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Abstract— Dilated homogeneous systems are local canonical
forms of nonlinear control systems. In this paper, we propose a
global inverse optimal controller with guaranteed convergence
rate by implementing the local homogeneity. First, we clearly
describe assumptions, and then design a global inverse optimal
controller achieving local homogeneity for input-affine local-
homogeneous nonlinear systems by using local-homogeneous
control Lyapunov functions. The proposed controller guaran-
tees convergence rate thanks to the local homogeneity. Finally,
we discuss what systems it is available for, and confirm the
effectiveness of the proposed controller by computer simulation.

I. INTRODUCTION

Control Lyapunov function based controller design attracts

much attention in nonlinear control theory. In the previous

works [2][5], a global stabilizing controller was proposed

for input-affine nonlinear systems with control Lyapunov

functions. Then, the controller was modified to satisfy in-

put constraints [3][4]. Moreover, an inverse optimal control

problem has been already solved [2][5]. However, these

controllers do not guarantee convergence rate. This may

result in slow convergence phenomena.

Homogeneous systems appear naturally as local approx-

imation to nonlinear systems [8][9]. In [1], homogeneous

(inverse optimal) stabilizing controllers were provided for

input-affine homogeneous systems with homogeneous con-

trol Lyapunov functions. The homogeneous degree of the

system determines convergence rate [7]. However, homoge-

neous controllers generally do not achieve global stability

for non-homogeneous systems.

It is still an interesting problem whether we can design

a global stabilizing controller with guaranteed convergence

rate for non-homogeneous systems. For the problem, we

propose a global inverse optimal controller with guaranteed

convergence rate by utilizing the local homogeneity.

In Section II, we introduce definitions and previous results,

and in Section III, we show the main result of this paper.

First, we clearly describe assumptions, and then design a

global inverse optimal controller achieving local homogene-

ity for input-affine local-homogeneous nonlinear systems by

using local-homogeneous control Lyapunov functions. The

proposed controller guarantees convergence rate thanks to the

local homogeneity. In Section IV, we summarize the previous

results obtained in [1]-[5], and prove the main result. In
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Section V, we discuss what systems satisfy our assumptions,

and in Section VI, confirm the effectiveness of the proposed

controller by computer simulation.

II. PRELIMINARY

We consider the following input-affine nonlinear system:

ẋ = f(x) + g(x)u, (1)

where x ∈ R
n is a state vector, u ∈ R

m is an input vector,

f(x) and g(x) are continuous mappings, and f(0) = 0. Let

gi(x) and gj(x) denote the i-th row vector and the j-th

column vector of g(x), respectively.

Definition 1 (control Lyapunov function) [11] A C1

proper positive-definite function V : R
n → R≥0 is said to

be a control Lyapunov function (clf) for system (1) if

inf
u∈Rm

{LfV + LgV · u} < 0, ∀x ∈ R
n\{0}, (2)

where LfV := ∂V/∂x · f(x) and LgV := ∂V/∂x · g(x). �

Definition 2 (small control property) [11] A control Lya-

punov function V (x) for system (1) is said to satisfy the

small control property (scp) if for any ε > 0, there is δ > 0
such that

0 �= ‖x‖ < δ =⇒ ∃‖u‖ < ε s.t. LfV + LgV · u < 0.

�

Theorem 1 [11] System (1) is globally asymptotically sta-

bilizable by a controller that attains continuity except at

the origin if and only if a control Lyapunov function exists.

System (1) is globally asymptotically stabilizable by a con-

tinuous controller if and only if a control Lyapunov function

with the small control property exists. �

Definition 3 (dilation) [9] A mapping

∆r
εx = (εr1x1, . . . , εrnxn)T , ∀ε > 0, ∀x ∈ R

n\{0}

is said to be a dilation on R
n, where r = (r1, . . . , rn)T and

0 < ri < ∞ (i = 1, . . . , n). �

Definition 4 (homogeneous function) [9] A function V :
R

n → R is said to be homogeneous of degree k ∈ R with

respect to the dilation ∆r
εx if

V (∆r
εx) = εkV (x).
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�

Definition 5 (homogeneous system) [9] System (1) is said

to be homogeneous of degree τ ∈ R with respect to the

dilations ∆r
εx and ∆s

εu if

f(∆r
εx) + g(∆r

εx)∆s
εu = ετ∆r

ε {f (x) + g(x)u} .

�

Definition 6 (homogeneous approximation) [9] An homo-

geneous function Vh(x) is said to be homogeneous approxi-

mation of V (x) if there exists Vo(x) such that

V (x) = Vh(x) + Vo(x) (3)

and

lim
ε→0

Vo(∆
r
εx)

εk
= 0 (4)

uniformly on Sn−1 := {x ∈ R
n| ‖x‖2 = 1}.

An homogeneous system

ẋ = fh(x) + gh(x)u (5)

is said to be homogeneous approximation of (1) if there exist

fo(x) and go(x) such that

f(x) + g(x)u = fh(x) + gh(x)u + fo(x) + go(x)u (6)

and

lim
ε→0

fo,i(∆
r
εx) + go,i(∆

r
εx)∆s

εu

ετ+ri
= 0, ∀i = 1, . . . , n (7)

uniformly on Sn+m−1. �

Theorem 2 [10] We consider the following asymptotically

stable homogeneous system of degree τ with respect to ∆r
εx:

ẋ = f(x), (8)

where x ∈ R
n is a state vector, f : R

n → R
n is a continuous

mapping, and f(0) = 0. Let k > 0 be a constant and p > 0
an integer satisfying

k − p · max
1≤i≤m

ri > 0.

Then, there exists an homogeneous Lyapunov function of

degree k which is C∞ on R
n\{0} and Cp at the origin.

�

Definition 7 (exponential stability) [7] Let ‖·‖{r,q} be any

homogeneous norm. The origin of system (8) is said to be

exponentially stable if there exist a neighborhood U of the

origin and constants M, D > 0 such that for each x0 ∈
U\{0}, the solution x(t) with x(0) = x0 is defined on [0,∞)
and

‖x(t)‖ ≤ Me−Dt‖x(0)‖{r,q}, ∀t ≥ 0.

�

Definition 8 (finite-time stability) [7] The origin of system

(8) is said to be finite-time stable if it is stable and there

exist a neighborhood U of the origin and a function T :
U\{0} → R>0 such that for each x0 ∈ U\{0}, the solution

x(t) with x(0) = x0 is defined on [0, T (x)), x(t) ∈ U\{0},

∀t ∈ [0, T (x)), and limt→T (x) x(t) = 0. �

Lemma 1 [7] We consider asymptotically stable homoge-

neous system (8) of degree τ .

1) If τ > 0, x → 0 as t → ∞ for all x ∈ R
n.

2) If τ = 0, the origin is exponentially stable.

3) If τ < 0, the origin is finite-time stable.

�

Proposition 1 [1] Homogeneous control Lyapunov func-

tions for input-affine homogeneous systems always satisfy

the small control property. �

Lemma 2 [9] Let V (x) be an homogeneous control Lya-

punov function for homogeneous system (1). Then, for each

continuous function λ : R
n → R≥0, V (x) is also an

homogeneous clf for the following system:

ẋ = f(x) − λ(x)ν(x) + g(x)u, (9)

where ν(x) = (r1x1, . . . , rnxn)T . �

III. MAIN RESULT

We assume the following:

Assumption 1 1) System (1) has homogeneous approxi-

mation (5) of degree τ with respect to ∆r
εx and ∆s

εu.

2) V (x) is a clf for system (1) such that the homogeneous

approximation Vh(x) of degree k with respect to ∆r
εx

is a clf for system (5).

�

Then, we obtain the following lemma:

Lemma 3 Under Assumption 1, we can reconstruct a clf

V̄ (x) for system (1) such that the homogeneous approxima-

tion V̄h(x) of degree k̄ with respect to ∆r
εx is a clf for system

(5) satisfying

k̄ + τ − max
1≤j≤m

sj > 0. (10)

Proof: If Assumption 1 is satisfied, V̄ (x) := V
k̄
k (x)

(k̄ ≥ k) is also a clf for system (1) because

˙̄V (x) =
k̄

k
V

k̄
k
−1(x)V̇ (x).

Moreover, the homogeneous approximation V̄h(x) of degree

k̄ with respect to ∆r
εx is a clf for system (5) because

V̄h(x) = lim
ε→0

V̄ (∆r
εx)

εk̄
= V

k̄
k

h (x)

˙̄V h(x) =
k̄

k
V

k̄
k
−1

h (x)V̇h(x).

Since k̄ can be chosen as large as condition (10) is satisfied,

we obtain the lemma.
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By Lemma 3, the following additional condition:

k + τ − max
1≤j≤m

sj > 0 (11)

does not narrow the class of system (1). Under Assumption

1 and condition (11), we obtain the following global inverse

optimal controller with guaranteed convergence rate:

Theorem 3 (Main result) We suppose Assumption 1 and

condition (11). Let c > 0 be a constant. Then, the following

input globally asymptotically stabilizes the origin:

uj = −
1

R(x)
|Lgj V |

sj

τ+k−sj sgn(Lgj V )

(j = 1, . . . , m),

(12)

where

R(x) =











2

Pa + |Pa| + c
·
τ + k − max sj

τ + k
(LgV �= 0)

2

c
·
τ + k − max sj

τ + k
(LgV = 0)

(13)

Pa(x) =
LfV

m
∑

j=1

|Lgj V |
τ+k

τ+k−sj

. (14)

Moreover, input (12) minimizes the following cost function

and achieves a sector margin
(

τ+k−max sj

τ+k
,∞

)

:

J =

∫ ∞

0







ℓ(x) +
m

∑

j=1

sj

τ + k
R

τ+k−sj

sj (x)|uj |
τ+k
sj







dt,

(15)

where

ℓ(x) =
m

∑

j=1

τ + k − sj

τ + k
·

1

R(x)
|Lgj V |

τ+k
τ+k−sj − LfV. (16)

Each uj(x) is continuous and has local homogeneous ap-

proximation of degree sj . Furthermore, the following are

true:

1) If τ > 0, x → 0 as t → ∞ for all x ∈ R
n.

2) If τ = 0, the origin becomes exponentially stable.

3) If τ < 0, the origin becomes finite-time stable.

�

The proof of Theorem 3 is given in the next section. If we do

not adhere to the inverse optimality, we can liberally adjust a

sector margin by employing another controller ū = γu. For

example, if we choose

uj =











−
Pa + |Pa| + c

2
· |Lgj V |

sj

τ+k−sj sgn(Lgj V )

(LgV �= 0)
0 (LgV = 0)

(j = 1, . . . , m)

instead of (12), it achieves a sector margin (1,∞).

IV. PROOF OF THE MAIN RESULT

A. Generalization of clf-based controller

To prove Theorem 3, we summarize the previous results

obtained in [1]-[5] for the following input form:

uj = −
1

R(x)
|Lgj V |aj sgn(Lgj V )

(j = 1, . . . , m).

(17)

First, we collect stabilizing controllers [1],[3]-[5] as the

following:

Theorem 4 Let V (x) be a clf for system (1), and aj : R
n →

R>0 and c : R
n → R>0 continuous functions satisfying

c|Lgj V |aj → 0 as LgV → 0 (j = 1, . . . , m). (18)

Then, the following input globally asymptotically stabilizes

the origin:

uj =











−
Pa + |Pa| + c

2
· |Lgj V |aj sgn(Lgj V )

(LgV �= 0)
0 (LgV = 0)

(j = 1, . . . , m)

,

(19)

where

Pa(x) =
LfV

m
∑

j=1

|Lgj V |aj+1

. (20)

Moreover, input (19) is continuous on R
m\{0}, and is also

continuous at the origin if

Pa|Lgj V |aj → 0 as x → 0 (j = 1, . . . , m). (21)

�

Proof: Since Pa(x) is continuous on {x ∈ R
n| LgV �=

0}, (19) is also continuous on {x ∈ R
n| LgV �= 0}. By (2),

LfV < 0 in a small neighborhood of x ∈ {x ∈ R
n| LgV =

0 ∧ x �= 0}. If LgV �= 0 and LfV < 0,

uj = −
c

2
· |Lgj V |aj sgn(Lgj V ). (22)

By (18) and (22), (19) is continuous except at the origin. If

condition (21) is satisfied, it is obvious that (19) is continuous

at the origin.

If LgV = 0, V̇ (x) = LfV < 0 for all x ∈ R
n\{0}. If

LgV �= 0 and Pa(x) ≤ 0, V̇ (x) < 0 is clear. If LgV �= 0
and Pa(x) > 0, (19) brings

V̇ (x) = −
c

2

m
∑

j=1

|Lgj V |aj+1 < 0.

Since V̇ (x) < 0 for all x ∈ R
n\{0}, input (19) globally

asymptotically stabilizes the origin.

Remark 1 By setting aj = 1, (19) coincides with Son-

tag’s stabilizing controller [5]. By setting aj = 1
k−1 or
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aj = 1

k̂(x)−1
, the directional vector of (19) corresponds

with stabilizing controllers [4][3]. If system (1) and V (x)
are homogeneous and aj =

sj

τ+k−sj
, (19) is identified with

homogeneous stabilizing controller [1].

By [1],[3]-[5], there exist aj (j = 1, . . . , m) satisfying

condition (21) if and only if V (x) has the scp. �

Then, we unify the results [1][2][5] on inverse optimal

problems. A cost function and a sector margin achieved by

(17) are derived as follows:

Lemma 4 Let V (x) be a clf for system (1), aj : R
n → R>0

(j = 1, . . . , m) continuous functions, and ℓ(x) a function

defined by

ℓ(x) =

m
∑

j=1

1

aj + 1
·

1

R(x)
|Lgj V |aj+1 − LfV, (23)

where R : R
n → R>0 is a positive-valued function that

is continuous on R
n\{0} and ℓ(x) ≥ 0 (∀x ∈ R

n). Then,

input (17) globally asymptotically stabilizes the origin and

minimizes the cost function

J =

∫ ∞

0







ℓ(x) +
m

∑

j=1

aj

aj + 1
R

1
aj (x)|uj |

aj+1

aj







dt. (24)

Moreover, it guarantees a sector margin
(

1
min aj+1 ,∞

)

.

Input (17) is continuous on R
n\{0}. �

Proof: Since R(x) is continuous except at the origin,

input (17) is also continuous except at the origin.

By (17) and (23), ℓ(x) can be rewritten to

ℓ(x) ≤ −V̇

(

x,
1

min aj + 1
· u

)

.

We define

γj(x) =
1

R(x)
|Lgj V |aj sgn(Lgj V ),

and let φj(γj) be a sector nonlinearity in
(

1
min aj+1 ,∞

)

.

Then, the input

ûj = −φj(γj) (j = 1, . . . , m)

guarantees

V̇ (x, û) ≤ V̇

(

x,
1

min aj + 1
· u

)

≤ −ℓ(x).

Since ℓ(x) ≥ 0, it achieves at least a sector margin
(

1
min aj+1 ,∞

)

. Hence, input (17) asymptotically stabilizes

the origin, and V (x(∞)) = 0. Then, cost function (24) can

be rewritten to

J =

∫ ∞

0

{

LfV + LgV · u + ℓ(x)

+

m
∑

j=1

aj

aj + 1
R

1
aj (x)|uj |

aj+1

aj

}

dt + V (x(0)).

We define

K(x, u) = LfV + LgV · u + ℓ(x)

+

m
∑

j=1

aj

aj + 1
R

1
aj (x)|uj |

aj+1

aj ,
(25)

and let input ū which minimizes K(x, u) for each x. The

discontinuity of R(x) at the origin does not cause any

problems (See [5].) Input ū is uniquely determined because

K(x, u) is a strictly convex function in u for fixed x. Hence,

input ū minimizes K(x, u) if and only if ∂K/∂u(x, ū) = 0.

Differentiating both sides of (25) with respect to uj , we

achieve

∂K

∂uj

(x, u) = Lgj V + R
1

aj (x)|uj |
1

aj sgn(uj).

Input ū satisfying ∂K/∂u(x, ū) = 0 coincides with (17),

and results in K(x, ū) = 0. Hence, input (17) minimizes

cost function (24) and minJ = V (x(0)).
The following corollary gives the same form of inputs and

sector margins as controllers of [1][2][5]:

Corollary 1 Let V (x) be a clf for system (1), aj : R
n →

R>0 (j = 1, . . . , m) continuous functions, R : R
n → R>0 a

positive-valued function that is continuous on R
n\{0}, and

γ ≥ max aj + 1 (26)

a constant. We assume that (17) is a globally asymptotically

stabilizing controller. Then, the input

ū = γu (27)

globally asymptotically stabilizes the origin. Moreover, input

(27) minimizes the following cost function and guarantees a

sector margin ( 1
γ
,∞):

J =

∫ ∞

0

{

ℓ(x) +

m
∑

j=1

aj

aj + 1

(

R(x)

γ

)
1

aj

|uj|
aj+1

aj

}

dt,

(28)

where

ℓ(x) =

m
∑

j=1

1

aj + 1
·

γ

R(x)
|Lgj V |aj+1 − LfV. (29)

Input (27) is continuous on R
n\{0}. �

Proof: Since (17) is a globally asymptotically sta-

bilizing controller and γ > 1, (27) is also a globally

asymptotically stabilizing controller and achieves at least a

sector margin ( 1
γ
,∞). By (17) and (29), ℓ(x) can be rewritten

to

ℓ(x) ≥ −V̇

(

x,
1

max aj + 1
· γu

)

. (30)

By (26) and (30), we obtain ℓ(x) ≥ 0. The rest of the proof

is the same as Lemma 4.

The above discussion is limited to abstract structure of

inverse optimal controllers. We summarize concrete inverse

optimal controllers [1][2][5] as the following:
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Theorem 5 Let V (x) be a clf for system (1), aj : R
n →

R>0 and c : R
n → R>0 continuous functions satisfying

(18), Pa(x) a function defined by (20), and ℓ(x) a function

defined by (23). We choose R(x) as

R(x) =











2

Pa + |Pa| + c
·

1

max aj + 1
(LgV �= 0)

2

c
·

1

max aj + 1
(LgV = 0)

.

(31)

Then, input (17) globally asymptotically stabilizes the origin

and minimizes cost function (24). Moreover, it achieves a

sector margin
(

1
max aj+1 ,∞

)

. Input (17) is continuous on

R
n\{0}, and is also continuous at the origin if condition

(21) is satisfied. �

Proof: By (31), R(x) > 0 in R
n. Since Pa(x) is

continuous on {x ∈ R
n| LgV �= 0}, R(x) is also continuous

on {x ∈ R
n| LgV �= 0}. If LgV �= 0 and LfV < 0,

R(x) = 2
c
· 1
max aj+1 . Hence, R(x) is continuous on R

n\{0}.

If LgV = 0, ℓ(x) = −LfV ≥ 0 by (2) and (23). If

LgV �= 0 and Pa(x) ≤ 0, ℓ(x) > 0 by (20), (23) and (31).

If LgV �= 0 and Pa(x) > 0,

ℓ(x) ≥
c

2

m
∑

j=1

|Lgj V |aj+1 > 0

by (20), (23) and (31). Therefore, ℓ(x) ≥ 0 in R
n.

Note that all conditions in Lemma 4 are satisfied, and input

(17) globally asymptotically stabilizes the origin and mini-

mizes cost function (24). Moreover, input (17) is continuous

except at the origin. If condition (21) is satisfied, it is clear

that input (17) is continuous at the origin.

We define

γj(x) =
1

R(x)
|Lgj V |aj sgn(Lgj V ),

and let φj(γj) be a sector nonlinearity in
(

1
max aj+1 ,∞

)

. If

LgV �= 0 and Pa(x) > 0, the input

ûj = −φj(γj) (j = 1, . . . , m)

gives

V̇ (x, û) = LfV − LgV · φ(γ) < 0.

Therefore, it achieves a sector margin
(

1
max aj+1 ,∞

)

.

B. Proof of Theorem 3

By Lemma 1 and Theorem 5, Theorem 3 is successfully

proved as the following:

Proof: Substitute

aj =
sj

τ + k − sj

(j = 1, . . . , m)

in Theorem 5, and we obtain the following facts:

1) Input (12) globally asymptotically stabilizes the origin.

2) Input (12) minimizes cost function (15).

3) Input (12) achieves a sector margin
(

τ+k−max sj

τ+k
,∞

)

.

4) Each uj(x) is continuous except at the origin.

By Assumption 1, V (x) and (1) can be rewritten to (3) and

(6). Differentiating both sides of (4) with respect to xi,

lim
ε→0

∂Vo

∂xi

(∆r
εx)

εk−ri
= 0. (32)

By (3), (6), (14) and (32),

lim
ε→0

LfV (∆r
εx)

ετ+k
= Lfh

Vh(x)

lim
ε→0

Lgj V (∆r
εx)

ετ+k−sj
= L

g
j

h

Vh(x)

lim
ε→0

Pa(∆r
εx) =

Lfh
Vh(x)

m
∑

j=1

∣

∣

∣
L

g
j

h

Vh(x)
∣

∣

∣

τ+k
τ+k−sj

.

(33)

By (12), (13) and (33), uj(x) and Pa|Lgj V |aj have local

homogeneous approximation of degree sj > 0. Hence,

condition (21) is satisfied, and uj(x) is also continuous at

the origin. The convergence rate is proved by Lemma 1.

V. DISCUSSION

In this section, we introduce nonlinear systems with spe-

cial structures satisfying Assumption 1. We consider system

(1) satisfying the following assumption:

Assumption 2 (input homogeneous transformation) 1)

There exists a continuous input

u = h(x) + v (34)

such that the resulting system

ẋ = f(x) + g(x)h(x) + g(x)v (35)

becomes homogeneous of degree τ with respect to ∆r
εx

and ∆s
εv.

2) There exists an asymptotically stabilizing controller

v(x) such that each vj(x) is continuous and homo-

geneous of degree sj .

3)

lim
ε→0

gi(∆
r
εx)h(∆r

εx)

ετ+ri
= 0, ∀i = 1, . . . , n

uniformly on Sn−1.

�

The last condition implies that system (1) has homogeneous

approximation. By the first two conditions in Assumption 2

and Theorem 2, the closed-loop system has an homogeneous

Lyapunov function V (x). Since V (x) becomes a control

Lyapunov function for systems (1) and (35), Assumption 1

is always satisfied under Assumption 2.

On the other hand, notice that system (9) in Lemma 2

satisfies Assumption 1.
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Fig. 1. Response of state with controller (37)

VI. EXAMPLE

We consider the following satellite system [6]:

ẋ1 = J1x2x3 + u1

ẋ2 = J2x3x1 + u2

ẋ3 = J3x1x2.

(36)

Since system (36) is homogeneous of degree τ = 1 with

respect to r = (1, 1, 1)T and s = (2, 2)T , exponential or

finite-time stability can not be achieved by a controller u(x)
satisfying u(∆1

εx) = ε2u(x) (See Lemma 1.) For example,

we choose the following homogeneous clf of degree k = 4:

V (x) = x4
1 + x1|x3|

3 + x4
2 + x2x

3
3 + 2x4

3.

By [1], we obtain the following homogeneous inverse opti-

mal controller with a sector margin
(

3
5 ,∞

)

:

uj =











−
5

6
(Ph + |Ph| + c)|Lgj V |

2
3 sgn(Lgj V )

(
∣

∣4x3
1 + |x3|

3
∣

∣ +
∣

∣4x3
2 + x3

3

∣

∣ �= 0
)

0
(∣

∣4x3
1 + |x3|

3
∣

∣ +
∣

∣4x3
2 + x3

3

∣

∣ = 0
)

, (37)

where

V̇ (x, u) =
(

4x3
1 + |x3|

3
)

(J1x2x3 + u1)

+
(

4x3
2 + x3

3

)

(J2x3x1 + u2)

+
(

3x1x
2
3 sgn(x3) + 3x2x

2
3 + 8x3

3

)

J3x1x2

Ph(x) =
LfV

|4x3
1 + |x3|3|

5
3 + |4x3

2 + x3
3|

5
3

.

Figures 1 and 2 show responses for (J1, J2, J3) =
(

−1, 1,− 1
3

)

, c = 1 and x(0) = (1, 0, 2)T . Notice that states

converge to zero very slowly. Hence, we design another

controller.

System (36) has the following approximation:

ẋ1 = u1

ẋ2 = u2

ẋ3 = J3x1x2,

(38)

which is homogeneous of degree τ = 0 with respect to

r = (1, 1, 2)T and s = (1, 1)T . We choose the following

homogeneous clf of degree k = 4:

V (x) = x4
1 + x1|x3|

3
2 + x4

2 + x2|x3|
3
2 sgn(x3) + 2x2

3.
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Fig. 2. Change in input with controller (37)
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Fig. 3. Response of state with controller (39)

Then, Assumption 1 and condition (11) are satisfied. By The-

orem 3, we obtain the following inverse optimal controller

with a sector margin
(

3
4 ,∞

)

:

uj =



















−
2

3
(Pa + |Pa| + c)|Lgj V |

1
3 sgn(Lgj V )

(
∣

∣

∣
4x3

1 + |x3|
3
2

∣

∣

∣
+

∣

∣

∣
4x3

2 + |x3|
3
2 sgn(x3)

∣

∣

∣
�= 0

)

0
(∣

∣

∣
4x3

1 + |x3|
3
2

∣

∣

∣
+

∣

∣

∣
4x3

2 + |x3|
3
2 sgn(x3)

∣

∣

∣
= 0

)

,

(39)

where

V̇ (x, u) =
(

4x3
1 + |x3|

3
2

)

(J1x2x3 + u1)

+
(

4x3
2 + |x3|

3
2 sgn(x3)

)

(J2x3x1 + u2)

+

(

3

2
x1|x3|

1
2 sgn(x3) +

3

2
x2|x3|

1
2 + 4x3

)

J3x1x2

Pa(x) =
LfV

∣

∣

∣
4x3

1 + |x3|
3
2

∣

∣

∣

4
3

+
∣

∣

∣
4x3

2 + |x3|
3
2 sgn(x3)

∣

∣

∣

4
3

.

The origin of the closed system becomes exponentially

stable by Theorem 3. Figures 3 and 4 show responses for

(J1, J2, J3) =
(

−1, 1,− 1
3

)

, c = 1 and x(0) = (1, 0, 2)T .

We can confirm that states converge to zero faster than the

case of Figs. 1 and 2.
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Fig. 4. Change in input with controller (39)

System (38) is also homogeneous approximation of degree

τ = −1 with respect to r = (2, 2, 5)T and s = (1, 1)T . We

choose the following homogeneous clf of degree k = 8:

V (x) = x4
1 + x1|x3|

6
5 + x4

2 + x2|x3|
6
5 sgn(x3) + 2|x3|

8
5 .

Then, Assumption 1 and condition (11) are satisfied. By The-

orem 3, we obtain the following inverse optimal controller

with a sector margin
(

6
7 ,∞

)

:

uj =



















−
7

12
(Pa + |Pa| + c)|Lgj V |

1
6 sgn(Lgj V )

(∣

∣

∣
4x3

1 + |x3|
6
5

∣

∣

∣
+

∣

∣

∣
4x3

2 + |x3|
6
5 sgn(x3)

∣

∣

∣
�= 0

)

0
(
∣

∣

∣
4x3

1 + |x3|
6
5

∣

∣

∣
+

∣

∣

∣
4x3

2 + |x3|
6
5 sgn(x3)

∣

∣

∣
= 0

)

,

(40)

where

V̇ (x, u) =
(

4x3
1 + |x3|

6
5

)

(J1x2x3 + u1)

+
(

4x3
2 + |x3|

6
5 sgn(x3)

)

(J2x3x1 + u2)

+

(

6

5
x1|x3|

1
5 sgn(x3) +

6

5
x2|x3|

1
5 +

16

5
|x3|

3
5 sgn(x3)

)

J3x1x2

Pa(x) =
LfV

∣

∣

∣
4x3

1 + |x3|
6
5

∣

∣

∣

7
6

+
∣

∣

∣
4x3

2 + |x3|
6
5 sgn(x3)

∣

∣

∣

7
6

.

The origin of the closed system becomes exponentially

stable by Theorem 3. Figures 5 and 6 show responses for

(J1, J2, J3) =
(

−1, 1,− 1
3

)

, c = 1 and x(0) = (1, 0, 2)T .

We can confirm that states converge to zero in a finite time.

Remark 2 As in the above example, local homogeneous

degrees of nonlinear systems are not determined uniquely.

So, we need to choose local homogeneous degrees to fit the

purpose.

�
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