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Abstract—We consider a system where a number of indepen-
dent, time-triggered or event-triggered control loops are closed
over a shared communication network. Each plant is described
by a first-order linear stochastic system. In the event-triggered
case, a sensor at each plant frequently samples the output
but attempts to communicate only when the magnitude of the
output is above a threshold. Once access to the network has been
gained, the network is busy for T seconds (corresponding to the
communication delay from sensor to actuator), after which the
control action is applied to the plant. Using numerical methods,
we compute the minimum-variance control performance under
various common MAC-protocols, including TDMA, FDMA,
and CSMA (with random, dynamic-priority, or static-priority
access). The results show that event-triggered control under
CSMA gives the best performance throughout.

I. INTRODUCTION

Networked feedback control systems are normally imple-

mented using periodic sampling at the sensor nodes, com-

bined with either time-triggered or event-triggered commu-

nication between the sensor, controller, and actuator nodes.

Periodic sampling allows for standard sampled-data control

theory (e.g. [3]) to be used, although network-induced delay

and jitter may limit the performance [4].

In recent work [2], [6], [9], [7], event-triggered sampling

has been proposed as a means for more efficient resource

usage in networked control. The basic idea is to sample,

communicate, and control only when something significant

has occurred in the system. For first-order stochastic systems,

it has been shown that event-based sampling can significantly

reduce the output variance and/or the average control rate

compared to periodic sampling [2]. A similar idea is to

introduce a deadband in the sensor. The trade-off between

network traffic and control performance for higher-order

control loops with deadband sampling was studied in [8].

When multiple control loops are closed over a shared

medium (like a communication bus or a wireless local-

area network), a multiple access method such as TDMA

(time division multiple access), FDMA (frequency division

multiple access), or CSMA (carrier sense multiple access)

is needed to multiplex the data streams. It is clear that the

choice of access method can have a great impact on the con-

trol performance. Intuitively, TDMA should be suitable for

time-triggered control loops, while CSMA, being a random-

access method, would seem to be well suited for event-

based control. FDMA provides a way to share the bandwidth

without regard to synchronization among the loops, which

could potentially be beneficial for both time-triggered and

event-triggered control. At the same time, less bandwidth

per control loop means longer transmission times and hence

longer feedback delays.
Multi-loop networked control systems—taking into ac-

count issues such as clock synchronization, medium access,

communication protocols, imperfect transmissions, delay and

jitter, and event-triggered sampling, as well as the control

algorithms themselves—are very complex systems. To fa-

cilitate analysis, great simplifications are needed. In this

paper, we study a scenario where a number of independent

control loops are closed over a shared network (see Fig. 1).

Using very simple models for the plants, controllers, and

network arbitration, we are able to numerically compute and

compare the minimum-variance control performance under

the various medium access protocols. In particular, we apply

recent results in sporadic event-based control of first-order

systems [7], [5] to model and analyze the interaction between

control loops and medium-access schemes. Although far

from an exhaustive study, the results offer some interesting

insight into the suitability of the studied MAC-protocols for

networked control.
The remainder of this paper is outlined as follows. In Sec-

tion II, the system description is given. Section III reviews

how to calculate the stationary variance under time-triggered

and event-triggered sampling. In Section IV, we model the

medium access schemes and describe the co-design problem

associated with each scheme. Section V reports numerical

results for symmetrical integrator plants. In Section VI,

we digress and compare the achievable performance under

global vs local scheduling decisions. Section VII contains

a case study with three asymmetric plants. Finally, the

conclusions are given in Section VIII.

II. SYSTEM DESCRIPTION

We consider a system where N control loops are closed

over a shared network. Each plant i ∈ 1 . . .N is described

by a first-order stochastic differential equation

dxi(t) = aixi(t)dt + ui(t)dt + σidwi(t), xi(0) = 0, (1)

where xi is the state, ai is the process pole, ui is the control

signal, wi is a Wiener process with unit incremental variance,

and σi > 0 is the intensity of the noise. All noise processes

are assumed independent.
A sensor located at each plant i takes samples of the plant

state at certain discrete time instants {ti,k}
∞

k=0
:

xi,k = xi(ti,k). (2)
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Fig. 1. Multiple control loops are closed over a shared communication
medium. The controller in each loop may be co-located with either the
sensor (S) or the actuator (A).
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Fig. 2. Network state transitions. Control events may only be generated
in the idle state.

The sampling can be either time-triggered or event-triggered,

depending on the medium access scheme. After obtaining

a sample, the sensor tries to initiate a control event by

transmitting the value to the actuator. The network is however

a shared resource that only one control loop may access

at a time1. If two or more sensors attempt to transmit at

the exact same time, a resolution mechanism determines

who will gain access to the network. (The other nodes will

simply discard their samples.) Once access has been gained,

the network stays occupied for T seconds, corresponding to

the transmission delay from sensor to actuator. During this

interval, no new control events may be generated (see Fig. 2).

The controller in each loop may be co-located with either

the sensor or the actuator; the network delay is assumed

constant and known, so it does not matter which. The overall

goal is to minimize the total cost

J =
N

∑

i=1

Ji, (3)

where the performance of loop i is measured by the station-

ary state variance

Ji = lim
t→∞

1

t
E

∫ t

0

(xi(s))
2ds. (4)

In response to a sample taken at time ti,k, the actuator is

allowed to emit a Dirac pulse of size ui,k. It is clear (see [5])

that minimum variance is achieved by driving the expected

value of the state at time ti,k + T to zero, implying the

deadbeat control law

ui,k = −eaiT xi,k. (5)

1This is not true under FDMA. Under FDMA, we rather assume that each
control loop has access to its own private network with lower bandwidth.

The control signal generated by actuator i is hence given by

the pulse train

ui(t) =
∞
∑

k=0

δ
(

t − ti,k − T
)

ui,k. (6)

While it may seem unrealistic to allow Dirac controls, it

allows for a fair and straightforward comparison between

time-triggered and event-triggered control. The Dirac pulse

may be replaced by an arbitrary pulse shape of length no

longer than T at the expense of slightly more complicated

cost calculations.

III. EVALUATION OF COST

We here briefly review how to compute the cost (4) under

time-triggered and event-triggered sampling with a delay and

minimum inter-event interval T . For more details, see [1],

[7], [5]. For clarity, we here drop the plant index i.

A. Time-Triggered Sampling

Under time-triggered sampling, the stationary variance

(4) can be calculated analytically. The sampling instants tk
are known a-priori and do not depend on the plant state,

which will be normal distributed at all times. The (possibly

irregularly) sampled closed-loop system becomes

xk+1 = wk, (7)

where {wk}
∞

k=0 are independent, zero-mean Gaussian vari-

ables with variance P (tk+1 − tk), where

P (t) =

{

σ2 e2at
−1

2a
, a 6= 0,

σ2t, a = 0.
(8)

(Note that the delay does not affect the state distribution at

the sampling instants.) Sampling the cost function gives

E

∫ tk+1

tk

x2ds = Q(T ) E(xk)2 + Jv(tk+1 − tk), (9)

where

Q(T ) =

{

e2aT
−1

2a
, a 6= 0,

T, a = 0
(10)

is the state weight due to delay, while

Jv(t) =

{

e2at
−2at−1

4a2 , a 6= 0,
t2

2
, a = 0

(11)

accounts for the inter-sample noise (see e.g. [1]). Finally, we

know that E x2(tk) = P (tk − tk−1). Using the expressions

above, it is straightforward to evaluate the cost under any

static cyclic schedule.

B. Event-Triggered Sampling

Under event-triggered sampling, control events may only

be generated when the network is idle and |x(t)| ≥ r, where
r is the event detection threshold. The state will no longer

be Gaussian, which complicates the calculation of Ex2(tk).
A useful and realistic approximation is to assume that the

sensor does not measure x continuously, but rather uses
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Fig. 3. Time division multiple access (TDMA). A static cyclic schedule
determines which sensor node samples and transmits in which time slot.

fast sampling with the interval Ts ≪ T . The (irregularly)

sampled closed-loop system then becomes

xk+1 =











eaTsxk + wk(Ts), |xk| < r

wk(T ), |xk| ≥ r & won

eaT xk + wk(T ), |xk| ≥ r & lost

(12)

where {wk(t)}∞k=0 is a sequence of independent, zero-mean

Gaussian variables with variance P (t); “won” means that the

sensor node won the network arbitration, while “lost” means

the opposite. Letting the system run in open loop between

the fast samples, the expressions (8)–(11) for the sampled

cost are still valid.

The update equation (12) is useful both for calculation

of the state distribution and for Monte Carlo simulations.

Because of the shared medium, the stationary probability

distributions of x1, . . . , xN are not independent. To eval-

uate the cost using the first approach, it is hence neces-

sary to find the multi-dimensional probability distribution

f(x1, . . . , xN ). This can in theory be done by gridding the

state space and then iterating the distribution according to

(12) until convergence. In practice, this can be done for a few

dimensions, forcing us to rely on Monte Carlo simulations

for N ≥ 3 in this paper.

IV. MEDIUM ACCESS SCHEMES AND CONTROL POLICIES

In this section, we present simple scheduling and control

models for three medium access schemes and discuss how

to derive optimal schedules and control policies.

A. TDMA (Time Division Multiple Access)

In TDMA (see Fig. 3), a cyclic access schedule is de-

termined off-line. In each slot in the schedule, one control

loop has access to the network for T seconds. Since there

is no cost associated with using the network in our problem

formulation, it is obvious that no slot should be left empty,

and that the sensor should always sample and transmit in

its slot. Hence, the optimal control scheme associated with

TDMA will be a pure time-triggered scheme.

For symmetric plants (with ai = a, σi = σ, ∀i), a simple

round-robin schedule is optimal. For asymmetric plants, an

optimal schedule of length n can be found by evaluating the

resulting cost for each possible schedule. (The search for

an optimal schedule can be done more efficiently. The LQ-

optimal cyclic scheduling and control problem for multiple

higher-order plants is treated in [10].)

B. FDMA (Frequency Division Multiple Access)

In FDMA (see Fig. 4), the communication bandwidth is

divided between the nodes, such that each loop receives

11

2 2

3 3 3

Fig. 4. Frequency division multiple access (FDMA). The bandwidth is
divided into fixed shares, giving each loop a dedicated channel. Within
each share, an event-triggered control loop is implemented.

2 1 2 3 1 1 2 3

Fig. 5. Carrier sense multiple access (CSMA). Each loop is event-triggered.
A static, dynamic, or random priority function determines who will transmit
if many nodes try to access the network at the same time.

a fixed fraction Ui of the total capacity
∑N

i=1
Ui = 1.

Accounting for the lower transmission rate, the delay from

sensor i to actuator i is now T/Ui.

It is previously known [7] that event-triggered sampling

with a minimum inter-event interval T is superior to time-

triggered sampling with the interval T , also when there

is delay in the system. Hence, event-triggered control is

the better choice for FDMA. The optimal event detection

threshold and the associated optimal cost can be found

numerically by sweeping r and computing the cost for each

value.

For symmetric plants, an even division of the bandwidth

is optimal. For asymmetric plants, the shares Ui can be

found using optimization. Since the cost functions Ji(Ui) are
smooth and strictly decreasing, it is feasible to use standard

nonlinear optimization tools to find the shares.

C. CSMA (Carrier Sense Multiple Access)

In CSMA (see Fig. 5), any node may try to access the

network as soon as it becomes idle, making it suitable for

event-triggered control loops. If many nodes want to transmit

at the same time, some resolution mechanism must be used.

In shared-medium Ethernet for instance, the collision detec-

tion and random back-off strategy will grant a random node

access to the network (after some delay). In the Controller

Area Network (CAN) on the other hand, access can be

resolved based on either fixed (node) priorities or dynamic

(message) priorities.

We will consider three different resolution mechanisms:

1) Random (CSMA-rand): As in Ethernet or WLAN,

a random node will eventually win the contention. For

simplicity, it is assumed that the resolution time is very small

compared to the transmission time so that it can be neglected.

The overall performance is optimized by selecting suitable

event detection thresholds for the control loops. This is done

by sweeping ri and computing the cost for each value.

2) Static priority (CSMA-statprio): Each sensor node is

assigned a static priority, which determines who will win

the arbitration. Such a scheme can be useful for asymmetric

plants where it is known that some plants are more sensitive

to long access delays than others.
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3) Dynamic Priority (CSMA-dynprio): For symmetric

first-order plants, it can make sense to use the control error

as a dynamic priority. (This idea was put forth in [11], where

it was called the Maximum-Error-First (MEF) scheduling

technique.) It is assumed that the network interface provides

a mechanism (such as message priorities in CAN) so that

priority access can be given to the node with the largest

control error. It is obvious that this scheme will be better

than random priorities. Again, the overall performance is

optimized by selecting event thresholds for the loops.

V. RESULTS FOR SYMMETRIC INTEGRATOR PLANTS

We here present numerical results for N symmetric in-

tegrator plants with ai = 0 and σi = 1. We assume that

the network bandwidth scales in proportion to the number

of plants, such that the transmission delay from sensor to

actuator is T = 1/N when the full bandwidth is utilized.

For the numerical computations, we assume fast sampling

with Ts = T/100.
Under TDMA, the optimal cyclic transmission schedule

is {1, 2, . . . , N}. The sampling period of each loop is 1 and

the delay is T = 1/N , giving the following exact value for

the cost per loop:

Ji =
(

Jv(T ) + Q(T ) Ex2(tk)
)

/T =
1

2
+

1

N
. (13)

Under FDMA, each loop receives a share Ui = 1/N of the

bandwidth, implying the same performance regardless of the

number of nodes. Computing the stationary state distribution

under event-triggered sampling for different values of r, we
find the optimal threshold r = 1.06, yielding the cost

Ji = 1.40. (14)

For the CSMA case, we use Monte Carlo simulations

to find the stationary variance of the plants under random

or dynamic priority access. For each N , we sweep r to

find the optimal threshold and the corresponding optimal

cost. Each configuration was simulated for 108 time steps,

corresponding to in the order of 106 simulated seconds.

(The simulation time was around 15n seconds for each

configuration on an Intel Core 2 CPU @1.83 GHz.)

The optimal costs under the various policies described

above for N = 1 . . . 10 nodes are reported in Fig. 6, and

the optimal thresholds under CSMA are shown in Figs. 7. It

is seen that TDMA outperforms FDMA, except for N =
1 where sporadic event-based control has the edge over

periodic control. In turn, both variants of CSMA outperform

TDMA, CSMA with dynamic priorities performing slightly

better than CSMA with random access. The results are

not surprising, since CSMA with event-triggered sampling

dynamically allocates the bandwidth to the loop(s) most in

need. A higher event threshold is needed for the random

priority scheme in order to be more selective about which

plant to control.

It is possible to reason about what happens when N →
∞ under the various access schemes. Under TDMA, the

performance approaches Ji = 1/2, while under FDMA,
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Fig. 6. Optimal cost per node vs number of nodes when controlling
symmetric integrator plants.
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Fig. 7. Optimal threshold vs number of nodes for CSMA with random or
dynamic priority access when controlling symmetric integrator plants.

the performance is unaffected by N and is constant Ji =
1.40. CSMA approaches aperiodic event-based control [2]

when N → ∞, regardless of the priority scheme used.

For integrator plants, the optimal cost per plant approaches

Ji = 1/6. Hence, CSMA asymptotically gives 67% lower

cost than TDMA and 88% lower cost than FDMA when

the number of control loops increases. Equivalently, one can

reason about the network capacity needed to maintain the

same performance as the number of integrator plants grows.

Here, again, CSMA will asymptotically require 67% less

bandwidth than TDMA and 88% less bandwidth than FDMA

to achieve the same cost per loop.

VI. LOCAL VS GLOBAL KNOWLEDGE

One important assumption in our model is that the de-

cisions as to whether to transmit or not are taken locally

at each sensor node. It was seen above that event-triggered

control under CSMA with dynamic priority access gave

the lowest cost among all the considered schemes. It is

interesting to compare the performance to a controller with

global knowledge of the plant states. Such a controller would
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Fig. 8. Event-triggered control of two integrators: optimal global and local
policies.

of course not be implementable in a networked setting but

can provide a lower bound on the achievable cost.

We consider the special case of N = 2 symmetric

integrator plants with the minimum inter-control interval and

delay T = 1/2. The optimal local scheme under CSMA

with dynamic priorities was computed above, giving the

optimal cost Ji = 0.834 for the threshold r = 0.85. For the
global scheme, we gridded the plant state space in the two

dimensions and applied dynamic programming to derive the

optimal control policy. For each state (x1, x2), the controller
has the choice to control to the first plant, the second plant, or

to idle. The resulting optimal global control policy is shown

in Fig. 8, together with the local CSMA policy with dynamic

priorities. It is seen that the control policies are quite similar.

One difference is that the global controller will idle if both

plants have about the same error magnitude, waiting to see

where the processes will go next. The resulting cost under

the global policy is found to be Ji = 0.828, which is only

one percent lower than the cost for the optimal local scheme.

VII. RESULTS FOR THREE ASYMMETRIC PLANTS

As a final numerical example, we consider a case where

three asymmetric first-order systems should be controlled:

one asymptotically stable plant, one integrator, and one

unstable plant. The plant parameters are σi = 1 and

a1 = −0.5, a2 = 0, a3 = 0.5.

Further, we let T = 1/3. Here, intuition tells us that

more resources should be allocated to the unstable plant

(Plant 3) while the stable plant (Plant 1) can manage with

less resources.

For TDMA, the total cost is computed for all possible

cyclic schedules of length n = 2, . . . , 12. Since the unstable

plant must be controlled at least once per cycle, we fix the

first entry in the schedule to 3, leaving about 3n−1 schedules

to test per value of n (including “necklace duplicates”). The

optimal schedule for each value of n is reported in Table I. It

is seen that the best schedule is of length 6: {3, 2, 3, 2, 3, 1},

TABLE I

OPTIMAL CYCLIC SCHEDULES FOR THE THREE ASYMMETRIC PLANTS.

Length n Cyclic schedule Total cost J

2 {3, 2} 2.651
3 {3, 3, 2} 2.708
4 {3, 2, 3, 1} 2.588
5 {3, 2, 3, 2, 1} 2.650
6 {3, 2, 3, 2, 3, 1} 2.563
7 {3, 2, 3, 3, 2, 3, 1} 2.589
8 {3, 2, 3, 2, 3, 2, 3, 1} 2.567
9 {3, 2, 3, 3, 2, 3, 2, 3, 1} 2.591
10 {3, 2, 3, 2, 3, 1, 3, 2, 3, 1} 2.573
11 {3, 2, 3, 3, 2, 3, 1, 3, 2, 3, 1} 2.588
12 {3, 2, 3, 2, 3, 1, 3, 2, 3, 2, 3, 1} 2.563

TABLE II

OPTIMAL COSTS FOR THE THREE ASYMMETRIC PLANTS UNDER THE

VARIOUS MEDIUM ACCESS SCHEMES.

Scheme J1 J2 J3 J =
P

Ji

TDMA 0.690 0.889 0.984 2.56
FDMA 1.000 1.177 1.319 3.49
CSMA-rand 0.554 0.618 0.772 1.94
CSMA-statprio 0.562 0.641 0.723 1.92

giving a total cost of J = 2.56. In the optimal schedule, the

stable plant is controlled once per cycle, the integrator twice,

and the unstable plant three times per cycle.

For FDMA, we optimize over the bandwidths U1, U2,

U3 to find the lowest total cost. For each plant, we first

approximate the cost function Ji(U) by sweeping r for each

value of U . We then apply nonlinear optimization to find the

optimal shares, yielding U1 = 0, U2 = 0.397, U3 = 0.603
and the total cost J = 3.49. It is interesting to note that

the long delay associated with FDMA apparently makes it

pointless to control the stable plant.

For CSMA, we consider two arbitration mechanisms:

random access and static priorities. For the random access

scheme, we sweep the three thresholds to find the minimum

cost, giving r1 = 1.12, r2 = 0.92, r3 = 0.77, and the

total cost J = 1.96. The three loops occupy the network

on average 14%, 22%, and 38% of the time, while it is idle

26% of the time. The relative shares for the loops are not

that different from the ones generated by the optimal cyclic

schedule.

For the static priority CSMA case, we assume that the

unstable plant has the highest priority, the integrator has

medium priority, while the stable plant has the lowest prior-

ity. Again sweeping the three thresholds and evaluating the

costs gives the optimal thresholds r1 = 0.95, r2 = 0.87,
r3 = 0.77, and the total cost J = 1.94. The priorities allow

for tighter thresholds to be utilized. The three loops occupy

the network on average 15%, 25%, and 38% of the time,

while it is now idle 22% of the time.

The results under the various access schemes are summa-

rized in Table II. We can again conclude that CSMA can

provide better control performance than both TDMA and

FDMA. For this example, CSMA gives 23% percent lower

total cost than TDMA and 44% lower cost than FDMA. We

further note that there is only a very modest improvement

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 WeC14.2

3605



by using priorities, which is good news for wireless systems

where random access schemes may be the only realistic

choice for the implementation.

VIII. DISCUSSION AND CONCLUSION

This paper has studied a prototypical networked con-

trol co-design problem, where both the control policy and

network scheduling policy have been taken into account.

Although very simple mathematical models were used, some

interesting conclusions regarding the various medium access

schemes could be drawn. CSMA with event-triggered sam-

pling was the superior scheme in all presented examples,

while FDMA performed poorly due to the long transmission

delay.

The simulation-based design approach adopted in this

paper is conceptually easy to extend to higher-order plants

and controllers. We have noted that the simulation time

required to evaluate the cost with a given accuracy grows

slower than the number of states in the system. Rather, the

main problem with more realistic systems is the number of

controller parameters that need to be optimized. For higher-

order systems, it is probably necessary to impose restrictions

on the controller structure and only optimize over a small

subset of the parameters.

Another interesting approach would be to develop a way

to characterize the performance of an event-triggered control

loop as a function of its network resource usage pattern.

Integrating several control loops, it should be possible to

provide guarantees on the worst-case performance of each

controller. Apart from higher-order plants and controllers,

several other extensions to the work in this paper are possible

to imagine, including

• having the controller located in a separate node, mean-

ing that both the transmission from sensor to controller

and from controller to actuator need to be scheduled.

• having more detailed models of real network protocols,

including, e.g., the random back-offs in CSMA/CD.

• allowing MIMO systems, where each sensor and actu-

ator may reside on a different node in the network.

• modeling measurement noise, variable transmission

times, and lost packets.
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