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Abstract— The purpose of this paper is to discuss how
Willems’ behavioral modeling might be applied to physical
systems governed by the laws of quantum physics. A quantum
behavior is simply defined in terms of the evolution of physical
variables according to quantum mechanics. This evolution is
determined by parameters that specify the internal energy
of the system, and any interfaces to other systems or fields.
A simple framework for modeling open quantum systems
and networks of such systems is described; this framework
provides tools for determining quantum behaviors. The ideas
are illustrated by an example from quantum optics.

I. INTRODUCTION

The behavioral approach to dynamical systems modeling

has been developed by Willems and collaborators (e.g. [9],

[11], [12]) to provide general model structures that are in-

tended to be appropriate for applications. Behavioral models

describe the range of possibilities that are allowed by the

system being considered, and do not depend on notions of

state nor inputs and outputs. While these notions can be ac-

commodated and play important roles, behavioral modeling

is focused on trajectories of values (usually numerical) of

system variables and how they are determined. In particular,

the problem of control is seen as finding a control system

that can be connected to the plant being controlled so that the

behavior of the combined system has desirable properties.

The purpose of this paper is to discuss how behavioral

modeling might be applied to physical systems governed

by the laws of quantum physics. The unitary dynamical

postulate from quantum mechanics determines how physical

variables may evolve in time, thus determining the quantum

behavior. This unitary flow is specified from physical consid-

erations concerning the energy of the system, and is usually

expressed in terms of a differential equation, the Schrodinger

equation; this may be regarded as the quantum behavioral

equation. Energy specifications may be regarded as a (non-

numerical) parameterization of the quantum behavior.

In order to get a feeling for what is involved, consider

the quantum optical network illustrated in Figure 1, which

shows a pair of optical cavities coupled by an optical medium

and an optical interconnect (a light beam). To describe the

behavior of such a network, one needs a mathematical model

that can represent the physical properties of the components

(the cavities), and the mechanisms for interconnection. In

quantum mechanics, the variables (represented as operators

on a Hilbert space, and called observables) that are used
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Fig. 1. A pair of optical cavities coupled by an optical medium and an
optical interconnect, [13, Fig. 1]. Each cavity consists of a pair of mirrors,
one of which is perfectly reflecting (shown solid) while the other is partially
transmitting (shown unfilled). The partially transmitting mirror enables the
light mode inside the cavity to interact with an external light field. The
external field is separated into input and output components by a Faraday
isolator. The optical interconnect is formed when light from the output of
one cavity is directed into the input of the other, here using additional
mirrors.

to describe the cavity include ones that do not commute—

this is a fundamental feature of quantum mechanics, and

well known consequences include the famous Heisenberg

uncertainty principle, [7]. Since the network of Figure 1

includes the use of an external free field channel (light

beam) as an interconnect, the modeling framework needs

an efficient and tractable quantum mechanical description

for such field channels. Quantum noise models [8], [3] can

be used to describe the random influence of the optical

fields on the cavities. Quantum noise modeling is much like

classical white noise modeling, except that the quantum noise

includes components that do not commute, and is therefore

fundamentally quantum mechanical. A wide range of such

open quantum models can be expressed within a quantum

noise framework, such as those arising in quantum optics.

The approach we present for quantum network modeling

is based on the quantum mechanical models just discussed,

and employs a simple parameterization which specifies the

internal energy of systems, as well as interfaces to external

fields and other systems. The dynamical equations for the

quantum system can easily be determined from the param-

eters. Furthermore, the parameters provide a simple mecha-

nism for describing networks of interconnected systems. This

provides simple, algebraic methods for quantum behavioral

Proceedings of the
47th IEEE Conference on Decision and Control
Cancun, Mexico, Dec. 9-11, 2008

ThB04.5

978-1-4244-3124-3/08/$25.00 ©2008 IEEE 4552



modeling.

Background references. A number of articles and books

are available to help readers with the background material

on which this paper is based, including [14], [10], [2], [3],

[8] and [7].

Notation. In this paper we use matrices M = {mij} with

entries mij that are operators on an underlying Hilbert space.

The asterisk ∗ is used to indicate the Hilbert space adjoint

A∗ of an operator A, as well as the complex conjugate z∗ =
x− iy of a complex number z = x+ iy (here, i =

√
−1 and

x, y are real). The conjugate transpose M
† of a matrix M

is defined by M
† = {m∗

ji}. Also defined are the conjugate

M
∗ = {m∗

ij} and transpose M
T = {mji} matrices, so that

M
† = (MT )∗ = (M∗)T . In the physics literature, it is

common to use the dagger † to indicate the Hilbert space

adjoint. The commutator of two operators A,B is defined

by [A,B] = AB −BA.

II. PRELIMINARIES

In quantum mechanics [7] physical quantities like energy,

spin, position, etc are expressed as observables; these are

usually represented as self-adjoint operators acting on a

Hilbert space H. Other physical variables, like annihilation

operators—which are not self-adjoint—are also of impor-

tance. In physical modeling it is convenient to consider

a collection of physical variables for the system, and the

appropriate algebraic object is a ∗-algebra. A ∗-algebra is a

complex vector space equipped with a multiplication and an

involution. The space B(H) of bounded operators forms a

∗-algebra: operators A,B can be multiplied by composition

(AB)ψ = A(B(ψ)) for ψ ∈ H, and adjoints A∗ define an

involution. While ∗-algebras can be considered abstractly, we

consider for definiteness ∗-algebras A that are subalgebras

of B(H) containing the identity I , for some H.

The postulates of quantum mechanics state that in a

measurement of a physical quantity represented by an ob-

servable A, the possible outcomes a are eigenvalues of A:

a ∈ spec(A). If

A =
∑

a∈spec(A)

aPa

is the spectral representation of A, where Pa are orthogonal

projections, then the probability of outcome a, Prob(a),
depends on the state of the system as we now describe. A

state on a ∗-algebra A is linear functional P : A → C (the

complex numbers) such that P(A) ≥ 0 for all non-negative

self-adjoint A ∈ A and P(I) = 1 (recall I ∈ A is the

identity). Then given a state P, the probability of outcome

a is given by Prob(a) = P(Pa). The expected value of the

observable A is P(A). The simplest example of a state is

defined by a state vector ψ ∈ H via the Hilbert space inner

product P(X) = 〈ψ,Xψ〉 for all X ∈ A .

The postulates of quantum mechanics include unitary

dynamics. Let U(t) ∈ B(H) be a family of unitary operators.

Then, in the so-called Schrodinger picture, states evolve

according to Pt(X) = P(U∗(t)XU(t)), for all X ∈ A . In

the case of state vectors, the state vector at time t is ψ(t) =

U(t)ψ. The so-called Heisenberg picture is dual to the

Schrodinger picture (and therefore equivalent), and describes

the evolution of observables, via X(t) = U∗(t)XU(t), for

any X ∈ A . See, e.g., [6] for a discussion of completely

positive quantum dynamics which can be regarded as unitary

dynamics for a larger system with the additional degrees of

freedom averaged out.

III. QUANTUM BEHAVIORAL MODELING

In the behavioral modeling of Willems, a dynamical sys-

tem is specified by a triple (T,W,B), where T is the time

axis, W is the signal space in which dynamical variables

take their values, and B ⊂ W
T is the behavior, the set of

possible trajectories for the system, a subset of the universum

W
T, the set of all trajectories. Typically, but not always,

in continuous time behaviors are defined by differential

equations. In the case of classical physical systems, the

signal space contains all the numerical values taken by

the physical variables of interest. Behavioral modeling of

quantum physical systems will focus on variables, not the

numerical values they take, because of the fundamental

incompatibility concerning observables that do not commute.

In what follows we consider systems evolving continuously

in time, and we take T = [0,∞). We replace the signal space

as a set of values by a ∗-algebra U representing the physical

variables of interest, which we call the physical variable

space.

Given a collection of relevant variables, the main problem

of behavioral modeling is to specify how these variables

evolve in time. As discussed in section II, in quantum me-

chanics, dynamical behavior is given by (Heisenberg picture)

X(t) = U∗(t)XU(t) for any X ∈ U , where {U(t)}t∈T.

The behavioral modeling task is to determine U(t), or a

differential equation for it. Representations based on physical

parameters can help simplify behavioral modeling.

Before we discuss the parametric description in the fol-

lowing section, we close this section with a list of items

that are needed to specify an open quantum system, a

quantum system that may interact with its environment,

and/or other quantum systems, Figure 2. These items are

S = (U , ρ,H, I), where (i) U is the ∗-algebra of physical

variables of interest; (ii) ρ, is the (initial) state on U ; (iii)

H ∈ U is a self-adjoint operator called the Hamiltonian,

specifying the self-energy of the system; and (iv) I is an

interface specification. These items, together with the unitary

dynamical postulate, determine the behaviour of the open

quantum system and its statistics. Quantum measurements

can be understood within the framework of quantum condi-

tional expectations and Belavkin’s quantum filtering theory,

[1], [2].

IV. OPEN QUANTUM SYSTEMS

The class of systems we consider in this paper are quantum

noise models of open quantum systems. These idealized

models are based on more complicated first principles mod-

els; we refer the reader to the literature for details: [3], [14],
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Fig. 2. Diagram of an open quantum system S showing an interface I con-
sisting of unidirectional field channel inputs and outputs, and bidirectional
direct couplings.

[10], [2], [4]. These models can be expressed in terms of a

quantum version of the Ito calculus, [8], [3].

The open system models describe a system, or systems,

interacting with boson fields (such as an atom interacting

with the electromagnetic field in free space, or phonon

vibrations in a material). The fields can be considered as

channels that may contain a signal component, and a quan-

tum noise component. The former component may represent

modulation of a light beam (e.g. by a classical signal, or

by variables from a source), while the latter component

describes the volatile nature of the idealized system-field

(heat bath) interaction characteristic of white noise models.

In addition to bidirectional direct Hamiltonian interactions

between systems, field channels provide a mechanism for

unidirectional indirect field mediated interactions between

systems. For example, in quantum optics laser beams may

be used as “quantum wires” interconnecting components, as

in Figure 1.

A. Definitions

We now give some more details regarding the open system

models. We assume the system is defined on an underlying

Hilbert space H. Let U be a sub-∗-algebra of B(H). Boson

fields are defined on a Fock space F, a particular type

of Hilbert space, with an associated ∗-algebra F (for full

details, see [8], [2]). Open quantum models are defined in

terms of operators in the tensor product U ⊗F . The algebra

U may be regarded as the initial variable space for the

system, while U ⊗F might be called the full variable space

for the complete system-field model. A collection of n field

channels is given by the quantum stochastic processes

A =







A1

...

An






, Λ =







A11 . . . A1n

...
...

...

An1 . . . Ann






,

which respectively describe annihilation of photons in the

field channels, and scattering between channels. We as-

sume that these processes are canonical, meaning that we

have the following non-vanishing second order Ito products:

dAj (t) dAk (t)
∗

= δjkdt, dAjk (t) dAl (t)
∗

= δkldAj(t)
∗,

dAj (t) dAkl (t) = δjkdAl(t) and dAjk (t) dAlm (t) =
δkldAjm(t). The simplest situation is that of a vacuum state

φ for the field channels, in which case the input processes

are purely quantum noise.

Coupling of the system to the field is defined using

S =







S11 . . . S1n

...
...

...

Sn1 . . . Snn






, L =







L1

...

Ln






,

respectively a scattering matrix with operator entries Sij ∈
U satisfying S

†
S = SS

† = I, and a vector of coupling

operators Lj ∈ U .

In terms of these parameters, the Schrodinger equation

dU(t) =
{

tr[(S − I)dΛ] + dA†
L − L

†
SdA

−1

2
L
†
Ldt− iHdt

}

U(t) (1)

with initial condition U(0) = I determines the unitary

motion of the system, in accordance with the fundamen-

tal postulate of quantum mechanics. Given an operator X

defined on the initial space H, its Heisenberg evolution is

defined by X(t) = jt(X) = U (t)
∗
XU (t) and satisfies

dX(t) = (LL(t)(X(t)) − i[X(t), H(t)])dt

+dA†(t)S†(t)[X(t),L(t)] + [L†(t), X(t)]S(t)dA(t)

+tr[(S†(t)X(t)S(t) −X(t))dΛ(t)]. (2)

In this expression, all operators evolve unitarily (e.g. L(t) =
jt(L)) (commutators of vectors and matrices of operators

are defined component-wise), and tr denotes the trace of a

matrix. We also employ the notation

LL(X) =
1

2
L
†[X,L] +

1

2
[L†, X]L; (3)

this is called the Lindblad superoperator in the physics

literature. The components of the output fields are defined

by Ã(t) = jt(A(t))
.
= U∗(t)A(t)U(t), Λ̃(t) = jt(Λ(t))

.
=

U∗(t)Λ(t)U(t) and satisfy the quantum stochastic differen-

tial equations

dÃ(t) = S(t)dA(t) + L(t)dt (4)

dΛ̃(t) = S
∗(t)dΛ(t)ST (t) + S

∗(t)dA∗(t)LT (t) (5)

+L(t)dA(t)ST (t) + L
∗(t)LT (t)dt, (6)

where L(t) = jt(L), etc, as above.

It can be seen that the parameters G = (S,L, H) pro-

vide a compact specification of the open system, assuming

canonical field inputs, since they determine the behavior of

the system, via the flow jt(·), as determined by (1). This

flow is defined on the full variable space U ⊗ F . We

call jt(·) the quantum behavioral flow of the system. The

Schrodinger equation (1) may be regarded as the quantum

behavioral equation for the system. Note that the parameters

G = (S,L, H) are drawn from the variable space U (they

are not numerical).

The state of the complete system (including field channels)

P is the tensor product P = ρ ⊗ φ in the case that the

initial system state is ρ and the input field channels are

in the vacuum state φ. The statistics of physical variables

in the complete system can be determined using this state

and the quantum behavioral equation. The specification or
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determination of the initial system state ρ is an important

part of the modeling process; but note that the quantum

behavioral equation does not depend on ρ.

B. Connections

In our recent paper [4] (see also [5]) we developed

an algebraic framework for quantum networks using the

parameters G = (S,L, H). In particular, we introduced a

series product ⊳ to describe series or cascade field-mediated

connections, and a concatenation product ⊞ for decomposing

or assembling systems. Direct interactions between systems

were accommodated using interaction Hamiltonians. In this

subsection we develop these ideas further by being more

explicit in the manner in which direct connections are

accommodated—we introduce a direct connection product

⊲⊳ for this purpose. In practice it is much easier and more

transparent working with these products than with underlying

equations, which can become complex and unwieldy.

To this end, we enlarge the parametrization as follows:

G = (S,L,Z, H). (7)

As before, S is a scattering matrix, L is vector of field

coupling operators, and H is a Hamiltonian. The new item

in this parameter list is a vector Z of variables available for

direct connection. All of these operators in G belong to the

∗-algebra U for the system. The variables I = (S,L,Z)
simply specify the system’s interface, so that the param-

eterization G = (S,L,Z, H) = (I, H) simply accounts

for energy—energy exchanges with external systems, and

internal energy; we might call this the quantum behavioral

parameterization.

Suppose we are given two such systems: G1 =
(S1,L1,Z1, H1) and G2 = (S2,L2,Z2, H2), defined in

terms of physical variables belonging to ∗-algebras U1 and

U2, respectively. The products we define below combine

these systems to produce new systems defined in terms of

parameters drawn from the tensor product of variable spaces

U1 ⊗ U2 (this replaces the classical behavioral cartesian

product of signal spaces U1 × U2).

The concatenation of G1 and G2 is the system G1 ⊞G2

defined by

G1 ⊞G2 = (

(

S1 0
0 S2

)

,

(

L1

L2

)

,

(

Z1

Z2

)

, H1 +H2).

(8)

This product simply assembles the components together,

without making any connections, Figure 3.

Now suppose G1 = (S1,L1,Z1, H1) and G2 =
(S2,L2,Z2, H2) have the same number of field channels (i.e.

L1 and L2 have the same length. Then the series product

G2 ⊳G1 is defined by

G2 ⊳G1 = S2S1,L2 + S2L1,

(

Z1

Z2

)

, (9)

H1 +H2 +
1

2i
(L†

2S2L1 − L
†
1S

†
2L2)).

As its name suggests, the series product describes the series

or cascade connection using field channels, Figure 4; see [4].

G1 ⊞ G2

-
- -

-
--

?

6

?

6

-
-
-

-
-

-

G1

G2

Fig. 3. Concatenation of two systems, G1 ⊞G2.

G2 ⊳ G1

-
- -

-
-

?

6

?

6

- -
-
-

?

6

?

6

G1 G2

Fig. 4. Series or cascade connection of two systems, G2 ⊳ G1.

Finally, if G1 = (S1,L1,Z1, H1) and G2 =
(S2,L2,Z2, H2) have the same number of direct connection

channels (i.e. Z1 and Z2 have the same length. Then the

direct connection product G2 ⊲⊳ G1 is defined by

G1 ⊲⊳ G2 = (

(

S1 0
0 S2

)

,

(

L1

L2

)

, , (10)

H1 +H2 + Z
†
2Z1 + Z

†
1Z2).

The direct connection product describes interaction between

the components in terms of the interaction Hamiltonian

Z
†
2Z1+Z

†
1Z2, a self-adjoint operator in U1⊗U2 quantifying

the energy flow between the components, Figure 5.

G1 ⊲⊳ G2

-
- -

-
--

?

6

?

6

-
-
-

-
-
-

G1

G2

Fig. 5. Direct connection of two systems, G1 ⊲⊳ G2.

Here, the blank indicates the absence of an available

connection. All products may be extended in a natural way
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to describe the absence of a connection using blanks.

We say that a system G is reducible if it can be expressed

as

G = (⊞jGfj) ⊞ (⊞kGdk) (11)

where the subsystems have the form

Gfj = (Sj ,Lj , , Hfj), Gdk = ( , ,Zj , Hdk). (12)

The decomposition (11) identifies any block diagonal struc-

ture of the field channels (as reflected in the structure of the

scattering matrix S), and separates out the direct interaction

terms. It is not unique. This is illustrated in Figure 6.

d3

t

t

t

6

?

6

?

6

?

6

?
-

-

-

--

-

-

-
f1

f2

f3

f4

d1 d2

d4

t

Fig. 6. A reducible system G = Gf1 ⊞Gf2 ⊞Gf3 ⊞Gf4 ⊞Gd1 ⊞

Gd2 ⊞Gd3 ⊞Gd4.

The concatenation, series and direct connection products

may be used to describe quantum systems. They can be used

to represent components, as well as to assemble networks

(next section). Note that variables evolve according to the

physical laws of both systems and the nature of the con-

nection (cf. [9, sec. 10.8.2])—the behavior of the connected

systems is characterized by the parameters specified by the

products.

V. NETWORKS

A. Reducible Networks

Let {Gj} be a collection of components, which we may

combine together to form an unconnected system G =
⊞jGj . The components may interact directly via bidirec-

tional exchanges of energy, and this may be specified by list

of direct connections

Ld = {Gdj ⊲⊳ Gdk}. (13)

The components may also interact via field interconnects,

specified by a list of series connections

Lf = {Gfj ⊳Gfk}. (14)

A reducible network N is the system formed from G by

implementing the connections (13) and (14). An example

of a reducible network is shown in Figure 7. Note that a

reducible network is itself an open quantum system, and

could be considered as a component in a larger network.

The parametric representation we use is therefore suitable

for hierarchical modeling and network construction.

d4 ⊲⊳ d3

t

t

t

-

-

-

�

-

6

?

6

?

6 6

f1

f2

f3

f4

d1 d2

t

Fig. 7. Given a collection system G of unconnected components as shown
in Figure 6, a reducible network N = Gf1 ⊞ (Gf4 ⊳ Gf3 ⊳ Gf2) ⊞

Gd1 ⊞Gd2 ⊞(Gd3 ⊲⊳ Gd4) is determined by the connection lists Lf =
{Gf3 ⊳ Gf2,Gf4 ⊳ Gf3} and Ld = {Gd3 ⊲⊳ Gd4}.

We close this subsection by describing how the classical

behavioral interconnection notation ∧, [9, sec. 10.8.2], may

be used in our quantum context. Given two systems G1 and

G2, and specifications for field-mediated and direct connec-

tions, Lf and Ld, we write G1 ∧G2 for the interconnected

system. More generally, for multiple systems {Gj}, the

interconnected system may be denoted ∧Lf ,Ld
Gj .

B. Example from Quantum Optics

In this subsection we discuss the quantum behavior for

the example from quantum optics, [13, Fig. 1], mentioned

in section I, which features a pair of cavities with both

field-mediated and direct connections, Figure 1. Each cavity

mode is described by an annihilation operator a1 and a2,

respectively, and is coupled to an external free field A1

and A2, respectively. The field-mediated series connection

is effected by directing the output of the first channel into

the input of the second. The input and output components

of a field channel can be separated in the laboratory by a

Faraday isolator (not shown in Figure 1). The cavity-field

couplings are described by coupling operators
√
γ1 a1 and√

γ2 a2, where γ1 and γ2 are coupling strength parameters

(non-negative real numbers). The direct coupling is defined

by an interaction Hamiltonian V = −ig(a2a
∗
1 − a∗2a1),

where g is a coupling strength parameter. Physically, this

coupling could correspond to mode conversion, effected

by a polarization rotator, [13, page 4121]. The cavities

each have self energies ∆1a
∗
1a1 and ∆2a

∗
2a2 respectively,

due to mismatches (detunings) between the nominal field

channel frequency and cavity mode frequencies (the model

is expressed in a rotating frame). The ∗-algebras U1 and

U2 are both copies of the harmonic oscillator algebra (the

∗-algebra generated by an annihilation operator a satisfying

the canonical commutation relation [a, a∗] = 1).
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Before the connections are enabled, the cavity pair could

be described as a reducible system G = G1 ⊞ G2, where

G1 = (1,
√
γ1 a1,

√
g a1,∆1a

∗
1a1)

= (1,
√
γ1 a1, ,∆1a

∗
1a1) ⊞ ( , ,

√
g a1, 0)

.
= Gf1 ⊞ Gd1,

G2 = (1,
√
γ2 a2,−i

√
g a2,∆2a

∗
2a2)

= (1,
√
γ2 a2, ,∆2a

∗
2a2) ⊞ ( , ,−i√g a2, 0)

.
= Gf2 ⊞ Gd2.

This expresses the unconnected pair as a concatenation of

two cavities, each with field and direct connection channels,

as shown in Figure 8.

Ã2

t- -

� -

-

� -

-

G1

A1 Ã1 A2

f1

d1 d2

f2

G2

t

Fig. 8. Network representation of the unconnected cavity pair.

The connections are specified by Gf2 ⊳Gf1 and Gd1 ⊲⊳

Gd2. After these connections have been made, the connected

cavity pair is given by the reducible system

N = G1 ∧ G2 = (Gf2 ⊳Gf1) ⊞ (Gd1 ⊲⊳ Gd2)

= (1,
√
γ2 a2 +

√
γ1 a1, , (15)

∆1a
∗
1a1 + ∆2a

∗
2a2 − ig(a2a

∗
1 − a∗2a1)).

This expression simply and transparently describes the net-

work in terms of the interconnections used in forming it, and

is illustrated in Figure 9.

A1

t-

� -

--
A2 = Ã1

f1

N

d1 ⊲⊳ d2

f2

Ã2

t

Fig. 9. Network representation of the connected cavity pair.

The connected cavity pair may be considered as an open

system with a single field channel and no direct connection

channels, as described by the parameters N given by (15),

as shown in Figure 10 (equivalent circuit). This determines

the quantum behavior of the connected cavity pair system

through the quantum behavioral (Schrodinger) equation (1).

VI. DISCUSSION AND CONCLUSIONS

In this paper we have discussed some ideas underlying

how the “behavioral approach” might be applied to open

quantum systems. In the spirit of systems theory, we have

t- -

N

Fig. 10. Equivalent representation of the connected cavity pair.

provided simple algebraic tools for describing open quan-

tum networks using parameters, complete with rules for

decomposition and assembly. We remark that classical (i.e.

non-quantum) systems, deterministic or stochastic, linear or

nonlinear, may be regarded as special cases by considering

them as commutative subsystems of open quantum systems

(see [4] for examples). It seems that the behavioral ideas

we have discussed for open quantum systems and networks,

with their focus on the behavior of physical variables, is

consistent with much of the behavioral philosophy advocated

by Willems and collaborators, e.g. [9], [11], [12]. However,

it appears that we may need a quantum probability space

(U ,P) [2] : the big quantum physical variable space in the

sky (cf. [9, page 7])!
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