In particular, each agent i updates its estimate
according to the following relation:

xi(k+1) =
m∑

j=1

ai
j(k)xj(k−tij(k)) for k = 0, 1, 2, . . . , (1)

where the vector xi(0) ∈ Rn is an initial estimate (or
state) of agent i. Agent j sends its estimate xj(s) at time
s = k − tij(k), and the estimate reaches agent i at time k.
The time k−tij(k) ≥ 0 and the integer tij(k) are nonnegative
for all i, j and k, where the integer tij(k) represents the
delay of a message from agent j to agent i. The scalar
ai

j(k) is a nonnegative weight that agent i assigns to a
(delayed) estimate xj(s) arriving from agent j at time k. The
vector ai(k) = (ai

1(k), . . . , ai
m(k))′ is the set of nonnegative

weights that agent i uses at time k.
The consensus problem involves determining conditions

on the agents’ connectivity and interactions, including condi-
tions on the weights ai(k), that guarantee the convergence of
the estimates xi(k) to a common vector x̄ ∈ Rn, as k →∞.

B. Assumptions

We first describe some rules that govern the dynamic
evolution of agent estimates, motivated by the model of
Tsitsiklis [19] and the “consensus” setting of Blondel et al.
[5]. We use the following assumption on the weights ai

j(k).
Assumption 1: (Weights Rule) We have:

(a) There exists a scalar η with 0 < η < 1 such that for
all i ∈ {1, . . . ,m},
(i) ai

i(k) ≥ η for all k ≥ 0.
(ii) ai

j(k) ≥ η for all k ≥ 0, and all agents j whose
(potentially delayed) information xj(s) reaches
agent i in the time interval (tk, tk+1).

(iii) ai
j(k) = 0 for all k ≥ 0 and j otherwise.

(b) The vectors ai(k) are stochastic.

Assumption 1(a) states that each agent gives significant
weights to its own estimate xi(k) and the estimates received
from its neighbors. Under Assumption 1, for the matrix A(k)
with columns a1(k), . . . , am(k), the transpose A′(k) is a
stochastic matrix for all k ≥ 0.

We now discuss the rules for the information exchange
among agents. Here, it is convenient to view the agents as a
set of nodes V = {1, . . . ,m}. At each update time tk, the
agents’ communications may be represented by a directed
graph (V,Ek) with the set Ek of directed edges given by

Ek = {(j, i) | ai
j(k) > 0}.

We impose a connectivity assumption on the agent system,
which ensures that the information state of any agent i
influences the state of any other agent infinitely often in time.
In formulating this, we use the set E∞ consisting of directed
edges (j, i) such that j is a neighbor of i who communicates
with i infinitely often in time.

Assumption 2: (Connectivity) The graph (V,E∞) is
strongly connected, where E∞ is the set of edges (j, i)
representing agent pairs communicating directly infinitely
many times, i.e.,
E∞ = {(j, i) | (j, i) ∈ Ek for infinitely many indices k}.

Assumption 2 is equivalent to having the composite directed
graph (V,∪l≥kEl) strongly connected for all k. This all-to-
all communication assumption will be central in the sequel.2

This assumption is restrictive since it requires that the
“steady-state” graph is strongly connected, however it is a
standard assumption in the consensus literature.

We assume that the intercommunication intervals are
bounded for those agents that communicate infinitely often.
In particular, we use the following.

Assumption 3: (Bounded Intercommunication Interval)
There exists an integer B ≥ 1 such that for every (j, i) ∈
E∞, agent j sends information to its neighbor i at least once
every B consecutive time slots, i.e., at time tk or at time tk+1

or . . . or (at latest) at time tk+B−1 for any k ≥ 0.
Finally, we assume that the delays tij(k) in delivering a

message from an agent j to any neighboring agent i are

2It implies that the initial value of every agent affects the consensus
outcome, or all agents are “distinguished” using the terminology of [3,
Section 7.3].
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uniformly bounded at all times.3

Assumption 4: (Bounded Delays) Let the following hold:
(a) tii(k) = 0 for all agents i and all k ≥ 0.
(b) tij(k) = 0 for all agents j whose estimates xj are not

available to agent i at time tk+1.
(c) There is an integer B1 such that 0 ≤ tij(k) ≤ B1 − 1

for all agents i, j, and all k.
Assumption 4 (a) states that each agent i has its own estimate
available without any delay. Part (b) states that the delay is
zero for those agents j whose (delayed) estimates xj(s) are
not available to agent i at an update time. Under Assumption
1 (a), Assumption 4 (b) reduces to the following relation:
tij(k) = 0 when ai

j(k) = 0. Assumption 4 (c) states that the
delays are uniformly bounded at all times and for all agents.

III. CONVERGENCE ANALYSIS

In this section, we show that the agents updating their
information according to Eq. (1) reach a consensus under
the assumptions of Section II-B. In particular, we establish
the convergence of agent estimates and provide a conver-
gence rate estimate. Our analysis is based on reducing the
consensus problem with delays to a problem without delays.

A. Reduction to a Consensus Problem without Delay

Under the Bounded Delays [cf. Assumption 4], we reduce
the original agent system with delays to a system without
delays. In particular, we define an enlarged agent system that
is obtained by adding new (virtual) agents into the original
system in order to deal with delays. With each agent i of the
original system, we associate a new agent for each of the
possible delay values that a message originating from agent i
may experience. In view of the Bounded Delays assumption,
it suffices to add (m−1)B1 new agents handling the delays.4

To differentiate between the original agents in the system
and the new agents, we introduce the notions of computing
and noncomputing agents. We refer to the original agents as
computing agents since these agents maintain and update
their estimates. We refer to the new agents as noncomputing
agents since they do not compute or update any information,
but only pass the received information to their neighbors.

In the enlarged system, we enumerate the computing
agents first and then the noncomputing agents. In particular,
the computing agents are indexed by 1, . . . ,m and non-
computing agents are indexed by m + 1, . . . , (B1 − 1)m.
Furthermore, the noncomputing agents are indexed so that
the first m of them model the delay of 1 for the computing
agents, the next m of them model the delay of 2 for the
computing agents, and so on. Formally, for a computing
agent i, the noncomputing agents i + m, . . . , i + (B1 − 1)m
model the delay values t = 1, . . . , (B1 − 1)m, respectively.

We now identify the neighbors of each agent in the new
(virtual) system. The computing agents are connected and

3The intercommunication interval and the delay bounds are used in our
analysis. In the implementation of the algorithm, these bounds need not be
available to any agent.

4This idea has also been used in the distributed computation model of
Tsitsiklis [19], and it motivates our development here.

Figure 1(a)

Figure 1(b)

Fig. 1. Figure 1(a) illustrates an agent network with 3 agents
and two bidirectional links (1,2) and (2,3). Figure 1(b) illustrates
the enlarged network associated with the original network of part
(a), when the delay bound is B1 = 3. The noncomputing agents
introduced in the system are 4, . . . , 9. Agents 4, 5, and 6 model the
delay of 1 while agents 7, 8, and 9 model the delay of 2 for the
computing nodes 1, 2 and 3, respectively.

communicate in the same way as in the original system. The
noncomputing agents corresponding to the delays of different
computing agents do not communicate among themselves.
Specifically, for t with 1 ≤ t < B1−1, a noncomputing agent
j+tm receives the information only from agent j+(t−1)m,
and sends the same information to either the noncomputing
agent j + (t + 1)m, or to a computing agent i provided that
agent j communicates with agent i in the original system.
The same rule applies for t = B1 − 1 except that the only
possible transmission is to a computing agent. An agent
system with 3 agents and a maximum delay of 3, and the
corresponding enlarged system are illustrated in Figure 1,
together with the enumeration rule for noncomputing agents.

We let x̃i(k) denote the estimate of agent i in the enlarged
system at time k. Then, the relation in Eq. (1) for the
evolution of estimates of computing agents is given by:

x̃i(k + 1) =
mB1∑
h=1

ãi
h(k)x̃h(k) for all i and k, (2)

where for all h ∈ {1, . . . ,mB1} and k ≥ 0,

ãi
h(k) =

{
ai

j(k) if h = j + tm, t = tij(k)
0 otherwise,

(3)

and ai
j(k) are the weights used by the agents in the original

system. The evolution of states for noncomputing agents is
given by: for all i = m + 1, . . . ,mB1 and k ≥ 0,

x̃i(k + 1) = x̃i−m(k),

where the initial values are x̃i(0) = 0. Therefore, for
noncomputing agents i and all k ≥ 0, we have

ãi
h(k) =

{
1 for h = i−m
0 otherwise. (4)

We can now compactly write the evolution of estimates x̃i(k)
for all agents i in the enlarged system as follows: for all
i ∈ {1, . . . ,mB1} and k ≥ 0,

x̃i(k + 1) =
mB1∑
h=1

ãi
h(k)x̃h(k), (5)
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where the initial vectors are given by: for i ∈ {1, . . . ,m}
and t ∈ {0, . . . , B1 − 1},

x̃i+tm(0) = xi(0). (6)

The weights ãi
h(k) for computing agents i ∈ {1, . . . ,m}

and for noncomputing agents i ∈ {m + 1, . . . ,mB1} are
given respectively by Eqs. (3) and (4). Thus, for a noncom-
puting agent i, we always have

∑mB1
h=1 ãi

h(k) = 1. For a
computing agent, we have

∑mB1
h=1 ãi

h(k) = 1 if and only if∑m
j=1 ai

j(k) = 1 for the weights ai
j(k) in the original system.

We next represent the evolution of the estimates x̃i(k) of
Eq. (5) in a form more suitable for our convergence analysis.
Specifically, we introduce matrices Ã(s) whose i-th column
is the vector ãi(s), and we define the transition matrices
Φ̃(k, s) for any s and k with k ≥ s,

Φ̃(k, s) = Ã(s)Ã(s + 1) · · · Ã(k − 1)Ã(k). (7)

Using these matrices, we relate estimates x̃i(k + 1) to the
estimates x̃j(s) for all j and any s ≤ k. Specifically, it can
be seen that for the iterates generated by Eq. (5), we have
for any i, and any s and k with k ≥ s,

x̃i(k + 1) =
mB1∑
j=1

[Φ̃(k, s)]ij x̃j(s) (8)

(for details see [13]). We next establish some properties
of the transition matrices Φ̃(k, s) that we use later in our
convergence analysis of the iterates x̃i(k).

B. Properties of the Transition Matrices
Here, we discuss some properties of the matrices Φ̃(k, s)

under the assumptions imposed on agent interactions in Sec-
tion II-B. In particular, under the Weights Rule [Assumption
1], from the definition of the weights ãi

h(k) in Eqs. (3) and
(4), it follows that each matrix Ã(k)′ is stochastic. Since
the product of stochastic matrices is a stochastic matrix, it
follows that the matrices Φ̃(k, s)′ are stochastic.

In the following lemma, we establish some additional
properties of these matrices that will be important in our
convergence analysis. Specifically, we show that the entries
of the row [Φ̃(s + (m− 1)B + mB1 − 1, s)]j are uniformly
bounded away from zero for all s and for all computing
nodes j ∈ {1, . . . ,m}.

Lemma 1: Let Weights Rule (a), Connectivity, Bounded
Intercommunication Interval, and Bounded Delay assump-
tions hold for the agents in the original network [cf. As-
sumptions 1(a), 2, 3, and 4]. Then, the following hold.
(a) For any computing nodes i, j ∈ {1, . . . ,m}, we have

for all s ≥ 0, and all k ≥ s + (m− 1)(B + B1),

[Φ̃(k, s)]ij ≥ ηk−s+1.

(b) For any computing node j ∈ {1, . . . ,m}, we have for
all nodes i and all s ≥ 0,

[Φ̃(s + (m− 1)B + mB1 − 1, s)]ij ≥ η(m−1)B+mB1 .

Lemma 1(b) states that the information originating from
any computing agent contributes to the estimate of any other
agent with a “significant” weight provided that a sufficient
time has passed by. The proof of Lemma 1 is given in [13].

C. Convergence Result

In this section, we establish the main results of this paper:
we prove the convergence of the iterates of Eq. (1) to a
consensus and we provide convergence rate estimates. The
proof uses the equivalence between the evolution equations
(1) for the original system and the evolution equations (5)
for the enlarged system.

We first provide a result showing that the differences in
the maximum and the minimum values of the agent estimates
decrease in time. This result is central in our convergence
analysis of the estimates. Lemma 1 plays a key role in
establishing this result.

Lemma 2: Let Weights Rule, Connectivity, Bounded In-
tercommunication Interval, and Bounded Delay assumptions
hold [cf. Assumptions 1–4]. Let the sequences {x̃i(k)},
i = 1, . . . ,mB1 be generated by Eq. (5). For all k ≥ 0,
define M(k), µ(k) ∈ Rn as follows:

M(k) = max
1≤i≤mB1

x̃i(k), µ(k) = min
1≤i≤mB1

x̃i(k). (9)

Then, we have mηB2 ≤ 1 and for all k ≥ 0,

M(k)− µ(k) ≤
(
1−mηB2

)j
k

B2

k
(M(0)− µ(0)) ,

where B2 = (m− 1)B + mB1.
Proof: By Eq. (8), we have for all i ∈ {1, . . . ,mB1},

x̃i(s + B2) =
mB1∑
j=1

[Φ̃(s + B2, s)]ij x̃j(s) for all s ≥ 0,

where B2 = (m−1)B +mB1. Distinguishing the terms due
to computing agents j = 1, . . . ,m and noncomputing agents
j = m + 1, . . . ,mB1 in the sum on the right hand-side of
the preceding relation, we can write

x̃i(s + B2) =
m∑

j=1

ηB2 x̃j(s)

+
mB1∑
j=1

[Ψ̃(s + B2 − 1, s)]ij x̃
j(s), (10)

where [Ψ̃(s + B2 − 1, s)]ij = [Φ̃(s + B2 − 1, s)]ij − ηB2 for
computing agent j, and [Ψ̃(s + B2 − 1, s)]ij = [Φ̃(s + B2 −
1, s)]ij for noncomputing agent j. By Lemma 1(b), we have
for any agent i and any computing agent j ∈ {1, . . . ,m}:

[Φ̃(s + B2 − 1, s)]ij ≥ ηB2 for all k ≥ 0.

By the definition of the matrix Ψ̃(s+B2−1, s), this implies

[Ψ̃(s + B2 − 1, s)]ij ≥ 0 for all i, j ∈ {1, . . . ,mB1}.

Since the matrix Φ̃′(s + B2 − 1, k) is stochastic and there
are m computing agents, we have the relation

mB1∑
j=1

[Ψ̃(s + B2 − 1, k)]ij = 1−mηB2 .
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This relation together with [Ψ̃(s + B2 − 1, s)]ij ≥ 0 for all
i, j implies the compatibility relation 1−mηB2 ≥ 0 and

(1−mηB2)µ(s) ≤
mB1∑
j=1

[Ψ̃(s + B2 − 1, s)]ij x̃
j(s)

≤ (1−mηB2)M(s),

where µ(s) and M(s) are defined in Eq. (9). Combining
the preceding relation with Eq. (10), we obtain for all i ∈
{1, . . . ,mB1} and s ≥ 0,(

1−mηB2
)
µ(s) ≤ x̃i(s + B2)−

m∑
j=1

ηB2 x̃j(s)

≤
(
1−mηB2

)
M(s).

Since this relation holds for all i, it follows that(
1−mηB2

)
µ(s) ≤ µ(s + B2)−

m∑
j=1

ηB2 x̃j(s),

M(s + B2)−
m∑

j=1

ηB2 x̃j(s) ≤
(
1−mηB2

)
M(s).

From the preceding two relations we obtain for all s ≥ 0,

M(s+B2)−µ(s+B2) ≤
(
1−mηB2

)
(M(s)−µ(s)). (11)

In view of the stochasticity of the matrices Φ̃(k, s)′, the
sequences {M(k)} and {µ(k)} are nonincreasing and non-
decreasing, respectively. Therefore, for any k ≥ 0,

M(k)− µ(k) ≤ M(lB2)− µ(lB2)
≤

(
1−mηB2

)l
(M(0)− µ(0)),

where l = bk/B2c and the second inequality follows by a
recursive application of relation (11).

Using the relations between the original system and the
enlarged system, the vectors M(k) and µ(k) defined in Eq.
(9) can be also expressed as:

M(k) = max
i=1,...,m

τ=0,...,B1−1

xi(k−τ), µ(k) = min
i=1,...,m

τ=0,...,B1−1

xi(k−τ),

where xi(k−τ) = xi(0) for all k and τ such that k−τ ≤ 0.
In view of these relations, Lemma 2 provides a bound on the
decrease in the difference between the maximum and the
minimum values of the agent current and delayed estimates
up to the maximum possible delay (i.e., the delay B1 − 1).

We now prove our main results.
Theorem 1: Let Weights Rule, Connectivity, Bounded In-

tercommunication Interval, and Bounded Delay assumptions
hold [cf. Assumptions 1–4]. Then, the following hold.
(a) The sequences {xi(k)}, i = 1, . . . ,m generated by Eq.

(1) converge to a consensus, i.e., for an x̄ ∈ Rn,

lim
k→∞

xi(k) = x̄ for all i = 1, . . . ,m.

(b) The consensus vector x̄ ∈ Rn is a nonnegative combi-
nation of the agent initial vectors xj(0), j = 1, . . . ,m,

x̄ =
m∑

j=1

wjx
j(0),

with scalars wj ≥ 0 such that
∑m

j=1 wj = 1, and

x̄− min
1≤i≤m

xi(0) ≥ mηB2

(
1
m

m∑
i=1

xi(0)− min
1≤i≤m

xi(0)

)
,

max
1≤i≤m

xi(0)−x̄ ≥ mηB2

(
max

1≤i≤m
xi(0)− 1

m

m∑
i=1

xi(0)

)
.

(c) The convergence rate to the consensus is geometric: for
all agents i ∈ {1, . . . ,m},

‖xi(k)− x̄‖ ≤ 2
(
1−mηB2

)j
k

B2

k m∑
j=1

‖xj(0)− x̄‖.

Proof: For the vectors M(k) and µ(k) defined in Eq.
(9), and for all i ∈ {1, . . . ,mB1} and all k ≥ 0, we have

µ(k) ≤ x̃i(k) ≤ M(k). (12)

By the stochasticity of the columns [Φ̃(k, s)]i, it follows
that the sequences {M(k)} and {µ(k)} are bounded and
monotone; therefore, {M(k)} and {µ(k)} are convergent.
By Lemma 2, we have limk→∞(M(k)−µ(k)) = 0, implying
that M(k) and µ(k) converge to the same limit, denoted by
x̄ ∈ Rn. Therefore, by Eq. (12), we obtain limk→∞ x̃i(k) =
x̄ for all i ∈ {1, . . . ,mB1}. Since x̃i(k) = xi(k) for all
i = 1, . . . ,m and all k ≥ 0, it follows

lim
k→∞

xi(k) = x̄ for all i ∈ {1, . . . ,m},

establishing the result in part (a).
Letting s = 0 in Eq. (8), we have for any i = 1, . . . ,mB1,

x̃i(k) =
mB1∑
j=1

[Φ̃(k − 1, 0)]ij x̃j(0) for all k ≥ 0.

Using the definition (6) of the initial vectors x̃i(0) for the
agents in the enlarged system, we have for all k ≥ 0,

x̃i(k) =
m∑

j=1

(
B1−1∑
t=0

[Φ̃(k − 1, 0)]ij+tm

)
xj(0). (13)

From part (a), for any initial vectors xj(0), j = 1, . . . ,m,
the limit limk→∞ x̃i(k) exists so that for all i ∈ {1, . . . ,m},

lim
k→∞

x̃i(k) =
m∑

j=1

lim
k→∞

(
B1−1∑
t=0

[Φ̃(k − 1, 0)]ij+tm

)
xj(0).

For any fixed h, we can take the initial vectors as xj(0) = 0
for all j 6= h, and xh(0) = e, where e ∈ Rn is the vector of
all 1’s. Then, the preceding relation and part (a) imply that
the limit

lim
k→∞

(
B1−1∑
t=0

[Φ̃(k − 1, 0)]ih+tm

)
exists for all i, h, and it is independent of i. Denoting this
limit by wh and using Eq. (13), we obtain the first result in
part (b), where the properties of the weights wh follow from
the stochasticity of the vectors [Φ̃(k − 1, 0)]i.

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThB12.6

4853



From Eq. (10), we have for all i = 1, . . . ,mB1 and s ≥ 0,

x̃i(s + B2) ≥ ηB2

m∑
j=1

x̃j(s) + (1−mηB2)µ(s)

= ηB2

m∑
j=1

xj(s) + (1−mηB2)µ(s).

This yields the following inequality for all s ≥ 0,

D

 1
m

m∑
j=1

xj(s)

µ(s)

 ≤

 1
m

m∑
j=1

xj(s + B2)

µ(s + B2)

 ,

where D is a matrix given by

D =
(

mηB2 1−mηB2

mηB2 1−mηB2

)
.

As the matrix D is idempotent (i.e., equal to its square),
using the preceding inequality recursively with s = 0, and
then by taking the limit, we can see that

D

 1
m

m∑
j=1

xj(0)

µ(0)

 ≤
(

x̄
x̄

)
,

which follows in view of xj(k) → x̄ for all j. The
second inequality yields the lower bound on the difference
x̄ − min1≤i≤m xi(0) in part (b). The lower bound on the
difference max1≤i≤m xi(0)−x̄ in part (b) is proved similarly.

Since xi(k) ≤ M(k) for all i ∈ {1, . . . ,m} and all k ≥ 0,
and µ(k) ≤ x̄ for all k ≥ 0 [which follows because {µ(k)}
is nondecreasing], we have

‖xi(k)− x̄‖ ≤ ‖M(k)− µ(k)‖ for all k ≥ 0.
Moreover,

‖M(0)− µ(0)‖ ≤ ‖M(0)− x̄‖+ ‖µ(0)− x̄‖. (14)

By the definition of M(0) and µ(0) in Eq. (9), and the
definitions of the vectors x̃i(0) of Eq. (6), we obtain M(0) =
max1≤i≤m xi(0) and µ(0) = min1≤i≤m xi(0), implying

‖M(0)− x̄‖+ ‖µ(0)− x̄‖ ≤ 2
m∑

j=1

‖xj(0)− x̄‖.

The rate result of part (c) follows by combining the preceding
relation with Eq. (14) and by using Lemma 2.

The result in Theorem 1(b) can be viewed as an error
estimate between the final consensus value and the average
of the initial agent estimates. In particular, if mηB2 = 1,
then it follows from these relations that x̄ = 1

m

∑m
i=1 xi(0).

The following rate estimate was shown in [13]:

‖xi(k + 1)− x̄‖ ≤ 2
1 + η−B2

1− ηB2
(1− ηB2)

k
B2

m∑
j=1

‖xj(0)‖.

The estimate in Theorem 1(c) improves this bound in terms
of the much better constant (independent of η) and the
decrease factor of 1−mηB2 instead of 1− ηB2 .

IV. CONCLUSIONS

We considered an algorithm for the consensus problem
in the presence of delays in the multi-agent system. Our
analysis relies on reducing the problem to a consensus
problem in an enlarged system without delays. We studied
properties of the reduced model and used them to establish
the convergence and convergence rate properties for the con-
sensus problem with delays. Our convergence rate estimate
is geometric and it is explicitly given in terms of the system
parameters. Future work includes incorporating the delayed
consensus algorithm in the distributed optimization model
developed in [15] to account for delays in the agent values.
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