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Abstract— Relationship between polyhedral functions and
composite quadratic functions is investigated in this paper. The
two composite quadratic functions considered are the pointwise
maximum of quadratics and the convex hull of quadratics.
It is shown that these two composite quadratic functions
are universal for robust, possibly constrained, stabilization
problems. In particular, a linear differential inclusion is stable
(stabilizable with/without constraints) iff it admits a Lyapunov
(control Lyapunov) function in these classes.

Relationships between the existing stability/stabilization con-
ditions derived from these functions are also investigated. It is
shown that a well known stability condition in terms of matrix
equalities is equivalent to a stability condition in terms of bilin-
ear matrix inequalities (BMIs). Similar conclusions are made
about conditions for stabilization of linear differential/difference
inclusions and constrained control systems. This investigation
provides insight into the relationship between two alternative
approaches to various analysis and design problems, making
it possible to transform some synthesis problems derived from
polyhedral functions into LMI-based optimization problems.
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I. Introduction

Polyhedral functions are well established Lyapunov func-

tions. They have been successfully applied to robust control

of uncertain systems and constrained control systems (see

[3], [4] and the vast reference therein). Polyhedral func-

tions are universal Lyapunov functions in several important

applications since every convex homogeneous Lyapunov

function can be approximated by polyhedral functions. When

polyhedral functions are applied as Lyapunov functions,

various analysis and design problems can be converted into

algebraic problems. Perhaps the most important application

of polyhedral functions is for stability analysis of linear

differential inclusions (LDIs). Different authors have worked

on this problem and obtained basically equivalent algebraic

conditions which are necessary and sufficient for robust

stability (e.g., [3], [6], [16], [17]). Another important appli-

cation is for constrained control systems, where polyhedral

functions are used to search for the maximal invariant set

within the state constraint by admissible control (e.g., see

[19], [3], [10]).

Another popular type of Lyapunov functions are the

quadratic functions. They are more numerically tractable

than polyhedral functions since they usually convert analysis

and design problems into optimization problems with linear

matrix inequality (LMI) constraints. However, the results

obtained by quadratic functions can be conservative. In

recent years, significant efforts have been devoted to the

development of Lyapunov functions which are derived from

one or a family of quadratic functions. In [7], [22], the

homogeneous polynomial functions are quadratic functions

of state augumented from the original state. In [15], [20],

piecewise quadratic Lyapunov functions are defined accord-

ing to given partitions of state-space. Due to the quadratic-

like nature of these functions, the analysis problems are able

to be converted into LMIs or BMIs.

Recently, a pair of conjugate Lyapunov functions were

developed and used for various analysis and design pur-

poses, e.g., for estimation and enlargement of the domain

of attraction and for evaluation of the robust nonlinear L2

gain, in [8], [9], [11], [12], [13], [14]. One of them is

obtained by taking the pointwise maximum of a family of

quadratic functions and the other is the convex hull of a

family of quadratic functions. They are both convex and

homogeneous of degree two. Since these two functions are

composed from a family of quadratic functions, they are

called composite quadratic functions. When these functions

are used as Lyapunov functions, the synthesis problems are

converted into optimization problems with BMI constraints

and can be solved with LMI-based methods.

The purpose of this paper is to clarify the relationship be-

tween the polyhedral functions and the composite quadratic

functions, and the relationship between some important

stability/stabilization conditions derived from them. These

relationships provide new insight into several important

Lyapunov functions, as well as some matrix equalities and

matrix inequalities.

Notation:

− ΓK : = {γ ∈ R
K : ΣK

k=1
γk = 1, γk ≥ 0};

− ∇V (x): gradient of V at x;

− V̇ (x; ζ): one-sided directional derivative at x along ζ;

− co{S}: convex hull of a set S.

II. The Lyapunov functions

For a positive semidefinite function V : R
n → [0,∞),

denote its 1-level set as

LV :=
{

x ∈ R
n : V (x) ≤ 1

}

.

The one sided directional derivative of V (x) is defined with

respect to two variables: x and a vector ζ specifying the

direction of increment or motion:

V̇ (x; ζ) := lim
h ↓ 0

V (x + ζh) − V (x)

h
,

where “h ↓ 0” denotes approaching 0 from right-hand

side. In this section, we discuss three types of Lyapunov
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functions, the polyhedral function, the max of quadratics, the

convex hull of quadratics and their relationship. Methods for

computing their directional derivatives are also provided.

A. The polyhedral function

Given a family of vectors cj ∈ R
n, j = 1, · · · , J , a

polyhedral function can be defined as

Vp(x) := max{xT cjc
T
j x : j = 1, · · · , J}. (1)

The 1-level set of Vp is the polytope

LVp
= {x ∈ R

n : xT cjc
T
j x ≤ 1, j = 1, · · · , J}. (2)

For easy comparison with other functions, we consider a

piecewise quadratic function Vp(x) instead of the piecewise

linear function max{|cT
j x| : j = 1, · · · , J}, which has the

same 1-level set as Vp. For Vp to be positive definite, J has

to be no less than n and the vectors cj’s have to span the

space R
n. In this case, LVp

is a compact convex set.

A polyhedral function can also be equivalently defined in

terms of the vertices of a symmetric polytope. Let the vertices

of the polytope LVp
be {±dk : k = 1, · · · ,K}. For each

x ∈ LVp
, there exists a θ ∈ R

K such that ΣK
k=1

|θk| ≤ 1 and

x = ΣK
k=1

θkdk. Since the vertices appear as symmetric pairs

±dk, θk’s can be positive or negative. If x is on the boundary

of LVp
, then the minimal ΣK

k=1
|θk| has to be 1. Since Vp(x)

is homogeneous of degree two, i.e., Vp(αx) = α2Vp(x), we

have,

Vp(x) = min
{

(

ΣK
k=1|θk|

)2

: x = ΣK
k=1θkdk

}

. (3)

With this description,

LVp
= co{±dk : k = 1, · · · ,K}

= {ΣK
k=1θkdk : ΣK

k=1|θk| ≤ 1} (4)

B. The composite quadratic functions

Let K be a positive integer. Define

ΓK :=
{

γ ∈ R
K : γ1 + γ2 + · · · + γK = 1, γk ≥ 0

}

.

Given K positive definite matrices Pk = P T

k > 0, k =
1, · · · ,K, the max of quadratics is defined as

Vmax(x) := max{xTPkx : k = 1, · · · ,K}, (5)

and the convex hull of quadratics is defined as

Vc(x) := min
γ∈ΓK

xT
(

ΣK
k=1γkP−1

k

)−1

x. (6)

Sometimes it may be more convenient to call Vmax the max

function and Vc the convex hull function, as in [9].

In [9], [13], it was established that Vmax is strictly convex,

and Vc is convex and continuously differentiable with the

gradient given by ∇Vc(x) = 2
(

ΣK
k=1

γ∗
k(x)P−1

k

)−1
x, where

γ∗(x) = arg min
γ∈ΓK

xT
(

ΣK
k=1γkP−1

k

)−1

x. (7)

It follows that

V̇c(x; ξ) = (∇Vc(x))Tξ = 2xT
(

ΣK
k=1γ

∗
k(x)P−1

k

)−1

ξ. (8)

The 1-level set of the quadratic function V (x) = xTPx is

an ellipsoid. For convenience, denote

E(P ) := {x ∈ R
n : xTPx ≤ 1}.

It is easy to see that LVmax
is the intersection of the ellipsoids

E(Pk), k = 1, · · · ,K. In [13], it was shown that LVc
is the

convex hull of the union ∪K
k=1

E(Pk).

C. Relationship between polyhedral functions and composite

quadratic functions

It is known that every convex function which is homoge-

neous of degree two can be arbitrarily closely approximated

by polyhedral functions. In what follows, we show that a

positive definite polyhedral function can be arbitrarily closely

approximated by the max of quadratics, or by the convex hull

of quadratics. The approximation by the max of quadratics

is easy to verify. The approximation by the convex hull

of quadratics is more useful since the convex hull function

is continuously differentiable. With the approximation by a

convex hull function, the sharp vertices or edges of a poly-

tope are softened with portions of the surface of ellipsoids.

Proposition 1: Given a set of vectors dk ∈ R
n, k =

1, · · · ,K, that span R
n, and let Vp be defined as in (3).

Define

Vc, δ(x) = min
γ∈ΓK

xT
(

ΣK
k=1γk(dkdT

k + δI)
)−1

x

Then for every ε > 0, there exists a δ > 0 such that

1

1 + ε
Vp(x) ≤ Vc, δ(x) ≤ Vp(x) ∀x ∈ R

n. (9)

D. Directional derivative of the max function

Consider

Vmax = max{xT Pkx : k = 1, · · · ,K},

with Pk = P T

k ≥ 0 for all k. For x ∈ R
n, define

Imax(x) := {k : xT Pkx = Vmax(x)}.

Lemma 1: For a vector ξ ∈ R
n, the directional derivative

of Vmax at x along ξ is

V̇max(x; ξ) = max{2xT Pkξ : k ∈ Imax(x)}. (10)

E. Directional derivative of polyhedral functions

The formula (10) can also be used to compute direc-

tional derivative of a polyhedral function Vp(x) by letting

Pk = ckcT
k . In some important applications, such as sta-

bility/stabilization of LDI, and stabilization of systems with

input and state constraints, the directional derivative at the

vertices play a key role.

Let Vp(x) be a polyhedral function with two equivalent

descriptions:

Vp(x) = max{xTcjc
T

jx : j = 1, · · · , J} (11)

and

Vp(x) = min
{

(

ΣK
k=1|θk|

)2

: x = ΣK
k=1θkdk

}

. (12)

Define

θ∗(x) := arg min
{

(

ΣK
k=1|θk|

)2

: x = ΣK
k=1θkdk

}

. (13)

Lemma 2: Let Vp(x) be given by (11) and (12). Given

vectors ξk ∈ R
n, k = 1, · · · ,K. Let

α = max{V̇p(dk; ξk) : k = 1, · · · ,K}.
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Then

V̇p(x; ΣK
k=1θ

∗
k(x)ξk) ≤ αVp(x) ∀x ∈ R

n (14)

Applying Lemma 2 to the case where ξk = Adk or ξk =
Adk + Buk, we have

Corollary 1: Let Vp(x) be given by (12). For A ∈
R

n×n, B ∈ R
n×m, let

α1 = max{V̇p(dk; Adk) : k = 1, · · · ,K},

α2 = max{V̇p(dk; Adk + Buk) : k = 1, · · · ,K}.

Then

V̇p(x;Ax) ≤ α1Vp(x), ∀x ∈ R
n,

V̇p(x;Ax + BΣK
k=1θ

∗
k(x)uk) ≤ α2Vp(x), ∀x ∈ R

n.

The above corollary will be used for deriving algebraic

conditions for stability and stabilization of LDI by focusing

on the vertices. For stabilization, a feedback law u(x) =
ΣK

k=1
θ∗k(x)uk is constructed from the control at the vertices

and the representation of x with respect to the vertices.

Although the two forms of Vp(x) in (11) and (12) are

equivalent, the relationship between cj’s and dk’s can be

complicated. When Vp(x) is given by (12) in terms of the

vertices dk, it would be desirable to compute the directional

derivative at the vertices without converting to the other

form. The following proposition makes it convenient to

characterize the directional derivative at the vertices and will

be readily applied for deriving algebraic conditions.

Proposition 2: Let Vp(x) be given by (12). Suppose that

each dk is a vertex, i.e, it cannot be expressed as the convex

combination of ±dj , j 6= k. Then for a vector ξ ∈ R
n,

V̇p(dk; ξ) = min
{

2λk + 2Σj 6=k|λj | : ξ = ΣK
j=1λjdj

}

(15)

III. Stability of linear differential inclusions

Consider a linear differential inclusion (LDI)

ẋ ∈ co{Aix : i = 1, · · · , N}. (16)

The LDI is said to be exponentially stable with a convergence

rate η > 0 if there exists a constant α such that for every

possible solution x(·), we have |x(t)| < αe−ηt|x(0)| for all

t > 0, where | · | denotes any kind of norm.

It is established in the literature that asymptotic stability

of LDI implies exponential stability. Furthermore, the LDI is

exponentially stable with convergence rate η, if and only if

there exists a convex Lyapunov function V (x), homogeneous

of degree two, such that

V̇ (x;Aix) < −2ηV (x) ∀x ∈ R
n, i = 1, · · · , N. (17)

It is recently established in [9] that the stability of (16) is

equivalent to the stability of the dual system

ẏ ∈ co{AT
i y : i = 1, · · · , N}, (18)

with the same convergence rate. In particular, (17) is satisfied

if and only if

V̇ ∗(y;AT
i y) < −2ηV ∗(y) ∀ y ∈ R

n, i = 1, · · · , N.
(19)

where V ∗ is the conjugate function of V .

A. Stability condition derived from polyhedral functions

In the literature, necessary and sufficient conditions for

the stability of the LDI (16) have been obtained by different

authors (e.g., [3], [16], [17]). In [16], the condition was

obtained by using Fakars’ Lemma and in [3], the condition

was obtained by using the discrete-time Euler approximating

system. These conditions are similar and basically equivalent.

A closely related result was derived in [19] for achieving

asymptotic stability on polytopes under state and input

constraints. The algebraic condition in [19] can be readily

applied to obtain stability condition for LDIs by removing

the state and input constraints.

Theorem 1: [3], [16], [17] The LDI (16) is exponentially

stable with a convergence rate η if and only if there exist an

integer K ≥ n, an n × K matrix D of rank n and K × K
matrices

Λi = (λijk)
K

j,k=1
, i = 1, · · · , N,

satisfying

λikk + Σj 6=k|λijk| < −η, ∀ i, k, (20)

and the matrix equalities

AiD = DΛi i = 1, · · · , N. (21)

(Here λijk is the element of Λi at the j-th row, k-th column.)

By duality, Ai in (21) can be replaced with AT

i.

B. Stability condition derived from composite quadratic

functions

Using the max function, a sufficient condition for the

stability of LDI can be easily established using the S

procedure (see [5], [9]). The condition takes the form of

a family of BMIs. A set of dual matrix inequalities are

obtained in [9] for stability and various performance via the

conjugate relationship between max functions and convex

hull functions. In what follows, we summarize the main

results from [9] on stability.

Theorem 2: Let Vmax and Vc be the max function and the

convex hull function constructed from Pk = PT
k > 0, k =

1, · · · ,K by (5) and (6). Denote Qk = P−1

k .

1. If there exist γijk ≥ 0, i = 1, · · · , N, j, k = 1, · · · ,K
and η > 0 satisfying

AT

iPk + PkAi < Σj 6=kγijk(Pj − Pk) − 2ηPk, ∀ i, k,
(22)

then V̇max(x;Aix) ≤ −2ηVmax(x) for all x, i.
2. If there exist γijk ≥ 0, i = 1, · · · , N, j, k = 1, · · · ,K

and η > 0 satisfying

AiQk + QkAT

i < Σj 6=kγijk(Qj − Qk) − 2ηQk, ∀ i, k,
(23)

then V̇c(x;Aix) ≤ −2ηVc(x) for all x, i.

Based on the above theorem, LMI-based algorithms have

been derived for evaluation of the convergence rate. Although

there is no guarantee that the global optimal solution can

be obtained, extensive numerical examples have shown the

effectiveness of the algorithm. Technically speaking, increas-

ing the number K would lead to less conservative results.
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However, it may not be necessary to pick a very large K.

Examples show that K = 2, 3 would result in significant

improvement as compared to quadratic functions (K = 1).

In many examples, it is observed that, with a fixed K, the

maximal convergence rate obtained from the max function

and that from the convex hull function are different. This

difference in evaluation of convergence rate actually shows

that the pair of conjugate functions complement each other,

since we can always pick the better result.

Since the matrix inequalities in (22) and (23) are obtained

via S procedure and duality, it is possible that they would

give conservative conditions for stability, even with respect

to the specific Lyapunov functions. However, with the help

of the necessary and sufficient condition established by the

polyhedral functions, we will show in the next section that

the conditions (22) and (23) are not conservative, if K is

allowed to be any integer.

C. Equivalent stability conditions

Let K ≥ n be a given positive integer. Consider Vp

constructed from 2K vertices ±dk, k = 1, · · · ,K, and

Vmax, Vc constructed from K matrices Pk = PT
k > 0. We are

interested in the relationship between the matrix equalities

(21) and the matrix inequalities (22) and (23).

Lemma 3: Given matrices Ai, i = 1, · · · , N , and a number

K ≥ n. Suppose that there exist a positive number η > 0, an

n×K matrix D of rank n and K×K matrices Λi, satisfying

λikk + Σj 6=k|λijk| < −η, ∀ i, k, (24)

AiD = DΛi ∀ i. (25)

Let dk be the kth column of D. Then

AidkdT
k +dkdT

k AT
i ≤−2ηdkdT

k +Σj 6=k|λijk|(djd
T
j −dkdT

k )

∀ i, k. (26)

Furthermore, there exist matrices Qk = QT

k > 0, and

numbers γijk ≥ 0, j, k = 1, · · · ,K, i = 1, · · · , N, satisfying

AiQk+QkAT
i <−2ηQk+Σj 6=kγijk(Qj−Qk), ∀ i, k. (27)

Recall from Proposition 1 that a polyhedral function can

be arbitrarily closely approximated by a convex hull function

Vc(x) constructed from Pk = (dkdT

k +εI)−1, we may expect

that same convergence rate should be ensured with a Vc(x)
close enough to Vp(x). However, Lemma 3 does not come as

a direct consequence of the approximation in Proposition 1

and Theorem 2. This is because by Theorem 2, the matrix

inequalities only give a sufficient condition (as a result of the

S procedure) for stability with certain convergence rate. On

the contrary, Lemma 3 indicates that the matrix inequality

condition derived from the S procedure is not conservative

as Vc approaches a polyhedral function.

Combining Theorems 1, 2 and Lemma 3, we have the

following result.

Theorem 3: The following statements are equivalent:

1. The LDI is exponentially stable with convergence rate

η.

2. There exist an integer K ≥ n, an n × K matrix D of

rank n and K × K matrices Λi, satisfying

λikk + Σj 6=k|λijk| < −η, ∀ i, k, (28)

AiD = DΛi ∀ i. (29)

3. There exist an interger K, an n×K matrix D of rank n
and numbers γijk ≥ 0, j, k = 1, · · · ,K, i = 1, · · · , N,
satisfying

AidkdT
k + dkdT

k AT
i

≤ −2ηdkdT
k +Σj 6=kγijk(djd

T
j −dkdT

k ), ∀ i, k. (30)

4. There exist an integer K, n × n matrices Qk = QT
k >

0, k = 1, · · · ,K, and numbers γijk ≥ 0, j, k =
1, · · · , K, i = 1, · · · , N, satisfying

AiQk+QkAT
i < −2ηQk+Σj 6=kγijk(Qj−Qk), ∀ i, k.

(31)

Furthermore, for a fixed number K ≥ n, items 2, 3 are

equivalent and they both imply item 4. By duality, Ai can

be replaced with AT
i in items 2,3,4.

Consider the following three optimization problems for

evaluation of the convergence rate.

η∗
1 = sup

D,Λi

η, (32)

s.t. (28), (29), D has full row rank

η∗
2 = sup

dk,γijk≥0

η, (33)

s.t. (30), [d1 · · · dK ] has full row rank

η∗
3 = sup

Qk>0,γijk≥0

η, (34)

s.t. (31)

Problems (32) and (33) determine the optimal convergence

rate using polyhedral functions and (34) determines that

using the convex hull of quadratics. Problem (33) appears

to be semidefinite programming but the rank 1 constraint on

dkdT
k is hard to deal with. Based on Theorem 3, we can

conclude that η∗
1 = η∗

2 ≤ η∗
3 for a fixed K since items 2 and

3 implies item 4. This means that, even though there always

exists a polyhedral function to verify the stability of an LDI,

the number K needed may be larger than that needed for a

max function or a convex hull function. For example, for an

LDI ẋ = co{A1x,A2x} with

A1 =





−10 −0.2 −0.2
1 0 0
0 1 0



 , A2 =





−10 −10 −10
1 0 0
0 1 0



 ,

it was found in [21] that 2 × 5101 vertices (K = 5101) are

required for the polyhedral function to verify the stability,

while by solving (34) with K = 5, stability is verified with

convergence rate η∗
3 = 0.0018.

IV. Robust Stabilization of LDI

Consider an open loop linear differential inclusion

ẋ∈co{Aix+Biu : i = 1, · · · , N}, x∈R
n, u∈R

m. (35)
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If a linear state feedback u = Fx is applied, the closed-loop

system is also an LDI:

ẋ ∈ co{(Ai + BiF )x : i = 1, · · · , N}, x ∈ R
n. (36)

The stabilization condition can be readily obtained by re-

placing Ai in (29), (30) and (31) with Ai +BiF , where F is

a design parameter. In the case of linear output feedback

u = Fy where y = Cx, we need to replace Ai with

Ai + BiFC.

Here we would like to consider nonlinear state feedback

design which offers more degree of freedom and enhanced

performance. A necessary and sufficient condition for robust

stabilization by nonlinear state feedback was provided in [1]

via polyhedral Lyapunov functions. A sufficient condition

was provided in [11] via convex hull functions. The following

theorem establishes a connection between these conditions.

Theorem 4: The following statements are equivalent:

1. The LDI (35) is exponentially stablizable with conver-

gence rate η by nonlinear state feedback.

2. There exist an integer K ≥ n, an n × K matrix D
of rank n, an m × K matrix U , and K × K matrices

Λi, i = 1, · · · , N , satisfying

λikk + Σj 6=k|λijk| < −η, ∀ i, k, (37)

AiD + BiU = DΛi ∀ i. (38)

3. There exist an integer K, n×n matrices Qk = QT
k > 0,

m×n matrices Yk, k = 1, · · · ,K, and numbers γijk ≥
0, j, k = 1, · · · ,K, i = 1, · · · , N, satisfying

AiQk + BiYk + QkAT
i + Y T

k BT
i

< −2ηQk + Σj 6=kγijk(Qj − Qk), ∀ i, k. (39)

For a given number K ≥ n, item 2 implies item 3.

With the matrices U,D satisfying (37), (38), a nonlinear

feedback law u(x) can be constructed from the columns

of U , uk, k = 1, · · · ,K, and the columns of D, dk, k =
1, · · · ,K, as follows:

u(x) = ΣK
k=1θ

∗
k(x)uk, (40)

where θ∗(x) is an optimal representation of x with respect

to di’s, as defined in (13). Consider Vp(x) given in terms of

the vertices ±dk, k = 1, · · · ,K:

Vp(x) = min
{

(

ΣK
k=1|θk|

)2

: x = ΣK
k=1θkdk

}

.

By Proposition 2, conditions (37), (38) ensure that

V̇p(dk; Aidk + Biuk) ≤ −2η ∀ i, k. (41)

By Corollary 1 and (40), we have

V̇p(x; Aix + Biu(x)) ≤ −2ηVp(x) ∀x, i. (42)

The construction of feedback law under condition of

item 3 is outlined below (see [11]). For x ∈ R
n, let

γ∗(x) = arg min
γ∈ΓK

xT
(

ΣK
k=1γkQk

)−1

x. (43)

Define

Y (γ∗) =
K

∑

k=1

γ∗
kYk, Q(γ∗) =

K
∑

k=1

γ∗
kQk, (44)

F (γ∗) = Y (γ∗)Q(γ∗)−1. (45)

Then the feedback law is u(x) = F (γ∗(x))x.

V. Constrained stabilization

Let G ∈ R
p×n. Denote

L(G) = {x : |Gx|∞ ≤ 1} = {x : |gix| ≤ 1, i = 1, · · · , p},

where gi is the ith row of G.

Consider an open-loop linear system,

ẋ = Ax + Bu, x ∈ R
n, u ∈ R

m, (46)

where the state and input have to satisfy the following

constraints

|u(t)|∞ ≤ 1, x(t) ∈ L(G) ∀ t > 0. (47)

One basic problem is to find a set X0 inside L(G) so

that for each initial state x0 ∈ X0, there exist a control

satisfying the bound |u(t)|∞ ≤ 1 to keep x(t) ∈ X0 for all

t. Such a set X0 is called a controlled invariant set. If in

addition limt→∞ x(t) = 0 with a certain convergence rate η,

for all x0 ∈ X0, we say that X0 is controlled invariant with

convergence rate η. In [10], attempt was made to find the

maximal controlled invariant set inside L(G) for discrete-

time systems. It was shown that the maximal controlled

invariant set is convex. For continuous-time systems, the

maximal controlled invariant set is also convex and thus can

be arbitrarily approximated by polytopes and convex hull of

ellipsoids. In what follows, we give conditions for controlled

invariance of polytopes and of convex hull of ellipsoids. The

relationship between the conditions will also be examined.

Theorem 5: The polytope LVp
= co{±dk : k =

1, · · · ,K}, with K ≥ n, is controlled invariant with conver-

gence rate η under the constraints (47) if and only if there

exist an n × K matrix D of rank n, an m × K matrix U ,

and a K × K matrix Λ = {λjk}
K
j,k=1

, satisfying

λkk + Σj 6=k|λjk| < −η, ∀ k, (48)

AD + BU = DΛ, (49)

|uij | ≤ 1 ∀ i, j, (50)

|gidk| ≤ 1, ∀ i, k, (51)

where dk is the kth column of D.

Similar constrained control problem was addressed in [19],

where linear control law u = Fx was considered. In this

case, U = FD depends on D and is much more restricted

than that in Theorem 5.

To derive conditions for controlled invariance of the con-

vex hull of ellipsoids, recall that, for a matrix G ∈ R
p×n

and a matrix P = P T > 0,

E(P ) ⊂ L(G) ⇔

[

1 gi

gT

i P

]

≥ 0, i = 1, · · · , p. (52)

Theorem 6: Let Vc be constructed from Pk = P T

k > 0 and

let Qk = P−1

k . Suppose there exist m × n matrices Yk, k =
1, · · · ,K, and numbers γjk ≥ 0, j, k = 1, · · · ,K, satisfying

AQk + BYk + QkAT + Y T
k BT

< −2ηQk + Σj 6=kγjk(Qj − Qk), ∀ k (53)

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 ThC11.2

5436



giQkgT

i ≤ 1 ∀ i, k (54)
[

1 Ykℓ

Y T

kℓ Qk

]

≥ 0 ∀ k, ℓ, (55)

where Ykℓ is the ℓ-th row of Yk, then LVc
⊂ L(G) is

invariant with convergence rate η under the feedback law

u(x) = F (γ∗(x))x, where F (γ∗(x)) is given by (45).

Furthermore, |u(x)|∞ ≤ 1 for all x ∈ LVc
.

Recall from Theorem 4 that (53) ensures invariance of

LVc
in the absence of input and state constraints. Now the

constraint (54) ensures that E(Pk) ⊂ L(G) for each k, thus

LVc
= co{∪K

k=1
E(Pk)} ⊂ L(G) since L(G) is convex.

Meanwhile, the constraint (55) ensures that |u(x)|∞ ≤ 1 for

all x ∈ LVc
. This can be seen as follows. Multiplying (55) on

the right and left with diag{1, Q−1

k } and let Fk = YkQ−1

k ,

we have

[

1 Fkℓ

F T

kℓ Q−1

k

]

≥ 0 for all k, ℓ. By (52), this is

equivalent to E(Q−1

k ) ⊂ L(Fk), and to

|Fkx|∞ ≤ 1 ∀x ∈ E(Q−1

k ). (56)

Recalling from the proof of Theorem 1 in [11] that, if x ∈
LVc

, then u(x) = F (γ∗(x))x =
∑K

k=1
γ∗

kFkxk for certain

xk ∈ E(Q−1

k ). Since |Fkxk|∞ ≤ 1 for all xk ∈ E(Q−1

k ), we

have |u(x)|∞ ≤ 1.

Since the condition in Theorem 6 is only sufficient for the

controlled invariance of LVc
, it is not certain that the maximal

controlled invariant set can be determined via the condition.

The following result shows that, each controlled invariant

polytope can be arbitrarily approximated by the convex hull

of ellipsoids satisfying conditions in Theorem 6.

Theorem 7: Given an integer K ≥ n and an n×K matrix

D of rank n. Suppose there exist a m × K matrix U , and

a K × K matrix Λ, satisfying (48) through (51). Let M =
max{gig

T

i : i = 1, · · · , p}. For ε > 0, let Qk = (dkdT

k +
εI)/(1 + εM), Yk = ukdT

k/(1 + εM). Then there exists a

sufficiently small ε such that Qk and Yk satisfy (53) to (55).

VI. Equivalent stability conditions for linear difference

inclusions

Consider a linear difference inclusion

x(k + 1) ∈ co{Aix(k) : i = 1, · · · , N}. (57)

We have the following result.

Theorem 8: The following statements are equivalent:

1. The LDI (57) is asymptotically stable.

2. There exist a number K ≥ n, an n × K matrix D of

rank n and K × K matrices Λi satisfying

ΣK
j=1|λijk| < 1 ∀ i, k, (58)

AT
i D = DΛi ∀ i. (59)

3. There exist an integer K > 0, matrices Pk = PT
k > 0

and numbers γijk ≥ 0, i = 1, · · · , N ; j, k = 1, · · · ,K
satisfying ΣK

j=1
γijk < 1 for all i, k and

AT
i PkAi < ΣK

j=1γijkPj ∀ i, k. (60)

When K is fixed, item 2 implies item 3.

VII. Conclusions

This paper clarifies the relationship between the polyhedral

functions and the composite quadratic functions, and the rela-

tionship between some important stability conditions derived

from them. The results provide new insight into three types

of important Lyapunov functions, as well as the relationship

between some matrix equalities and matrix inequalities.
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