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Abstract— The problem of stability of dynamical neural

networks with uncertain delays is studied, where uncertain

delays are assumed to be constant. In this paper, a new

approach is developed to establish delay-dependent sufficient

conditions for asymptotic stability of delayed neural networks.

The new approach is a combination of the discretized Lyapunov

functional method and the free-weighting matrix technique. The

established delay-dependent sufficient conditions are expressed

by means of linear matrix inequalities, and thus are easily

checkable. The new delay-dependent stability conditions are

further illustrated by numerical results and are also compared

with the existing results.

I. INTRODUCTION

During the past decade, the research on neural networks

has been an active area due to potential important applica-

tions of neural networks in such fields as control engineering,

signal processing, pattern recognition, associative memories

and so on. In these applications, the stability of the equilib-

rium plays a critical role. Given the fact that in biological

and artificial neural systems there inevitably exist integration

and communication delays which may cause oscillation and

instability, considerable effort has been made on stability

analysis of delayed neural networks (DNNs) over the past

years. The stability results for delayed neural networks can

be classified into two categories: delay-independent stability

criteria and delay-dependent stability criteria. The former do

not make use of information on the size of delays while

the latter include such information. It is known that delay-

dependent stability conditions are generally less conservative

than delay-independent ones, especially when the size of the

delay is small.

Among the commonly-used approaches for establishing

delay-dependent stability conditions of delayed neural net-

works, Lyapunov function approaches [13]-[17] and Lya-

punov functional approaches [6], [10]-[12], [18]-[20]. are

two representative and yet different types of methodologies.

Lyapunov function approaches impose no restriction on the

derivative of the time-delay and usually give simple stability

criteria, especially when the delayed neural networks have

multiple time-varying delays. On the other hand, Lyapunov

functional approaches normally require the information on

the derivative of the time-delay and the obtained stability

criteria are expressed in terms of linear matrix inequalities

(LMIs). In general, the stability results obtained by the

Lyapunov functional approach are less conservative than

those obtained by the Lyapunov function approach because

the Lyapunov functional approach makes use of more infor-

mation about the system. It is well known that when using the

Lyapunov functional approach, the choice of an appropriate

Lyapunov functional is crucial for deriving less conservative

stability criteria. In the delay-dependent stability analysis of

linear time-delay systems, a model transformation technique

is often used to construct Lyapunov functionals (see, e.g.,

[3]-[5]). In order to reduce the conservatism caused by the
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bounding techniques on cross product terms for the model

transformation methods, the free-weighting matrix method

was proposed in [7]-[9], in which the free-weighting matrices

are introduced between the terms in the Leibniz formula and

no bounding techniques on cross product terms are involved.

Recently, this method has been applied to delay-dependent

stability analysis for delayed neural networks [6], [9], [19].

Another important method for stability analysis of linear

time-delay systems is the discretized Lyapunov functional

method developed in [1]. The discretization based method

appears to be very efficient since some examples show that

the obtained results are close to the analytical ones.

The purpose of the present paper is to analyze stability of

delayed neural networks with uncertain constant delays. The

key idea is to integrate the discretized Lyapunov functional

method with the free-weighting matrix technique. This new

analytical method enables us to establish novel linear ma-

trix inequality based delay-dependent sufficient conditions

for asymptotic stability of neural networks with uncertain

interval delay. As will be shown through numerical results,

the delay-dependent stability criteria proposed in this paper

are essentially less conservative than the existing ones.

II. PROBLEM FORMULATION

In the sequel, if not explicitly stated, matrices are assumed

to have compatible dimensions. The notation M > (≥, <,≤)

0 is used to denote a positive-definite (positive-semidefinite,

negative, negative-semidefinite) matrix. ‖ · ‖ denotes the

Euclidean vector norm or the spectral norm of matrices.

In this paper, we study the delayed neural network which

is described by the following delay-differential equation

du(t)

dt
= −Cu(t) + Ag(u(t)) + Bg(u(t − τ)) + I, (1)

where

u = [u1, u2, . . . , un]T

is a real n-vector which denotes the state variables associated

with the neurons,

C = diag(c1, c2, . . . , cn)

is a diagonal matrix representing self-feedback term, A, B ∈
R

n×n are the connection weight matrix and the delayed

connection weight matrix, respectively, and

g(u(t)) = [g1(u1(t)), g2(u2(t)), . . . , gn(un(t))]T

denotes the neuron activation function. I is a real constant

input n-vector. The delay τ is an uncertain constant satisfying

0 ≤ h1 ≤ τ ≤ h2, (2)

where h1 and h2 are known constants. Set

r0 =
1

2
(h2 + h1)

and

δ =
1

2
(h2 − h1).

Throughout the paper, the following assumption is

adopted.

(H) Each function gi is continuous, and there exists scalar

ki such that for any α, β ∈ R,

0 ≤ [gi(α) − gi(β)](α − β) ≤ ki(α − β)2.

Introduce the matrix

K = diag(k1, k2, . . . , kn).

As usual, an n-vector

u∗ = [u∗

1, u
∗

2, . . . , u
∗

n]T

is said to be an equilibrium point of system (1) if it satisfies

Cu∗ = (A + B)g(u∗) + I.

In this paper, it is assumed that some conditions are satisfied

so that the equilibrium point of delayed neural network (1)

does exist. For notational convenience, the equilibrium point

u∗ of delayed neural network (1) will be shifted to the origin.

Applying transformation

x(t) = u(t) − u∗
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yields the following new description of system (1):

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t − τ)), (3)

where

x = [x1, x2, . . . , xn]T

is the state vector of the new system (3), and

f(x) = [f(x1), f(x2), . . . , fn(xn)]T

with

fi(xi) = gi(xi + u∗

i ) − gi(u
∗

i ), i = 1, 2, . . . , n.

It is easy to see that by assumption (H), f satisfies the

following condition:

(H
′

) Each function fi is continuous with

fi(0) = 0,

and for any α, β ∈ R,

0 ≤ [fi(α) − fi(β)](α − β) ≤ ki(α − β)2.

The following Lemma is important for developing the

main results in the next section.

Lemma 1: [21]: For any vectors x, y ∈ R
n, matrix 0 <

P ∈ R
n×n,

2xT y ≤ xT P−1x + yT Py.

III. MAIN THEORETICAL RESULTS

In this section, we will establish asymptotic stability

criteria for system (3) with uncertain constant time delay. As

illustrated before, our idea is to use the discretized Lyapunov

functional method in conjunction with the technique of

introducing the free-weighting matrix between the terms of

the Leibniz-Newton formula. Our main results are stated in

the following theorem.

Theorem 1: Consider system (3) satisfying assumption

(H
′

). For any given positive integer N , set

h = r0/N.

The origin of delayed neural network (3) is asymptotically

stable for any constant delay τ = r satisfying (2) if there

exist n × n matrices P > 0, P1, P2, U ≥ 0, Z1 > 0,

Z2 > 0, Z3 ≥ 0,

Λ = diag(λ1, λ2, . . . , λn) ≥ 0,

Di = diag(di1, di2, . . . , din) ≥ 0,

Mij , i = 1, 2, j = 1, 2, 3, 4,

Sp > 0, Qp, Rpq = RT
qp, p = 0, 1, . . . , N,

q = 0, 1, . . . , N,

such that the following linear matrix inequalities hold:












Ξ0 Ds Da √
r0M1

√
δM2

∗ −Rd − Sd 0 0 0
∗ 0 −3Sd 0 0
∗ 0 0 −Z1 0
∗ 0 0 0 −Z2













< 0, (4)

and
[

P Q̃

∗ R̃ + S̃

]

> 0, (5)

where

MT
i =

[

MT
i1 MT

i2 MT
i3 MT

i4 0 0
]

, i = 1, 2,

Ξ0 =

















Ω11 Ω12 Ω13 Ω14 PT
1 A + D1K

∗ Ω22 Ω23 −M22 PT
2 A + Λ

∗ ∗ Ω33 Ω34 0
∗ ∗ ∗ Ω44 0
∗ ∗ 0 0 U − 2D1

∗ ∗ 0 ∗ 0

PT
1

B
PT

2
B

0
D2K

0
−U − 2D2

















,

Ω11 = −CT P1 − PT
1

C + M11 + MT
11

+ Q0 + QT
0

+S0 + Z3,

Ω12 = P − PT
1
− CT P2 + MT

12
,

Ω13 = MT
13

− M11 − QN + M21,

Ω14 = MT
14

− M21,
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Ω22 = −P2 − PT
2 + r0Z1 + δZ2,

Ω23 = −M12 + M22,

Ω33 = −M13 − MT
13

− SN + M23 + MT
23

,

Ω34 = −M23 − MT
14

+ MT
24

,

Ω44 = −Z3 − M24 − MT
24,

Q̃ = [Q0 Q1 . . . QN ],

S̃ = diag

(

1

h
S0,

1

h
S1, . . . ,

1

h
SN

)

,

Sd = diag (S0 − S1, S1 − S2, . . . , SN−1 − SN ) ,

Rd =









Rd11 Rd12 . . . Rd1N

Rd21 Rd22 . . . Rd2N

. . . . . . . . . . . .
RdN1 RdN2 . . . RdNN









,

Rdpq = h(Rp−1,q−1 − Rpq),

Ds = [Ds
1

Ds
2

. . . Ds
N ] ,

Da = [Da
1 Da

2 . . . Da
N ] ,

Ds
p =













h
2
(R0,p−1 + R0p) − (Qp−1 − Qp)

h
2
(Qp−1 + Qp)

−h
2
(RN,p−1 + RNp)

0
0













,

Da
p =













−h
2
(R0,p−1 − R0p)

−h
2
(Qp−1 − Qp)

h
2
(RN,p−1 − RNp)

0
0













.

Remark 1: Theorem 1 provides the linear matrix inequal-

ity based sufficient conditions to verify asymptotic stability

of system (3) over a given delay interval [h1, h2] when delay

τ is constant. In practice, it appears useful to find the largest

interval of constant delay τ = r over which system (3) is

stable. In light of Theorem 1, one can use the following

procedure to find the maximum delay interval of delayed

neural network (3).

Step 1: Set h1 = h2 and apply Theorem 1 to find the

maximum of h2 denoted by h2max such that linear

matrix inequalities (4)-(5) are satisfied.

Step 2: Set h2 = h2max and apply Theorem 1 to find the

minimum of h1 denoted by h1min such that linear

matrix inequalities (4)-(5) hold.

Step 3: Set h2 = h1min and apply Theorem 1 to find the

minimum of h1 denoted by h1min such that linear

matrix inequalities (4)-(5) hold.

Step 4: If h2 = h1min, then exit; if h2 > h1min, go to step

3.

Utilizing the above procedure, we will be able to obtain an

interval [h1 min, h2max] of constant delay τ = r over which

system (3) is asymptotically stable.

IV. NUMERICAL EXAMPLE

In this section, we will use numerical results to illustrate

the effectiveness of the newly obtained delay-dependent

stability conditions.

Consider a delayed neural network (3) with uncertain

constant delay τ = r and

C = diag(1.2769, 0.6231, 0.9230, 0.4480),

K = diag(0.1137, 0.1279, 0.7994, 0.2368),

A =









−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352

0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015









,

B =









0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428

−2.0413 0.5179 1.1734 −0.2775









.

This example was studied in [11]. Theorem 1 is applied to

calculate the maximum time delay rmax that the neural net-

work can tolerate and still retain stability, with the interior-

point algorithms [22] being used for solving the related linear

matrix inequalities. The results for different N are listed in

Table I. Moreover, using the procedure given in Remark

1, one can verify that this system is asymptotically stable

over [0, rmax]. For comparison purposes, the stability criteria

in [11], [18], [10] are also applied to this example, and it
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TABLE I
UPPER BOUND rmax FOR EXAMPLE 1

N 1 2 3 4

rmax 4.2469 4.2659 4.2669 4.2671

is found that the resulting rmax is 1.4224, 2.7528, 3.5841,

respectively. From this example, it can be seen that the

newly obtained delay-dependent stability conditions are less

conservative than those derived by the existing methods.

V. CONCLUSIONS

This paper has been devoted to the study of asymptotic

stability for delayed neural networks with uncertain constant

time-delay. The novelty lies in that the new analytical method

has been proposed by integrating the discretized Lyapunov

functional method with the free-weighting matrix technique,

which paves the way for constructing the new Lyapunov

functional. On this basis, the new delay-dependent sufficient

conditions for asymptotic stability of delayed neural net-

works have been derived. These stability conditions, which

are expressed in form of linear matrix inequalities, can

be solved efficiently by using interior point algorithms for

dealing with linear matrix inequalities. Finally, the numerical

results have demonstrated that these new delay-dependent

stability conditions are less conservative than the existing

ones.
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