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Abstract— This paper studies the problem of stability analysis
for neural networks (NNs) with a time-varying delay. The
activation functions are assumed to be neither monotonic, nor
differentiable, nor bounded. By defining a more general type
of Lyapunov functionals, some new less conservative delay-
dependent stability criteria are obtained and shown in terms
of linear matrix inequalities (LMIs). Since less variables are
involved, the computational complexity of the new conditions
is reduced. Numerical examples are given to illustrate the
effectiveness and the benefits of the proposed method.

I. INTRODUCTION

Now, neural networks (NNs) are widely studied, because
of their immense potentials of application prospective in a
variety of areas, such as signal processing, pattern recogni-
tion, static image processing, associative memory, and com-
binatorial optimization. In practice, time delay is frequently
encountered in NNs. Due to the finite speed of information
processing, the existence of time delays frequently causes
oscillation, divergence, or instability in NNs. In recent years,
the stability problem of delayed neural networks has become
a topic of great theoretic and practical importance [2]-[23].
This issue has gained increasing interest in applications to
signal and image processing, artificial intelligence, etc.

The stability criteria for delayed NNs can be classified
into two categories, namely, delay-independent [11]-[20] and
delay-dependent [6]-[10]. As we know time delay dependent
results are looser than the time delay independent ones when
the delays are small. So much attention has been paid to the
delay-dependent type.

In [9], delay-dependent stability condition was derived by
defining a new Lyapunov functional and the obtained con-
dition could include some existing time delay-independent
ones. In [10], a less conservative delay-dependent stabil-
ity criterion for delayed NNs was proposed by using the
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free weighting matrix method and considering the useful
term when estimating the upper bound of the derivative of
Lyapunov functional. And the stability result in [10] was
improved in [25]. However, these mentioned results are still
conservative to some extent, which leave open room for
further improvement.

In this paper, the problem of stability analysis for delayed
NNs is investigated. Unlike the previous works, the acti-
vation functions are assumed to be neither monotonic, nor
differentiable, nor bounded, so the considered NNs are more
general than the ones in literature. For ensuring larger delay
bounds, a new type of Lyapunov functionals is proposed,
and some new delay-dependent stability criteria are derived
in terms of LMIs. It is shown that the newly obtained results
are less conservative and less computationally complex than
the existing corresponding ones. Meanwhile, these stability
criteria are also more applicable. Finally, numerical examples
will be given to show the effectiveness of the main results.

II. PROBLEM FORMULATION

The dynamic behavior of a continuous time-delay neural
network can be described as follows:

ẋ(t) =−Cx(t)+Ag(x(t))+Bg(x(t−d(t)))+u, (1)

where x(·) =
[

x1(·) x2(·) · · · xn(·)
]T ∈ Rn is

the neuron state vector, u = [u1, u2, · · · , un]T ∈
Rn is a constant input vector, and g(x(·)) =
[g1(x1(·)) g2(x2(·)) · · · gn(xn(·))]T ∈ Rn denotes the
neuron activation function. C = diag(c1, · · · , cn) with
ci > 0 (i = 1, 2, · · · , n), and A, B are the connection
weight matrix and the delayed connection weight matrix,
respectively. The time delay d(t) is a time-varying
differentiable function that satisfies

0≤ d(t)≤ h, (2)

ḋ(t)≤ µ, (3)

where h and µ are constants.
In this paper, we assume the activation functions gi(·)(i =

1, 2, · · · , n) satisfy the following condition:

k−i ≤
gi(x)−gi(y)

x− y
≤ k+

i ∀x, y ∈ R, x 6= y, (4)

where k−i , k+
i are some constants. So, such activation func-

tions gi(·)(i = 1, 2, · · · , n) are globally Lipschitz continuous
of classes L defined in [26] (see also [27]).
Remark 1. In the literature, the constants k−i are all assumed
to be zero, which implies that gi(·) (i = 1, 2, · · · , n) are
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monotonically increasing (see [9], [10], [25]). Correspond-
ingly, k−i , k+

i are allowed to be positive, negative or zero in
this paper.

Assume that x∗ = [x∗1 x∗2 · · · x∗n]T is an equilibrium point
of system (1), by choosing the coordinate transformation
z(·) = x(·)− x∗, system (1) is changed into the following
error system

ż(t) =−Cz(t)+A f (z(t))+B f (z(t−d(t))), (5)

where z(·) = [z1(·) z2(·) · · · zn(·)]T is the
state vector of the transformed system, f (z) =
[ f1(z1(·)) f2(z2(·)) · · · fn(zn(·))]T and fi(zi(·)) =
gi(zi(·) + x∗i ) − gi(x∗i ) (i = 1, 2, · · · , n). Then, the
functions fi(·) i = (1, 2, · · · , n) satisfy the following
condition:

k−i ≤
fi(zi)

zi
≤ k+

i , fi(0) = 0 ∀zi 6= 0, (6)

which implies that

( fi(zi(t))− k+
i zi(t)) · ( fi(zi(t))− k−i zi(t))≤ 0 (7)

and

( fi(zi(t−d(t)))− k+
i zi(t−d(t)))

· ( fi(zi(t−d(t)))− k−i zi(t−d(t)))≤ 0. (8)

Through this paper, the Jensen integral inequality will be
used, so it is listed as the following lemma.
Lemma 1. [1] For any positive definite symmetric constant
matrix M ∈ Rn×n, scalars r1, r2 satisfying r1 < r2, a vector
function ω : [r1, r2] → Rn such that the integrations con-
cerned are well defined, then
(∫ r2

r1

ω(s)ds
)T

M
∫ r2

r1

ω(s)ds≤ (r2− r1)
∫ r2

r1

ωT (s)Mω(s)ds.

III. MAIN RESULTS

For convenience, we denote K1 = diag(k+
1 , k+

2 , · · · , k+
n )

and K0 = diag(k−1 , k−2 , · · · , k−n ).
From (6), it follows that

∫ zi(t)

0
( fi(s)− k−i s)ds≥ 0, (9)

∫ zi(t)

0
(k+

i s− fi(s))ds≥ 0. (10)

Based on this fact, a Lyapunov-Krasovskii functional can be
chosen as

V (zt) =V1(zt)+V2(zt)+V3(zt), (11)

where

V1(zt) =zT (t)Pz(t)+2
n

∑
i=1

(
λi

∫ zi(t)

0
( fi(s)− k−i s)ds

+δi

∫ zi(t)

0
(k+

i s− fi(s))ds
)
,

V2(zt) =
∫ t

t−d(t)
[zT (s)Q1z(s)+ f T (z(s))Q2 f (z(s))]ds

+
∫ t

t−h
zT (s)Q3z(s)ds,

V3(zt) =
∫ 0

−h

∫ t

t+θ
żT (s)Zż(s)dsdθ .

Remark 2. Since k−i (i = 1, 2, · · · , n) may be nonzero and

the term 2
n
∑

i=1
δi

∫ zi(t)
0 (k+

i s− fi(s))ds is taken into account, it

is clear that the Lyapunov-Krasovkii functional in this paper
is more general than that the ones in [10] and [25], and the
resulting stability results may be more applicable.

A. New stability criteria
First, we give a new stability criterion for the origin of

system (5)-(6) as follows.
Theorem 1. For given scalars h > 0 and µ , the origin of
system (5) with (6) and a time-varying delay satisfying
conditions (2) and (3) is globally asymptotically stable
if there exist matrices P = PT > 0, Ql = QT

l ≥ 0 (l =
1, 2, 3), Z = ZT > 0, Λ = diag(λ1, λ2, · · · , λn)≥ 0, ∆ =
diag(δ1, δ2, · · · , δn) ≥ 0, Tj = diag(t1 j, t2 j, · · · , tn j) ≥
0 ( j = 1, 2), such that the following LMI holds:

Ψ =




Ψ11 h−1Z Ψ13 Ψ14 0 −hCT Z
∗ Ψ22 0 Ψ24 h−1Z 0
∗ ∗ Ψ33 Ψ34 0 hAT Z
∗ ∗ ∗ Ψ44 0 hBT Z
∗ ∗ ∗ ∗ Ψ55 0
∗ ∗ ∗ ∗ ∗ −hZ




< 0,

(12)

where
Ψ11 =−PC−CT P+Q1 +Q3− (K1∆−K0Λ)C

−CT (K1∆−K0Λ)−2K1T1K0−h−1Z,
Ψ13 = PA−CT (Λ−∆)+(K1∆−K0Λ)A+(K0 +K1)T1,
Ψ14 = PB+(K1∆−K0Λ)B,
Ψ22 =−(1−µ)Q1−2K1T2K0−2h−1Z,
Ψ24 = (K1 +K0)T2,
Ψ33 = Q2−2T1 +(Λ−∆)A+AT (Λ−∆),
Ψ34 = (Λ−∆)B,
Ψ44 =−(1−µ)Q2−2T2,
Ψ55 =−Q3−h−1Z.

Proof: Taking the time derivative of Vi(zt) (i = 1, 2, 3)
along the trajectory of (5) yields that

V̇1(zt)

= 2zT (t)P[−Cz(t)+A f (z(t))+B f (z(t−d(t)))]

+2 f T (z(t))(Λ−∆)[−Cz(t)+A f (z(t))+B f (z(t−d(t)))]

+2zT (t)(K1∆−K0Λ)[−Cz(t)+A f (z(t))+B f (z(t−d(t)))],
(13)

V̇2(zt)

≤ zT (t)(Q1 +Q3)z(t)+ f T (z(t))Q2 f (z(t))

− zT (t−h)Q3z(t−h)− (1−µ)zT (t−d(t))Q1z(t−d(t))

− (1−µ) f T (z(t−d(t)))Q2 f (z(t−d(t))), (14)
V̇3(zt)

= hżT (t)Zż(t)−
∫ t

t−h
żT (s)Zż(s)ds

= h[−Cz(t)+A f (z(t))+B f (z(t−d(t)))]T Z

× [−Cz(t)+A f (z(t))+B f (z(t−d(t)))]

−
∫ t

t−d(t)
żT (s)Zż(s)ds−

∫ t−d(t)

t−h
żT (s)Zż(s)ds. (15)
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Next, the upper bound of V̇3(zt) can be estimated as follows.
By using Lemma 1, it gets that

−
∫ t

t−d(t)
żT (s)Zż(s)ds

≤− 1
d(t)

(∫ t

t−d(t)
ż(s)ds

)T
Z

∫ t

t−d(t)
żT (s)ds

≤−1
h
[z(t)− z(t−d(t))]T Z[z(t)− z(t−d(t))], (16)

−
∫ t−d(t)

t−h
żT (s)Zż(s)ds

≤− 1
h−d(t)

(∫ t−d(t)

t−h
ż(s)ds

)T
Z

∫ t−d(t)

t−h
ż(s)ds

≤−1
h
[z(t−d(t))− z(t−h)]T Z[z(t−d(t))− z(t−h)]. (17)

On the other hand, for any Tj = diag(t1 j, t2 j, · · · , tn j) ≥
0 ( j = 1, 2), from (7) and (8), it yields that

0≤−2
n

∑
i=1

ti1( fi(zi(t))− k+
i zi(t))( fi(zi(t))− k−i zi(t))

−2
n

∑
i=1

ti2( fi(zi(t−d(t)))− k+
i zi(t−d(t)))

· ( fi(zi(t−d(t)))− k−i zi(t−d(t)))

=−2( f (z(t))−K1z(t))T T1( f (z(t))−K0z(t))

−2( f (z(t−d(t)))−K1z(t−d(t)))T T2

× ( f (z(t−d(t)))−K0z(t−d(t))). (18)

Denoting ζ (t) = [zT (t) zT (t − d(t)) f T (z(t)) f T (z(t −
d(t))) zT (t− h)]T , and combining (13)-(18), it can be seen
that

V̇ (zt)≤ ζ T (t)Ψ̂ζ (t), (19)

where

Ψ̂ =




Ψ1 h−1Z Ψ13−hCT ZA Ψ14−hCT ZB 0
∗ Ψ22 0 Ψ24 h−1Z
∗ ∗ Ψ33 +hAT ZA Ψ34 +hAT ZB 0
∗ ∗ ∗ Ψ44 +hBT ZB 0
∗ ∗ ∗ ∗ Ψ55




,

where Ψ1 = Ψ11 + hCT ZC. By the Schur complement, it is
easy to see that V̇ (zt) < 0 if Ψ < 0.

Thus, the proof is completed.
Remark 3. In Theorem 1, a sufficient condition of global
asymptotical stability for the origin of system (5) with (6)
and a time-varying delay satisfying conditions (2) and (3) is
given in terms of solutions to a set of LMIs. Note that the
Lyapunov-Krasovskii functional (11) is more general, and the
newly obtained stability criterion is less conservative than
that in [10]. Meanwhile, since no any redundant variables
are involved, the computational complexity is reduced. The
details will be discussed in the sequel.

B. Further development

Next, we estimate the upper bound of V̇3(zt) by following
the idea of convex combination [24], and an improved
stability criterion of Theorem 1 can be developed as follows.

Theorem 2. For given scalars h > 0 and µ , the origin of
system (5) with (6) and a time-varying delay satisfying
conditions (2) and (3) is globally asymptotically stable
if there exist matrices P = PT > 0, Ql = QT

l ≥ 0 (l =
1, 2, 3), Z = ZT > 0, Λ = diag(λ1, λ2, · · · , λn)≥ 0, ∆ =
diag(δ1, δ2, · · · , δn) ≥ 0, Tj = diag(t1 j, t2 j, · · · , tn j) ≥
0 ( j = 1, 2), N1, N2 and M1, M2, such that the following
LMIs hold:

Ω1 =




Ω hN hA Z
∗ −hZ 0
∗ ∗ −hZ


 < 0, (20)

Ω2 =




Ω hM hA Z
∗ −hZ 0
∗ ∗ −hZ


 < 0, (21)

where

Ω =




Ω11 0 Ω13 Ω14 0
∗ Ω22 0 Ω24 0
∗ ∗ Ω33 Ω34 0
∗ ∗ ∗ Ω44 0
∗ ∗ ∗ ∗ Ω55




+Ω3 +ΩT
3 ,

Ω11 =−PC−CT P+Q1 +Q3− (K1∆−K0Λ)C

−CT (K1∆−K0Λ)−2K1T1K0,

Ω13 = PA−CT (Λ−∆)+(K1∆−K0Λ)A+(K0 +K1)T1,

Ω14 = PB+(K1∆−K0Λ)B,

Ω22 =−(1−µ)Q1−2K1T2K0,

Ω24 = (K1 +K0)T2,

Ω33 = Q2−2T1 +(Λ−∆)A+AT (Λ−∆),
Ω34 = (Λ−∆)B,

Ω44 =−(1−µ)Q2−2T2,

Ω55 =−Q3,

Ω3 =
[

N −N +M 0 0 −M
]
,

N =
[

NT
1 NT

2 0 0 0
]T

,

M =
[

MT
1 MT

2 0 0 0
]T

,

A =
[ −C 0 A B 0

]T
.

Proof: For any positive definite matrix Z, the following
inequality is always true for any vector a and b:

−2aT b≤ aT Z−1a+bT Zb,

so it is follows that for any t, s ∈ [0, ∞)

−2ζ T (t)Nż(s)≤ ζ T (t)NZ−1NT ζ (t)+ żT (s)Zż(s),

where ζ (t) is defined in the proof of Theorem 1.
Thus, integrating on the both sides of the above inequality,

it gets that

−
∫ t

t−d(t)
żT (s)Zż(s)ds≤d(t)ζ T (t)NZ−1NT ζ (t)

+2ζ T (t)N[z(t)− z(t−d(t))].
(22)
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Similarly, one can get

−
∫ t−d(t)

t−h
żT (s)Zż(s)ds≤(h−d(t))ζ T (t)MZ−1MT ζ (t)

+2ζ T (t)M[z(t−d(t))− z(t−h)].
(23)

Then, combining (13)-(15), (22)-(23) with (18), it yields that

V̇ (zt)≤ζ T (t)
(

Ω+hA ZA T +d(t)NZ−1NT

+(h−d(t))MZ−1MT
)

ζ (t). (24)

Note that 0≤ d(t)≤ h, so

Ω+hA ZA T +d(t)NZ−1NT +(h−d(t))MZ−1MT < 0

holds if and only if

Ω+hA ZA T +hNZ−1NT < 0, (25)

and

Ω+hA ZA T +hMZ−1MT < 0. (26)

From the Schur complement, inequality (25) is equivalent
to Ω1 < 0, and inequality (26) is equivalent to Ω2 < 0,
respectively. So, V̇ (zt) < 0 holds if Ω1 < 0 and Ω2 < 0.

This completes the proof.
Remark 4. The stability criterion proposed in [10] was
improved in [25], and we will prove that Theorem 2 is less
conservative and less complex than the one in [25] in the
next section.

IV. COMPARISON WITH THE EXISTING RESULTS

In this section, we prove that Theorem 1 is less conserva-
tive than that in [10], and Theorem 2 is less conservative than
that in [25], respectively. For convenience of comparison,
the main results in [10] and [25] are listed as the following
lemmas.
Lemma 2. [10] For given scalars h > 0 and µ , the origin
of system (5) with (6) is globally asymptotically stable
if there exist matrices P = PT > 0, Ql = QT

l ≥ 0 (l =
1, 2, 3), Z = ZT > 0, Λ = diag(λ1, λ2, · · · , λn) ≥
0, Tj = diag(t1 j, t2 j, · · · , tn j) ≥ 0 ( j = 1, 2), Ni, Mi (i =
1, 2, · · · , 5), such that the following LMI holds:

Φ =
[

Φ1 Φ2
∗ Φ3

]
< 0, (27)

where

Φ1 =




Φ11 Φ12 Φ13 Φ14 NT
5 −M1

∗ Φ22 Φ23 Φ24 −NT
5 +MT

5 −M2
∗ ∗ Φ33 ΛB −M3
∗ ∗ ∗ Φ44 −M4
∗ ∗ ∗ ∗ −Q3−M5−MT

5




,

Φ2 =




hN1 hM1 −hCT Z
hN2 hM2 0
hN3 hM3 hAT Z
hN4 hM4 hBT Z
hN5 hM5 0




,

Φ3 = diag(−hZ, −hZ, −hZ),
Φ11 =−PC−CT P+N1 +NT

1 +Q1 +Q3,

Φ12 = NT
2 −N1 +M1,

Φ13 = PA−CT Λ+K1T1 +NT
3 ,

Φ14 = PB+NT
4 ,

Φ22 =−(1−µ)Q1−N2−NT
2 +M2 +MT

2 ,
Φ23 =−NT

3 +MT
3 ,

Φ24 = K1T2−NT
4 +MT

4 ,
Φ33 = Q2−2T1 +ΛA+AT Λ,
Φ44 =−(1−µ)Q2−2T2.

Lemma 3. [25] For given scalars h > 0 and µ , the origin
of system (5) with (6) is globally asymptotically stable
if there exist matrices P = PT > 0, Ql = QT

l ≥ 0 (l =
1, 2, 3), Z = ZT > 0, Λ = diag(λ1, λ2, · · · , λn)≥ 0, Tj =
diag(t1 j, t2 j, · · · , tn j)≥ 0 ( j = 1, 2), X11 ≥ 0, X22 ≥ 0, X12
and Ni, Mi (i = 1, 2), such that

Θ =




Θ11 Θ12 Θ13 PB −M1 −hCT Z
∗ Θ22 0 K1T2 −M2 0
∗ ∗ Θ33 ΛB 0 hAT Z
∗ ∗ ∗ Θ44 0 hBT Z
∗ ∗ ∗ ∗ −Q3 0
∗ ∗ ∗ ∗ ∗ −hZ




< 0,

(28)

and


X11 X12 N1
∗ X22 N2
∗ ∗ Z


≥ 0,




X11 X12 M1
∗ X22 M2
∗ ∗ Z


≥ 0, (29)

where
Θ11 =−PC−CT P+N1 +NT

1 +Q1 +Q3 +hX11,
Θ12 = NT

2 −N1 +M1 +hX12,
Θ13 = PA−CT Λ+K1T1,
Θ22 =−(1−µ)Q1−N2−NT

2 +M2 +MT
2 +hX22,

Θ33 = Q2−2T1 +ΛA+AT Λ,
Θ44 =−(1−µ)Q2−2T2.

In [10], it was proved that Lemma 2 is less conservative
than the theorem in [9]. For comparing Theorem 1 with
Lemma 2, the following lemma is needed.
Lemma 4. Inequality (27) is equivalent to

Φ̃ < 0, (30)

where

Φ̃ =




Φ̃11 h−1Z Φ̃13 PB 0 −hCT Z
∗ Φ̃22 0 K1T2 h−1Z 0
∗ ∗ Φ33 ΛB 0 hAT Z
∗ ∗ ∗ Φ44 0 hBT Z
∗ ∗ ∗ ∗ −Q3−h−1Z 0
∗ ∗ ∗ ∗ ∗ −hZ




,

Φ̃11 =−PC−CT P+Q1 +Q3−h−1Z,
Φ̃13 = PA−CT Λ+K1T1,
Φ̃22 =−(1−µ)Q1−2h−1Z.

Proof: Denote

Φ̄ = ∆1Φ∆T
1 , (31)

and one can get that

Φ̄ =
[

Φ̃ ∆2
∗ ∆3

]
, (32)
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where

∆1 =




I 0 0 0 0 −h−1I 0 0
0 I 0 0 0 h−1I −h−1I 0
0 0 I 0 0 0 0 0
0 0 0 I 0 0 0 0
0 0 0 0 I 0 h−1I 0
0 0 0 0 0 0 0 I
0 0 0 0 0 I 0 0
0 0 0 0 0 0 I 0




,

∆2 =




hN1 +Z hM1
hN2−Z hM2 +Z

hN3 hM3
hN4 hM4
hN5 hM5−Z

0 0




, ∆3 = diag(−hZ, −hZ).

So, it is obvious that Φ̃ < 0 holds if Φ < 0.
Conversely, if Φ̃ < 0 holds, then Φ̄ < 0 is true by letting

N1 =−h−1Z, N2 = h−1Z, N3 = N4 = N5 = 0;
M2 =−h−1Z, M5 = h−1Z, M1 = M3 = M4 = 0.

So, Φ < 0 is also true since Φ̄ < 0 is equivalent to Φ < 0.
Thus, the proof is completed.

Remark 5. Lemma 4 shows that the free weighting matrices
Ni, Mi (i = 1, 2, · · · , 5) introduced in Lemma 2 are all
redundant, and thus the stability condition in [10] can be
simplified.

If choosing k−i = 0, δi = 0 (i = 1, 2, · · · , n), then Ψ < 0
in Theorem 1 is equivalent to Φ̃ < 0 in Lemma 4, so it yields
the following theorem.
Theorem 3. If Φ < 0 in Lemma 2 is feasible, then Ψ < 0 in
Theorem 1 is also feasible.
Remark 6. From Theorem 3, it is proved that Theorem 1 is
less conservative than Lemma 2.

Now, we compare Theorem 2 with Lemma 3.
Theorem 4. If the inequalities in Lemma 3 are feasible, then
the inequalities in Theorem 2 are also feasible.

Proof: Note that Θ < 0 in Lemma 3 is equivalent to

Θ̃+hX̃ +hA ZA T < 0 (33)

where

Θ̃ =




Θ̃11 Θ̃12 Θ13 PB −M1
∗ Θ̃22 0 K1T2 −M2
∗ ∗ Θ33 ΛB 0
∗ ∗ ∗ Θ44 0
∗ ∗ ∗ ∗ −Q3




,

X̃ =




X11 X12 0 0 0
∗ X22 0 0 0
∗ ∗ 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ 0




,

Θ̃11 =−PC−CT P+N1 +NT
1 +Q1 +Q3,

Θ̃12 = NT
2 −N1 +M1,

Θ̃22 =−(1−µ)Q1−N2−NT
2 +M2 +MT

2 ,

TABLE I
COMPARISON OF THE NUMBERS OF THE VARIABLES INVOLVED

Methods Number of variables involved
Theorem [9] 14n2 +6n

Lemma 2 12.5n2 +5.5n
Lemma 3 8.5n2 +6.5n

Theorem 1 2.5n2 +6.5n
Theorem 2 6.5n2 +6.5n

and Θ13, Θ33, Θ44, X11, X22, X12, P, Q j ( j =
1, 2, 3), Ni, Mi (i = 1, 2) are defined in Lemma 3, A
is defined in Theorem 2. And from (29), it is clear that

X̃ ≥ NZ−1NT , X̃ ≥MZ−1MT , (34)

where N = [NT
1 NT

2 0 0 0]T and M = [MT
1 MT

2 0 0 0]T .
So, if Θ < 0 is feasible, by setting ∆ = 0, then it is

easy to see that (25) and (26) hold, which implies that the
inequalities in Theorem 2 are feasible.

Thus, the proof is completed.
Remark 7. Theorem 4 shows that the stability condition
in Theorem 2 is less conservative than that in Lemma 3.
Meanwhile, Table 1 provides a comparison of the number
of the variables involved in Theorem 1, Theorem 2 and in
some existing results.

V. NUMERICAL EXAMPLES

In this section, two examples are given to demonstrate the
benefits of the proposed method.
Example 1. Consider the delayed NN (1) with a time-varying
delay and

C = diag(1.2769, 0.6231, 0.9230, 0.4480)

A =




−0.0373 0.4852 −0.3351 0.2336
−1.6033 0.5988 −0.3224 1.2352
0.3394 −0.0860 −0.3824 −0.5785
−0.1311 0.3253 −0.9534 −0.5015




B =




0.8674 −1.2405 −0.5325 0.0220
0.0474 −0.9164 0.0360 0.9816
1.8495 2.6117 −0.3788 0.8428
−2.0413 0.5179 1.1734 −0.2775




k+
1 = 0.1137 k+

2 = 0.1279 k+
3 = 0.7994 k+

4 = 0.2368.

For the case of k−i = 0 (i = 1, 2, 3, 4), it can be checked
that Theorem 1 in [21] and Theorem 1 in [7] are not satisfied.
The corresponding upper bounds of h for various µ derived
by Theorem 1 and those in [7], [9], [10] and [25] are listed in
Table 2, in which ′−′ means that the results are not applicable
to the corresponding cases.

For the case of k−1 =−0.1, k−2 = 0.1, k−3 = 0 and k−4 = 0.2,
the upper bounds of h for various µ derived by Theorem 1
and Theorem 2 are listed in Table 3.
Example 2. [25] Consider the delayed NN (1) with

C =
[

2 0
0 2

]
A =

[
1 1
−1 −1

]
B =

[
0.88 1

1 1

]

k+
1 = 0.4 k+

2 = 0.8.
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TABLE II
CALCULATED UPPER BOUNDS OF h FOR EXAMPLE 1

µ 0.1 0.5 0.9 ≥ 1
[8] and [9] 3.2775 2.1502 1.3164 1.2598

Theorem 1 [10] 3.2793 2.2245 1.5847 1.5444
Theorem 1 [25] 3.3039 2.5376 2.0853 2.0389

Theorem 1 3.4018 2.2874 1.6234 1.5698
Theorem 2 3.4183 2.5943 2.1306 2.0770

TABLE III
CALCULATED UPPER BOUNDS OF h FOR EXAMPLE 1

µ 0 0.1 0.5 0.9 ≥ 1
Theorem 1 3.9224 3.6235 2.5196 1.7808 1.7243
Theorem 2 3.9224 3.6574 2.8467 2.3366 2.2841

For the case of k−1 = k−2 = 0, the corresponding upper
bounds of h for various µ derived by Theorem 1 and methods
in [8], [10] and [9] are listed in Table 4.

For the case of k−1 =−0.2, k−2 = 0.1, the upper bounds of
h for various µ derived by Theorem 1 are listed in Table 5.

VI. CONCLUSION

In this paper, the delay-dependent stability problem of
NNs with a time-varying delay has been investigated. By
defining an appropriate Lyapunov functional, new delay-
dependent stability criteria are derived in terms of LMIs.
The newly obtained results are less conservative, less com-
putationally complex and are also more applicable than the
existing ones. Numerical examples are given to illustrate the
effectiveness of the presented criteria and their improvement
over the existing results.
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