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Abstract— In nonlinear output regulation problems, it is
necessary to solve the so-called regulator equations consisting
of a partial differential equation and an algebraic equation. It
is known that, for the hyperbolic zero dynamics case, solving
the regulator equations is equivalent to calculating a center
manifold for zero dynamics of the system. The present paper
proposes a successive approximation method for obtaining
center manifolds and shows its effectiveness by applying it for
an inverted pendulum example.

I. INTRODUCTION

The output regulation (alternatively, servomechanism)

problem is one of central problems in control theory. This

problem deals with asymptotic tracking of prescribed refer-

ence signals and/or asymptotic rejection of undesired dis-

turbances in the output of a dynamical system when these

signals and/or disturbances are generated by an autonomous

exosystem.

For linear systems the output regulation problem was

completely solved in the 1970s in the works of B. A. Francis,

W. M. Wonham, E. J. Davison, and others [1], [2], [3].

This research resulted in the well-known internal model

principle and clarified that the solvability of the linear output

regulation problem is related to the solvability of two linear

matrix equations, so-called the regulator equations.

In 1990 A. Isidori and C. I. Byrnes obtained a necessary

and sufficient condition for the solvability of local nonlinear

output regulation problems [4], which consists of a set of a

partial differential equation and an algebraic equation which

is called the nonlinear regulator equations. Also, it was

shown that the nonlinear regulator equations are closely

related to a center manifold of an extended system and

that the internal model principle in the linear theory can

be generalized with the notion of embedding. However,

practical applications of output regulation are still difficult

since no method is available to obtain exact solutions of

the regulator equations. Analytical approximation methods

based on the Taylor expansion are studied in [5], [6], [7],

[8], [9], however, they often require solving equations of

large size, especially when control systems are of high

dimension or higher order approximations are necessary for

precise output regulation. As a certain counterpart, numerical
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approximation methods based on neural networks are studied

in [10], [11]. On the other hand, numerical methods based

on the successive approximation of the differential part of

the regulator equation by the finite-element method while

trying to minimize a functional expressing the error of its

algebraical part is proposed in [12].

In this paper, we modify, by using a successive approxi-

mation method, the proof of the Center Manifold Theorem

which employs the Contraction Mapping Theorem. This suc-

cessive approximation does not require solving any equations

and seems to be suitable for computer calculations. This

method is applicable for nonlinear output regulation problem

for the hyperbolic zero dynamics case in which the regulator

equations reduce to the center manifold equation for zero

dynamics. Furthermore, it can be seen that the calculations

of the proposed algorithm are all algebraic when the non-

linearities are polynomial. By using an inverted pendulum

example, we demonstrate how this method works. We believe

that even apart from the significance in the controller design

for output regulation problems, this approximation method

is of importance in dynamical systems theory since center

manifolds play important roles for such as bifurcation theory

(see, e.g., [13]).

II. THE NONLINEAR OUTPUT REGULATION

PROBLEM

For the sake of completeness, we review here some facts

about the nonlinear output regulation problem. For a detailed

description consult [14], [15], [16], [17].

A. System Equations and Basic Assumptions

We consider the problem of output regulation for nonlinear

systems modeled by equations of the form

ẋ = f(x, u, w)

e = hr(x, u, w)

y = hm(x, u, w),

(1)

with state x ∈ R
n, control input u ∈ R

m, exogenous

signal w ∈ W ⊂ R
q, regulated output e ∈ R

pr , and

measured output y ∈ R
pm . The exogenous signal w, which

can be viewed as a disturbance or as a reference signal, is

generated by an external autonomous system, which is called

an exosystem,

ẇ = s(w). (2)

It is assumed that the functions f(x, u, w), hr(x, u, w),
hm(x, u, w) and s(w) are Ck (for some large k) of
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their arguments, and also that f(0, 0, 0)=0, hr(0, 0, 0)=0,

hm(0, 0, 0)=0 and s(0)=0.

In the context of the output regulation problem, plant (1)
and exosytem (2) satisfy the following assumptions.

Assumption 1 (Neutral Stability) The equilibrium w = 0
of the exosytem (2) is stable (in the ordinary sense of

Lyapunov), and there exists an open neighborhood W0 ⊂ W
of the point w = 0 in which every point is Poisson stable.

Assumption 2 (Linear Stabilizability) The pair

(

∂f
∂x

(0, 0, 0), ∂f
∂u

(0, 0, 0)
)

is stabilizable and the pair
(

[

∂hm

∂x
(0, 0, 0) ∂hm

∂w
(0, 0, 0)

]

,

[

∂f
∂x

(0, 0, 0) ∂f
∂w

(0, 0, 0)
0 ∂s

∂w
(0)

])

is detectable.

B. The Nonlinear Local Output Regulation Problem

We consider a controller modeled by equations of the form

ξ̇ = η(ξ, y)

u = θ(ξ),
(3)

with state ξ ∈ R
r, in which η(ξ, y) and θ(ξ) are Ck

functions of their arguments satisfying η(0, 0)=0, θ(0)=0.

The problem of local output regulation is to design the

controller (3) such that the closed-loop system

ẋ = f(x, θ(ξ), w)

ξ̇ = η(ξ, hm(x, θ(ξ), w))

ẇ = s(w)

e = hr(x, θ(ξ), w),

(4)

satisfies the following two properties.

Property 1 (Local Internal Stability) For w(t) ≡ 0 the

closed-loop system (4) has an asymptotically stable lin-

earization at the origin.

Property 2 (Local Asymptotic Output Zeroing) For ev-

ery solution of the closed-loop system (4) starting close

enough to the origin (x, ξ, w) = (0, 0, 0) regulated output

satisfies

lim
t→∞

e(t) = lim
t→∞

hr(x(t), θ(ξ(t)), w(t)) = 0.

C. Solvability of the Local Output Regulation Problem

The following result is well known as necessary and

sufficient condition for the solvability of the local output

regulation problem.

Theorem 1 Consider the plant (1), with exosystem (2).
Suppose that Assumptions 1 and 2 are satisfied. Then the

problem of local output regulation is solvable if and only if

there exist mappings x = π(w) and u = c(w), with π(0) = 0

and c(0) = 0, both defined in a neighborhood W0 ⊂ W of

the origin, satisfying the conditions

∂π

∂w
s(w) = f(π(w), c(w), w)

0 = hr(π(w), c(w), w).
(5)

The set of equations (5), which determine the solvability of

the local output regulation problem, are called the regulator

equations. It is well known that the existence of solutions of

the regulator equations is intimately related to the properties

of the so-called zero dynamics of the nonlinear system (1)
with (2). The zero dynamics of a given nonlinear system is

essentially the collection of all the state trajectories which are

compatible with the constraint that the output is identically

zero for all time. In order to present a useful sufficient

condition, the following assumption is needed.

Assumption 3 There exists a locally maximal output zeroing

manifold Me for plant (1) with exosystem (2), which is

characterized by

Me = { (x,w) ∈ Γe

∣

∣ He(x,w) = 0 },

where Γe is an open neighborhood of the origin of R
n+q and

He : R
n+q → R

l for some integer l is a sufficiently smooth

function satisfying He(0, 0) = 0 and

rank
∂He

∂x
(0, 0) = l.

The following theorem provides a sufficient condition for the

solvability of the regulator equations.

Theorem 2 Suppose that Assumption 3 is satisfied. Then

there exist smooth mappings x = π(w) and u = c(w), with

π(0) = 0 and c(0) = 0, both defined in a neighborhood

W0 ⊂ W of the origin, satisfying the regulator equations

(5), provided that the zero dynamics of plant (1) with

exosystem (2) have a hyperbolic equilibrium at the origin

(x, w) = (0, 0).

The fact that Me is an output zeroing manifold implies the

existence of a locally defined sufficiently smooth feedback

control ue(x, w) satisfying ue(0, 0) = 0 such that, under

the control u = ue(x,w), Me is an invariant manifold of

the system, which is contained in the kernel of the mapping

hr(x, ue(x, w), w). More specifically, we can rewrite plant

(1) with exosystem (2) as follows

ẋ1 = f1(x1, x2, u, w)

ẋ2 = f2(x1, x2, u, w)

ẇ = s(w)

e = hr(x1, x2, u, w),

(6)

then there exist x1 = σ(x2, w) and u = ue(x,w) such that

∂σ

∂x2
f2(σ(x2, w), x2, ue(σ(x2, w), x2, w), w) +

∂σ

∂w
s(w)

= f1(σ(x2, w), x2, ue(σ(x2, w), x2, w), w)

0 = hr(σ(x2, w), x2, ue(σ(x2, w), x2, w), w).

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuB16.3

1164



Furthermore, the zero dynamics of the composite system (6)
are governed by the following system

ẋ2 = f2(σ(x2, w), x2, ue(σ(x2, w), x2, w), w) =: δ(x2, w),

ẇ = s(w).

Since the zero dynamics have a hyperbolic equilibrium at the

origin, from the center manifold theorem there is a Ck center

manifold x2 = γ(w) satisfying
∂γ

∂w
s(w) = δ(γ(w), w). By

using this center manifold, we can design the controller for

the local output regulation problem satisfying Properties 1

and 2.

We summarize that under Assumptions 1, 2 and 3, the

local output regulation problem reduces to compute the

center manifold for zero dynamics.

III. ANALYTICAL APPROXIMATION METHODS

FOR CENTER MANIFOLDS

As we have seen in the previous section, the construction

of the control laws for solving the output regulation problem

for the hyperbolic zero dynamics case relies on the solution

of the center manifold equation. For a practical computation

in this case, we propose a successive approximation method

to calculate the center manifold analytically, instead of the

standard Taylor expansion method. The advantage of the

proposed method is its recursiveness and integrability: there

is no need to form or solve simultaneous equations like

the Taylor expansion method and in the case of polynomial

nonlinearities, the integrations required in the algorithm

are all algebraic since the integrands appearing consist of

exponential and trigonometric functions of t.

In this section we modify the proof of the Center Manifold

Theorem, which is originally proven by using the Contraction

Mapping Theorem (see, e.g., [18], [13] and [19]), by using

the successive iteration method which is easy to carry out

with computers.

We consider the system of the form







ẋ = Ax + f(x, y, z)
ẏ = By + g(x, y, z)
ż = Cz + h(x, y, z),

(7)

where (x, y, z)∈R
n×R

m×R
l. We introduce following as-

sumptions.

Assumption 4 A is an n× n real matrix, which has eigen-

values with zero real parts, satisfying that for each a > 0
there exist a constant C1(a) > 0 such that for all t ∈ R and

x ∈ R
n,

∣

∣eAtx
∣

∣ 6 C1(a)ea|t||x|.

B is an m × m real matrix, which has eigenvalues with

negative real parts, satisfying that there exist a constant b >
0 and C2 > 0 such that for all t > 0 and y ∈ R

m,

∣

∣eBty
∣

∣ 6 C2e
−bt|y|.

C is an l× l real matrix, which has eigenvalues with positive

real parts, satisfying that there exist a constant c > 0 and

C3 > 0 such that for all t 6 0 and z ∈ R
l,

∣

∣eCtz
∣

∣ 6 C3e
ct|z|.

Assumption 5 f :Rn×R
m×R

l→R
n, g:Rn×R

m×R
l→R

m,

h:Rn×R
m×R

l→R
l are Cr functions (r > 2) satisfying that

for |x| 6 ε, |x′| 6 ε, |y| 6 ε, |y′| 6 ε, |z| 6 ε, |z′| 6 ε
there exist continuous functions K1(ε), K2(ε), K3(ε) such

that






































|f(x, y, z)|6εK1(ε)

|g(x, y, z)|6εK2(ε)

|h(x, y, z)|6εK3(ε)

|f(x, y, z)−f(x′, y′, z′)|6K1(ε)(|x−x′|+|y−y′|+|z−z′|)

|g(x, y, z)−g(x′, y′, z′)|6K2(ε)(|x−x′|+|y−y′|+|z−z′|)

|h(x, y, z)−h(x′, y′, z′)|6K3(ε)(|x−x′|+|y−y′|+|z−z′|),

and f(0, 0, 0) = 0, g(0, 0, 0) = 0, h(0, 0, 0) = 0,
(

∂f
∂x

(0, 0, 0), ∂f
∂y

(0, 0, 0), ∂f
∂z

(0, 0, 0)
)

= 0,
(

∂g
∂x

(0, 0, 0), ∂g
∂y

(0, 0, 0), ∂g
∂z

(0, 0, 0)
)

= 0,
(

∂h
∂x

(0, 0, 0), ∂h
∂y

(0, 0, 0), ∂h
∂z

(0, 0, 0)
)

= 0,

K1(0) = 0, K2(0) = 0,K3(0) = 0.

Let us define the sequences {xk(t, ξ)}, {vk(ξ)} and

{wk(ξ)} by











































xk+1(t, ξ) = eAtξ

+

∫ t

0

eA(t−s)f(xk(s, ξ), vk(xk(s, ξ)), wk(xk(s, ξ)))ds

vk+1(ξ)=

∫ ∞

0

eBsg(xk(s, ξ), vk(xk(s, ξ)), wk(xk(s, ξ)))ds

wk+1(ξ)=−

∫ 0

−∞
eCsh(xk(s, ξ), vk(xk(s, ξ)), wk(xk(s, ξ)))ds

(8)

for k=0, 1, 2, · · · , and










x0(t, ξ) = eAtξ

v0(ξ) = 0

w0(ξ) = 0

(9)

The following theorem states that the sequences

{xk(t, ξ)}, {vk(ξ)} and {wk(ξ)} are the approximating

solutions to the exact solutions of (7) on the center manifold.

Theorem 3 Under Assumptions 4 and 5, system (7) has a

local center manifold y = v(x), z = w(x), and sequences

vk(ξ), wk(ξ) in (8) are uniformly convergent to this center

manifold as k → ∞.

Proof: First, let ψ : R
n→[0, 1] be a C∞ function, which

is called cut-off function, such that

ψ(x) =

{

1, |x| 6 1

0, |x| > 2.
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For ε>0 define F :Rn×R
m×R

l→R
n, G:Rn×R

m×R
l→R

m,

H : R
n×R

m×R
l→R

l by

F (x, y, z) = f(xψ(x/ε), y, z)

G(x, y, z) = g(xψ(x/ε), y, z)

H(x, y, z) = h(xψ(x/ε), y, z).

Note that F (x, y, z) = f(x, y, z), G(x, y, z) = g(x, y, z),
H(x, y, z) = h(x, y, z) for all |x| 6 ε. We can show that

extended system of (7)






ẋ = Ax + F (x, y, z)
ẏ = By + G(x, y, z)
ż = Cz + H(x, y, z)

(10)

has a center manifold for sufficiently small ε, then show

that this manifold is a local center manifold for the original

system (7) in a sufficiently small neighborhood of the origin

(see, e.g., [13]).

Next, let us define the sequences {x̄k(t, ξ)}, {v̄k(ξ)} and

{w̄k(ξ)} by










































x̄k+1(t, ξ) = eAtξ

+

∫ t

0

eA(t−s)F (x̄k(s, ξ), v̄k(x̄k(s, ξ)), w̄k(x̄k(s, ξ)))ds

v̄k+1(ξ)=

∫ ∞

0

eBsG(x̄k(s, ξ), v̄k(x̄k(s, ξ)), w̄k(x̄k(s, ξ)))ds

w̄k+1(ξ)=−

∫ 0

−∞
eCsH(x̄k(s, ξ), v̄k(x̄k(s, ξ)), w̄k(x̄k(s, ξ)))ds

(11)

for (k = 0, 1, 2, · · · ), and










x̄0(t, ξ) = eAtξ

v̄0(ξ) = 0

w̄0(ξ) = 0,

(12)

then we can show that v̄k(ξ) and w̄k(ξ) uniformly converge

to the center manifold of (10) as k → ∞. For simplicity we

prove here the theorem for the following stable eigenvalue

case, the proof of full system (7) is similar to this.
{

ẋ = Ax + f(x, y)
ẏ = By + g(x, y).

1) First, we show that the sequence {v̄k(ξ)} is uniformly

bounded, that is, there is a constant ε > 0 such that

for every ξ ∈ R
n, |v̄k(ξ)| 6 ε, (k = 0, 1, 2, · · · ).

This will be shown by an induction.

2) Next, we show that the sequence {v̄k(ξ)} satisfies a

Lipschitz condition, that is, there is a constant p1 > 0
such that for every ξ, ξ′ ∈ R

n, |v̄k(ξ) − v̄k(ξ′)| 6

p1|ξ − ξ′|, (k = 0, 1, 2, · · · ).
This will be also shown by an induction. If k = 0 the

statement is apparently true. Assume inductively that

the statement is true up to k. Let k + 1, then by using
∣

∣x̄k(t, ξ)−x̄k(t, ξ′)
∣

∣

6C1(a)
∣

∣ξ−ξ′
∣

∣ea|t|
k

∑

k=0

[

C1(a)K1(ε)(1+p1)|t|
]k

k!
,

we obtain

|v̄k+1(ξ)−v̄k+1(ξ
′)| 6

C1(a)C2K2(ε)(1+p1)

b−a−C1(a)K1(ε)(1+p1)

∣

∣ξ−ξ′
∣

∣.

Thus, it suffices to choose a > 0, ε > 0 such that


















b − a > 0

γ2 :=
C1(a)K1(ε)(1 + p1)

b − a
< 1

γ3 :=
C1(a)C2K2(ε)(1 + p1)

b − a − C1(a)K1(ε)(1 + p1)
6 p1.

3) Next, we show that the sequence {v̄k(ξ)} is uniformly

convergent.

Since the set of Lipschitz functions is a complete

space with supremum norm
∥

∥v̄k

∥

∥ = supξ∈Rn

∣

∣v̄k(ξ)
∣

∣,

it suffices to show that
∥

∥v̄k−v̄k−1

∥

∥ → 0 as k → ∞.

Let
∥

∥v̄0−v̄−1

∥

∥=ε, then inductively we get

∣

∣x̄k(t, ξ)−x̄k−1(t, ξ)
∣

∣ 6
C1(a)K1(ε)

a
ea|t|

×
k−1
∑

l=0

[

C1(a)K1(ε)(1+p1)|t|
]k−1−l

(k−1−l)!

∥

∥v̄l−v̄l−1

∥

∥.

(13)

Using (13), we obtain

∥

∥v̄k+1−v̄k

∥

∥ 6
βk+1

γ2
6

β1

γ2
γ4

k, (14)

where

βk =
C2K2(ε)

a

k−1
∑

l=0

∥

∥v̄l−v̄l−1

∥

∥γ2
k−l, (k = 1, 2, 3, · · · )

γ4 :=
C1(a)K1(ε)(1+p1)

b−a
+

C2K2(ε)

a
= γ2+

C2K2(ε)

a
,

β1 =
εC1(a)C2K1(ε)K2(ε)(1+p1)

a(b−a)
.

Therefore, if a > 0, ε > 0 such that γ4 < 1, then the

sequence {v̄k(ξ)} is uniformly convergent.

4) Next, we show that the sequence {x̄k(t, ξ)} is point-

wise convergent.

Let us define

Sk =
k−1
∑

l=0

{(b−a)γ2|t|}
l

l!
, (k = 1, 2, 3, · · · ),

and using (13), (14) and formula of Abel’s partial

summation, we get
∣

∣x̄k+1(t, ξ)−x̄k(t, ξ)
∣

∣

6
C1(a)K1(ε)

a
ea|t|

k
∑

l=0

{

(b−a)γ2|t|
}k−l

(k − l)!

∥

∥v̄l−v̄l−1

∥

∥

=
β1

γ2
Sk+1γ4

k−2(1+γ4)

6
C1(a)K1(ε)

a

β1

γ2
e{a+(b−a)γ2}|t|γ4

k−2(1+γ4)

for k = 2, 3, 4, · · · . Thus, if γ4 < 1 is satisfied,

{x̄k(t, ξ)} is pointwise convergent for bounded interval

of t.
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5) Finally, we suppose that {v̄k(ξ)} is uniformly conver-

gent to v̄(ξ) and {x̄k(t, ξ)} is pointwise convergent to

x̄(t, ξ), then we show that x̄(t, ξ) is a solution of

ẋ = Ax + F (x, h(x)) (15)

with initial value x̄(0, ξ) = ξ, and that v̄(x̄(t, ξ)) is a

center manifold of (10).
We can apply Lebesgue’s termwise integration theorem

to (11), then we get

x̄(t, ξ)=eAtξ+

∫ t

0

eA(t−s)F (x̄(s, ξ), v̄(x̄(s, ξ)))ds

v̄(x̄(t, ξ))=eBtv̄(ξ)+

∫ t

0

eB(t−s)G(x̄(s, ξ), v̄(x̄(s, ξ)))ds,

moreover, differentiating both sides of these equations

by t, we obtain

˙̄x(t, ξ) = Ax̄(t, ξ) + F (x̄(t, ξ), v̄(x̄(t, ξ)))

∂v̄

∂x
(x̄(t, ξ))

[

Ax̄(t, ξ) + F (x̄(t, ξ), v̄(x̄(t, ξ)))
]

= Bv̄(x̄(t, ξ)) + G(x̄(t, ξ), v̄(x̄(t, ξ))).

Therefore, x̄(t, ξ) is a solution of (15) with x̄(0, ξ) =
ξ, and v̄(x̄(t, ξ)) is a center manifold of (10).

IV. EXAMPLE

Let us consider an application of Theorem 3 to nonlinear

output regulation problem. Consider the inverted pendulum

on a cart system which is shown in Fig. 1. This system is

a well-known unstable, nonminimum phase, hyperbolic zero

dynamics, nonlinear system. Assume the pendulum is freely

hinged to the cart, which is free to move on a horizontal

plane, and the control available is a force applicable to

the cart. The control problem is to design a state feedback

controller for the system such that the position of the cart

can asymptotically track a sinusoidal input. This problem has

been well studied in [20].

m

M

θ

u

l

x
Fig. 1. Inverted pendulum on a cart.

The equations of motion for this system can be described

by [20] (see also [16])

(M + m)ẍ + ml(θ̈ cos θ − θ̇2 sin θ) + bẋ = u,

ml2θ̈ + mlẍ cos θ − mgl sin θ = 0,

where M is the mass of the cart, m is the mass of the pen-

dulum, l is the length of the pendulum, g is the gravitational

acceleration, b is the coefficient of viscous friction for the

motion of the cart, θ is the angle that the pendulum makes

with vertical, x is the position of the cart, and u is the applied

force. With the choice of the state variables x1 = x, x2 = ẋ,

x3 = θ, x4 = θ̇, the state-space equations of the system are

ẋ = f(x) + g(x)u, y = hm(x), (16)

where,

x =









x1

x2

x3

x4









, g(x) =









0
1

M+m sin2 x3

0
− cos x3

l(M+m sin2 x3)









, hm(x) = x1,

f(x) =











x2
mlx2

4
sin x3−bx2−mg cos x3 sin x3

M+m sin2 x3

x4
(M+m)g sin x3+bx2 cos x3−mlx2

4
sin x3 cos x3

l(M+m sin2 x3)











.

The reference input signal yd=Am sinωt can be consid-

ered as an output of the linear harmonic oscillator (exosys-

tem)

ẇ1 = ωw2, w1(0) = 0,

ẇ2 = −ωw1, w2(0) = Am,

yd = w1.

(17)

By using the feedback transformation

u = −(M + m sin2 x3)ω
2w1

− (mlx2
4 sinx3−bx2−mg cos x3 sinx3),

system (16) and the exosystem (17) take the normal form (see

[16] for details), then the zero dynamics of the composite

system become

ẋ3 = x4, ẇ1 = ωw2,

ẋ4 = ω2

l
w1 cos x3 + g

l
sinx3, ẇ2 = −ωw1,

(18)

and thus, the zero dynamics of the inverted pendulum system

has a hyperbolic equilibrium as the eigenvalues of the Jaco-

bian matrix at origin are given by ±
√

g/l. By Theorem 2,

it follows that the solution of regulator equations associated

with the inverted pendulum system exists, and the regulator

equations reduce to the center manifold equation (partial

differential equation part) associated with (18) as follows

∂γ1

∂w1
ωw2 −

∂γ1

∂w2
ωw1 = γ2,

∂γ2

∂w1
ωw2 −

∂γ2

∂w2
ωw1 =

ω2

l
w1 cos γ1 +

g

l
sin γ1.

(19)

An approximate solution to (19) can be obtained by using

Theorem 3. First we choose the matrix T such that the

linear part of (18) is diagonalized. Next let [x̄1 x̄2 ȳ z̄]T =
T−1[w1 w2 x3 x4]

T , then in the new coordinate (18)

becomes

˙̄x1 = −ωx̄2, ˙̄y = −
√

g/l ȳ + ḡ(x̄, ȳ, z̄),
˙̄x2 = ωx̄1, ˙̄z =

√

g/l z̄ + h̄(x̄, ȳ, z̄),
(20)
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where ḡ(x̄, ȳ, z̄) = h̄(x̄, ȳ, z̄) = ω2x̄1

2l
(cos Θ−1)− g

2l
(sinΘ−

Θ), Θ = ω2x̄1

g+lω2 +
√

lȳ−
√

lz̄√
g

. Now, Theorem 3 can be applied

to (20), after the calculations of sequences (8), the sequences

are transformed into the original coordinates by using T , then

we obtain the approximate solution to (19). We remark that

approximations sinx ∼ x − x3/6 and cos x ∼ 1 − x2/2 are

employed here.

We now can solve the local output regulation problem for

the system (16) and the exosystem (17) using the controller

design method from [16]. First, we can obtain an approxi-

mation of the solution of the regulator equations as follows

π(w1, w2) =
[

w1 ωw2 γ1(w1, w2) γ2(w1, w2)
]T

,

c(w1, w2) = −(M + m(sin γ1)
2)ω2w1

−
(

mlγ2
2 sin γ1 − bωw2 − mg cos γ1 sin γ1

)

.

Next, choose a matrix K such that
∂f(0)

∂x
+g(0)K is Hurwitz.

Then the controller u = c(w) + K(x − π(w)) solves

the problem. Let b =12.98 [N/(m/sec)] , M =1.378 [kg],

l =0.325 [m], g =9.8 [m/sec2], m =0.051 [kg], ω =1.8

[rad/sec], Am=1, and let the eigenvalues of the matrix
∂f(0)

∂x
+ g(0)K be [−0.763 ± 2.27j, −1.13 ± 0.745j], then

K = [0.48 13.70 19.11 1.93]. The results of simulation are

presented in Fig. 2 – Fig. 4. Fig. 2 shows the variable x1(t)
and the external signal w1(t), Fig. 3 shows the regulated

output e(t), and Fig. 4 shows the control u(t). It is seen that

the nonlinear controller performs much better than the linear

controller.

V. CONCLUSIONS

In this paper, we proposed an successive approximation

method for the computation of center manifolds. This method

does not require solving any equations unlike the Taylor

expansion method and seems to be suitable for computer

implementation. The proposed algorithm computes approxi-

mate solutions recursively and, when nonlinearities are poly-

nomial, the computations are all algebraic. We demonstrated

how the proposed method works for the output regulation

problem with hyperbolic zero dynamics using an inverted

pendulum system. We would like to remark that the method

may also be useful for bifurcation theory in dynamical

system theory in which center manifolds play an important

role.
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