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Abstract— This paper presents readily checkable criteria for
several system theoretic properties (stability, approximate and
exact controllability, exponential stabilizability) for a particular
class of infinite-dimensional systems, the platoon-type systems.
These systems are used for modeling infinite platoons of vehicles
which have spatially invariant dynamics. Several examples
are presented to illustrate the theory. Key words: Spatially
distributed systems, infinite-dimensional systems, platoons.

I. INTRODUCTION

In Freedman et al [8] a stability theory was developed for

a very general class of systems defined on a locally compact

abelian group G and taking values in a separable Hilbert

space. It relied on a generalization of the known transform

theory in Loomis [15] and Rudin [19] to Hilbert space valued

functions on G in [7]. Three decades later, motivated by

technological progress in microelectromechanical systems

(MEMS) and possible applications to platoons of vehicles,

among others, Bamieh et al [2] reconsidered this idea under

the name of spatially invariant systems. They considered the

class of continuous-time state-space linear systems in the

general form

∂

∂t
z(x,t) = (Az)(x,t)+ (Bu)(x,t)

y(x,t) = (Cz)(x,t)+ (Du)(x,t), t ≥ 0, (1)

where the spatial co-ordinate x ∈ G, a locally compact

abelian group, for example G = Z,R,∂D,Z (mod n) or direct

products of finitely many of the latter.

Denote the space of vector-valued functions that are

square-integrable with respect to the Haar measure µ for G

by

L
n(G) := { f : G → C

n | ‖ f‖2
2 =

∫

G

| f (x)|2dµ(x) < ∞}.

For example, for G = R we have Ln(G) = L2(0,∞;Cn) and

for G = Z we have Ln(G) = ℓ2(C
n) and for G = ∂D (the

unit circle) we have Ln(G) = L2(∂D;Cn). The state, input

and output spaces are Z = Ln(G),U = Lm(G),Y = Lp(G),
respectively and the operators A,B,C,D are linear, possibly

unbounded, operators. Moreover they must all be spatially

invariant.

Denote by Ta the spatial translation by a ∈ G given by

(Ta f )(x) = f (x−a).
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Then we say that A is spatially invariant if for all a ∈ G

Ta : D(A) → D(A) and ATa f = TaA f ∀ f ∈ D(A).

The idea is that by applying the Fourier transform to (1)

one can obtain a simpler system defined on the character

group Ĝ of G.

∂

∂t
ž(γ,t) = ˇ(Az)(γ,t)+ ˇ(Bu)(γ,t)

= Ǎ(γ)ž(γ,t)+ B̌(γ)ǔ(γ,t) (2)

y̌(γ,t) = ˇ(Cz)(γ,t)+ ˇ(Du)(γ,t)

= Č(γ)ž(γ,t)+ Ď(γ)ǔ(γ,t), t ≥ 0, γ ∈ Ĝ,

where Ǎ(γ), B̌(γ), Č(γ) and Ď(γ) are multiplicative operators.

In our case they are all bounded operators.

In order to analyze and solve problems related to sys-

tems of this type, it is natural to apply the theory for

infinite-dimensional systems from [4], [5]. In this paper

we do this analysis for the special case of the infinite-

dimensional platoon-type systems for which G = Z (with

the character group Ĝ = ∂D). We are interested in this type

of systems because many related problems are far from

being completely solved. We develop new readily testable

criteria for system theoretic properties as stability, exact and

approximate controllability and observability, stabilizability

and detectability. These results are illustrated by several

examples.

In Section II we describe the infinite platoon-type sys-

tems and argue that one can apply the theory from [5] to

this particular class. Conditions for exponential and strong

stability are presented in Section III. Necessary and suf-

ficient conditions for approximate observability, approxi-

mate controllability, exact controllability, exact observability,

exponential stabilizability and detectability are derived in

Sections IV and V. The conclusions and future research

are discussed in Section VI. We recall the definitions and

introduce the notations for various frequency-domain spaces

in an appendix.

II. PLATOON-TYPE SYSTEMS

The motivation for studying this special class of system

stems from the interest shown in the literature for controlling

infinite platoons of vehicles over the years (see [14], [16],

[17], [3], [12]). The models obtained for these configurations

have the spatially invariant form

żr =
∞

∑
l=−∞

Alzr−l +
∞

∑
l=−∞

Blur−l, −∞ ≤ r ≤ ∞ (3)

yr =
∞

∑
l=−∞

Clzr−l +
∞

∑
l=−∞

Dlur−l, −∞ ≤ r ≤ ∞, (4)
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where the vectors zr ∈ Cn,ur ∈ Cm,yr ∈ Cp and the ma-

trices Al ∈ Cn×n,Bl ∈ Cn×m,Cl ∈ Cp×n,Dl ∈ Cp×m. Using

the terminolgy and formalism of [5] we can formulate (3),

(4) as a standard state linear system Σ(A,B,C,D) with the

state space Z = ℓ2(C
n), the input space U = ℓ2(C

m) and the

output space Y = ℓ2(C
p) (see the appendix). Note that Z,U,Y

are all infinite dimensional and so z = (zr)
∞
r=−∞ ∈ ℓ2(C

n),
u = (ur)

∞
r=−∞ ∈ ℓ2(C

m), y = (yr)
∞
r=−∞ ∈ ℓ2(C

p) and A,B,C,D
are convolution operators T given by

(T z)r =
∞

∑
l=−∞

Tlzr−l =
∞

∑
l=−∞

Tr−lzl . (5)

The product of two operators is also a convolution operation,

for example,

(CA)r =
∞

∑
l=−∞

ClAr−l =
∞

∑
l=−∞

Cr−lAl,

provided, of course, that this is well-defined. To derive

conditions for these operators to be bounded we take Fourier

transforms of the typical operator equation (5) (see Definition

7.4).

ˇ(Tz)(e jθ) =
∞

∑
r=−∞

∞

∑
l=−∞

Tlzr−le
− jrθ

=
∞

∑
l=−∞

Tle
− jlθ

∞

∑
r=−∞

zr−le
− j(r−l)θ

:= Ť (e jθ)
∞

∑
r=−∞

zre− jrθ = Ť (e jθ)ž(e jθ),

where ž is the Fourier transform of z and

Ť (e jθ) :=
∞

∑
l=−∞

Tle
− jlθ. (6)

According to Property 7.2 this will define a bounded op-

erator from L2(∂D;Cm) to L2(∂D;Cp) provided that Ť ∈
L∞(∂D;Cp×m), i.e., provided that esssup

0<θ≤2π
|Ť (e jθ)| < ∞ (see

Definition 7.1). In this case we denote

‖Ť‖∞ := esssup
0<θ≤2π

|Ť (e jθ)| < ∞.

Note that the Fourier transform of the convolution product

ČA = ČǍ is just matrix multiplication.

In our applications we shall often assume the stronger

condition Ť ∈ ℓ1(C
p×m), i.e.,

‖T‖1 = ‖Ť‖1 =
∞

∑
l=−∞

|Tl | < ∞,

where | · | denotes the matrix spectral norm. In the case

that p = m, ℓ1(C
m×m) is a Banach subalgebra of L(ℓ2(C

m))
with convolution as the product operation. The Fourier trans-

formed operators form a subspace of L∞(∂D;Cn×m) with the

norm ‖ · ‖1.

Definition 2.1: The operator Ť ∈ L∞(∂D;Cn×m) is called

summable if it has the well-defined expansion Ť (e jθ) =

∑∞
l=−∞ Tle

jlθ and ‖Ť‖1 < ∞. We denote the space of operators

with this property by Ls(∂D;Cn×m).

Ls(∂D) is also known as the Wiener class. It is readily seen

that ℓ1(C
n×m) is isometrically isomorphic to Ls(∂D;Cn×m).

So they are Banach spaces under the norm ‖ · ‖1. Clearly,

‖Ť‖1 ≥ ‖Ť‖∞, and Ť (e jθ) and is continuous in θ on [0,2π].
In the case that n = m we have that Ls(∂D;Cn×n) is a Banach

algebra. However, in the subsequent theory we need to work

with bounded operators from the Hilbert space L2(∂D;Cm)
to the Hilbert space L2(∂D;Cp), i.e., Ť ∈ L∞(∂D;Cp×m)
and these operators are not in the Wiener class in general.

Moreover, they need not be continuous or defined for all

θ ∈ [0,2π].
Now, ℓ2(C

m) is isometrically isomorphic to L2(∂D;Cm)
under the Fourier transform which we denote in this case by

F (notation used only here for the simplicity of writing its

inverse). Hence

ǔ = Fu,u = F−1ǔ,F(Tu) = FTF−1Fu,T = F−1ŤF,

and T is bounded if and only if Ť is. They have the same

norms, since

‖T‖ = sup
‖u‖ℓ2

=1

‖Tu‖ℓ2
= sup

‖u‖ℓ2
=1

‖F−1Ť ǔ‖ℓ2

= sup
‖ǔ‖L2(∂D)=1

‖Ť ǔ‖L2(∂D) = ‖Ť‖,

where we have used the fact that ‖u‖ℓ2
= ‖ǔ‖L2(∂D).

Taking Fourier transforms of the system equations

ż(t) = Az(t)+ Bu(t),

y(t) = Cz(t)+ Du(t),

we obtain

Fż(t) = FAF
−1

Fz(t)+FBF
−1

Fu(t),

Fy(t) = FCF−1Fz(t)+FDF−1Fu(t).

Hence the state linear system Σ(A,B,C,D) is

isometrically isomorphic to the state linear system

Σ(FAF−1,FBF−1,FCF−1,FDF−1) = Σ(Ǎ, B̌,Č,Ď) on the

state space L2(∂D;Cn) with input and output spaces

L2(∂D;Cm) and L2(∂D;Cp) respectively. Their system

theoretic properties are identical (see [5, Exercise 2.5]) and

so it suffices to apply the standard theory from [5] to the

Fourier transformed system Σ(Ǎ, B̌,Č,Ď). Contrary to what

is suggested in [2], it is not necesssary to develop new

first principle proofs. One only needs to apply the standard

theory from [5] to this particular example class. In the

subsequent sections we do this and arrive at simple tests for

system theoretic properties such as stability, stabilizability,

controllability and illustrate these with simple examples.

III. STABILITY PROPERTIES

To examine the stability properties of a convolution opera-

tor given by (5) it is easier to consider its Fourier transform.

So, instead of A we consider Ǎ. Since Ǎ is a bounded

operator, the semigroup eǍt satisfies the spectrum determined

growth assumption (see [4, p.74]), i.e.,

sup{Re(λ),λ ∈ σ(Ǎ)} = lim
t→∞

log‖eǍt‖
t

= ω0.
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Thus eǍt is exponentially stable if and only if

sup{Re(λ) | λ ∈ σ(Ǎ)} < 0. (7)

Conditions for the spectrum of Ǎ are given in Lemma 7.3.

In particular, if Ǎ(e jθ) is continuous, λ ∈ σ(Ǎ) if and only if

det(λI− Ǎ(e jθ)) = 0 for some value of θ. More precisely

σ(Ǎ) =
⋃

θ∈[0,2π]

σ(Ǎ(e jθ)).

Lemma 3.1: If Ǎ(e jθ) is continuous in θ on [0,2π], then

a necessary and sufficient condition for exponential stability

is

sup{Re(λ) | ∃θ ∈ [0,2π] s.t. det(λI− Ǎ(e jθ)) = 0} < 0. (8)

A weaker form of stability is strong stability.

Definition 3.2: A semigroup T (t) is strongly stable if

limt→∞ ‖T (t)z‖ = 0 for all z ∈ Z.

In the case that Ǎ(e jθ) = A0, a constant matrix, we have

σ(Ǎ) = σ(A0) which comprises eigenvalues. However, in

general, σ(Ǎ) comprises the essential spectrum. If Ǎ is a

scalar function, the essential spectrum of Ǎ is {Ǎ(φ)|φ ∈ ∂D}
([9, Corollary 4.4., p.577]). The spectrum of Ǎ can be very

complicated, as the following examples show. Moreover, the

system can be exponentially stable or only strongly stable.

Example 3.3: Consider the system (3) with A0 = a, A1 = c

and A−1 = b and all other Al = 0 and all Bl = 0.

Ǎ(e jθ) = ce− jθ + a + be jθ = (b + c)cosθ+ a + j(b− c)sinθ,

for positive constants b,c. If b = c, we have σ(A) = σ(Ǎ) =
[a− 2b,a + 2b]. If b 6= c, we have σ(A) = σ(Ǎ) = {ce− jθ +
a + be jθ | θ ∈ [0,2π]} (Figure 1, Left). In both cases the

spectrum comprises continuous spectrum. If a + |b + c|< 0

the semigroup eǍt is exponentially stable. If a =−|b+c| the

semigroup eǍt is not exponentially stable, since 0 ∈ σ(Ǎ).
However, it is strongly stable. That follows from [1] using

the fact that the intersection of σ(Ǎ) with the imaginary axis

contains only the origin and the uniform boundness with

respect to t of the semigroup

|eǍt | = e(b+c)cos(θ)te−|b+c|t ≤ 1.
Example 3.4: Consider the system (3) with A0 = −5.5,

A1 = 1.5, A−1 = 0.34, A−2 = −.46 and A−3 = −3 and all

other Al = 0 and all Bl = 0. The spectrum of Ǎ is σ(Ǎ) =
Ǎ(e jθ) provided in Figure 1 (Right). The exponential stability

of the semigroup follows from the inequality

|eǍt | < e−0.1t .
Example 3.5: Consider the system (3) with A0 =

[

0 1

−β −µ

]

, A1 =

[

0 −1

0 0

]

and all Bl = 0, where β

and µ are positive numbers. The transformed system has

Ǎ(e jθ) =

[

0 1− e− jθ

−β −µ

]

.

and the spectrum is

σ(Ǎ) = {1

2
(−µ± (x(θ)+ jy(θ))),θ ∈ [0,2π]},

−6 −4 −2 0 2 4
−3

−2

−1

0

1

2

3

−10 −9 −8 −7 −6 −5 −4 −3 −2 −1
−5

−4

−3

−2

−1

0

1

2

3

4

5

Fig. 1. Left: Spectrum of Ǎ for Example 3.3 b = 4, c = 1, a = −1
Right: Spectrum of Ǎ for example 3.4

where x(θ),y(θ) are the positive square roots of

2x(θ)2 =

√

(8βsin2 θ/2−µ2)2 + 16β2 sin2 θ

+ µ2 −8βsin2 θ/2

2y(θ)2 =

√

(8βsin2 θ/2−µ2)2 + 16β2 sin2 θ

− µ2 + 8βsin2 θ/2

Note that for θ = 0 x(0) = µ and so 0 ∈ σ(Ǎ), which shows

that eǍt does not generate an exponentially stable semigroup.

Since x(θ) > 0 for every θ ∈ [0,2π], Ǎ(e jθ) has two distinct

eigenvalues λ1,2(θ) = 1
2
(−µ± (x(θ)+ jy(θ))). Then

Ǎ(e jθ) = L−1

[

λ1(θ) 0

0 λ2(θ)

]

L,

where L and its inverse are bounded. Then

‖eǍ(e jθ)t‖ ≤ ‖L‖‖L−1‖
∥

∥

∥

∥

[

eλ1(θ)t 0

0 eλ2(θ)t

]∥

∥

∥

∥

If µ2 − 2β > 0 then the inequality x(θ) ≤ µ is satisfied for

all θ ∈ [0,2π], which implies that eλ1,2(θ)t are uniformly

bounded. Then eǍt is uniformly bounded (with respect to

t). The intersection of σ(Ǎ) with the imaginary axis contains

only the origin. From [1], it follows that the semigroup eǍt

is strongly stable provided that µ2 > 2β and β > 0.

Example 3.6: Consider the system (3) with A0 =
[

−1 1

0 −1

]

, A1 =

[

1 0

0 1

]

and all Bl = 0. The trans-

formed system has

Ǎ(e jθ) =

[

−1 + e− jθ 1

0 −1 + e− jθ

]

.

The system is not exponentially stable because 0 ∈ σ(Ǎ).

Moreover, it is not strongly stable because ‖eǍt‖ is given by

‖eǍt‖ = |e(cosθ−1+ j sin(θ))t |
∥

∥

∥

∥

[

1 t

0 1

]∥

∥

∥

∥

= |e(cosθ−1)t |

√

2 + t2 +
√

t4 + 4t2

2

which tends to infinity as t → ∞.

A Lyapunov-type condition follows from [5, Theorem

5.1.3]
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Theorem 3.7: An operator Ǎ∈L∞(∂D;Cn×n) generates an

exponentially stable semigroup if and only if there exists a

positive operator P̌ ∈ L∞(∂D;Cn×n) such that

Ǎ∗P̌+ P̌∗Ǎ = −I

If A ∈ ℓ1(C
n×n), then P ∈ ℓ1(C

n×n) and so P̌(e jθ) will be

continuous in θ on [0,2π].

Proof We only need to prove the continuity. The solution

to the isometrically isomorphic Lyapunov equation A∗P +
P∗A = −I is

P =
∫ ∞

0
eA∗teAtd t.

Now ℓ1(C
n×n) is a Banach algebra and so closed under

limits. Hence eAt ∈ ℓ1(C
n×n) and so is the integrand. Now

eAt is exponentially stable and so for some M,α > 0

‖eA∗teAt‖ ≤ M2e−2αt .

By the Lebesgue lemma we conclude that P ∈ ℓ1(C
n×n)

which implies that P̌(e jθ) is continuous.

For Example 3.3 the Lyapunov equation has the solution

P̌(e jθ) = − 1

2[(b + c)cosθ+ a]
,

which shows that eǍt will generate an exponentially stable

semigroup if and only if −a > |b + c|.
The Lyapunov equation associated to the system consid-

ered in Example 3.5 does not have a positive solution which

confirms our earlier conclusion that eǍt does not generate an

exponentially stable semigroup.

IV. CONTROLLABILITY AND OBSERVABILITY

Since Σ(A,B,C,D) is isometrically isomorphic to the state

linear system Σ(Ǎ, B̌,Č,Ď), their approximate controllability

and observability properties are identical. It is more conve-

nient to analyze the Fourier transformed system to deduce

the properties of Σ(A,B,C,D). The necessary and sufficient

conditions for approximate controllability from [5, Definition

4.1.17] applied to Σ(Ǎ, B̌,Č,Ď) yield

B̌∗eǍ∗t ž = 0 for t ≥ 0 =⇒ ž = 0,

and for the dual concept of approximate observability they

yield

ČeǍt ž = 0 for t ≥ 0 =⇒ ž = 0.

Since Ǎ, B̌,Č are bounded operators, we obtain the fol-

lowing necessary and sufficient condition for approximate

observability from the dual of [4, Theorem 3.16]

ker













Č

ČǍ

...

ČǍr

...













= {0}.

Moreover, since Ǎ and Č have matrix values, this condition

reduces to

ker









Č(e jθ)

Č(e jθ)Ǎ(e jθ)
...

Č(e jθ)Ǎ(e jθ)n−1









= {0} (9)

for almost all θ ∈ [0,2π].

Similarly, we obtain the following necessary and sufficient

condition for approximate controllability

rank[B̌(e jθ) : Ǎ(e jθ)B̌(e jθ) : ...Ǎ(e jθ)n−1B̌(e jθ)] = n (10)

for almost all θ ∈ [0,2π].
As in the finite-dimensional case, this leads to the follow-

ing Hautus test.

Lemma 4.1: Σ(Ǎ, B̌,Č,Ď) is approximately controllable if

and only if

rank
[

(λI− Ǎ(e jθ)) : B̌(e jθ)
]

= n

for almost all θ ∈ [0,2π] and for all λ ∈ C.

Σ(Ǎ, B̌,Č,Ď) is approximately observable if and only if

rank

[

λI− Ǎ(e jθ)

Č(e jθ)

]

= n

for almost all θ ∈ [0,2π] and for all λ ∈ C.

One might expect that, in the case that

Ǎ(e jθ), B̌(e jθ),Č(e jθ) are continuous in θ on [0,2π],
necessary and sufficient conditions for approximate

observability and controllability should be that (9) and

(10) hold for all θ ∈ [0,2π]. The following example shows

that there are approximately controllable systems with

Ǎ(e jθ), B̌(e jθ),Č(e jθ) continuous in θ on [0,2π] for which

the rank condition does not hold for all θ ∈ [0,2π].
Example 4.2: Consider the system (3) with

A0 =

[

0 1

0 0

]

, B0 =

[

0

1

]

, B1 =

[

0

−1

]

and all other Al,Bl zero. To examine the approximate control-

lability of this system we examine the Fourier transformed

system which has the operators

Ǎ =

[

0 1

0 0

]

, B̌(e jθ) =

[

0

1− e− jθ

]

.

We have

B̌(e jθ)∗eǍ(e jθ)∗t

[

ξ
ρ

]

= [01− e− jθ]

[

1 0

t 1

][

ξ
ρ

]

= (1− e− jθ)(tξ+ ρ).

If this equals zero almost everywhere in [0,2π] for t ≥ 0, we

must have ξ = 0 = ρ. Consequently it is approximately con-

trollable, even though it does not satisfy the rank condition

(10) in θ = 0.

It turns out that, in the case that Ǎ(e jθ), B̌(e jθ),Č(e jθ) are

continuous in θ on [0,2π], if (9) and (10) hold for all θ ∈
[0,2π], then the system is exactly controllable.
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We recall that Σ(Ǎ, B̌,ČĎ) is exactly controllable on [0,T ]
if and only if there exists a positive β such that

∫ T

0
‖B̌∗eǍ∗t ž‖2

L2(∂D;Cm) dt ≥ β‖ž‖2
L2(∂D;Cn),

and the dual concept for exactly observable on [0,T ] if and

only if there exists a positive γ such that

∫ T

0
‖ČeǍt ž‖2

L2(∂D;Cp) dt ≥ γ‖ž‖2
L2(∂D;Cn).

Lemma 4.3: Suppose that Ǎ(e jθ), B̌(e jθ) and Č(e jθ) are

continuous in θ on [0,2π]. Then Σ(Ǎ, B̌,Č,Ď) is exactly

controllable if and only if

rank
[

(λI− Ǎ(e jθ)) : B̌(e jθ)
]

= n (11)

for all θ ∈ [0,2π] and for all λ ∈ C.

Σ(Ǎ, B̌,Ď) is exactly observable if and only if

rank

[

λI− Ǎ(e jθ)

Č(e jθ)

]

= n (12)

for all θ ∈ [0,2π] and for all λ ∈ C.

Proof. Since both concepts are dual, it suffices to prove

the exact observability result.

Necessity: It can be proved by contradiction.

Sufficiency: From [5, Lemma 4.1.6] we can assume that

the system is exponentially stable. Consequently, one can

use the sufficient condition for exact observability from [20,

Theorem 1.7] to establish this implication.

V. EXPONENTIAL STABILIZABILITY AND DETECTABILITY

We recall that Σ(A,B,C,D) is exponentially stabilizable if

there exists a F ∈ L(Z,U) such that A+BF is exponentially

stable and it is exponential detectable if there exists a

L ∈ L(Y,Z) such that A + LC is exponentially stable. We

derive simple conditions for exponential stabilizability and

exponential detectability by analyzing its Fourier transformed

system.

Lemma 5.1: Suppose that Ǎ, B̌,Č are continuous in θ on

[0,2π].
Σ(Ǎ, B̌,Č,0) is exponentially stabilizable if and only if

(Ǎ(e jθ), B̌(e jθ)) is exponentially stabilizable for each θ ∈
[0,2π], i.e.,

rank
[

(λI− Ǎ(e jθ)) : B̌(e jθ)
]

= n (13)

for all θ ∈ [0,2π] and for all λ ∈ C
+
0 .

Σ(Ǎ, B̌,Č,0) is exponentially detectable if and only if

(Ǎ(e jθ),Č(e jθ)) is exponentially detectable for each θ ∈
[0,2π], i.e.,

rank

[

λI− Ǎ(e jθ)

Č(e jθ)

]

= n (14)

for all θ ∈ [0,2π] and for all λ ∈ C
+
0 ,

Proof It suffices to prove the exponential stabilizability

condition.

Sufficiency: One can use the unique non-negative stabiliz-

ing solution to the Riccati equation

Ǎ(e jθ)∗Q̌(e jθ)+ Q̌(e jθ)Ǎ(e jθ)

−Q̌(e jθ)B̌(e jθ)B̌(e jθ)∗Q̌(e jθ)+ I = 0. (15)

and [13, Theorem 11.2.1]. It can be shown that Ǎ− B̌B̌∗Q̌

generates an exponentially stable semigroup.

Necessity: It can be proved by contradiction.

Corollary 5.2: If Ǎ, B̌,Č are summable, then there exists

a summable F̌ such that Ǎ + B̌F̌ generates an exponentially

stable semigroup if and only if (13) holds. Moreoever,

Σ(Ǎ, B̌,Č,−) is exponentially stabilizable (detectable) with

respect to the spaces if and only if (13) ((14)) holds.

Proof. Since the summable norm is strictly larger than the

infinity norm, we need only prove sufficiency.

First we show the existence of a summable F̌ . From

Lemma 5.1 we have a stabilizing F̌ = −B̌∗Q̌ so that there

exist positive constants M,α such that

‖e(Ǎ+B̌F̌)t‖∞ ≤ Me−αt .

Since F̌(e jθ) is continuous and periodic on [0,2π], it is

approximable by

F̌N =
N

∑
l=−N

Fle
− jlθ

in the sup norm ([21, Proposition 1, p.113]). Choose N

sufficiently large so that

‖F̌ − F̌N‖∞ < ε =
α

2M‖B̌‖
.

Then using the perturbation result from [5, Theorem 3.2.1]

we have

‖e(Ǎ+B̌F̌N)t‖∞ ≤ Me−αteM‖B̌‖εt = Me−
α
2 t ,

which shows exponential stability in the L∞-norm. Hence

the spectrum lies in the open left half-plane. From Lemma,

Ǎ+B̌F̌ generates and exponentially stable semigroup on both

spaces.

We remark that in Lemma 5.1 it is essential that Ǎ(e jθ),
B̌(e jθ) and Č(e jθ) be continuous in θ. Unlike the approximate

controllability condition, the rank condition for exponential

stabilizability should hold for all θ ∈ [0,2π] as the following

example illustrates.

Example 5.3: Consider the system from Example 4.2.

Ǎ(e jθ) =

[

0 1

0 0

]

, B̌(e jθ) =

[

0

1− e− jθ

]

.

The Riccati equation has the unique positive solution

Q̌(e jθ) =

[

√

1 + 1/sinθ/2 1/2sinθ/2

1/2sinθ/2

√
1+sinθ/2

2sin3 θ/2

]

for each θ ∈ [0,2π], but Q̌(e jθ) is not bounded on [0,2π]. So

the operator Riccati equation

Ǎ∗Q̌+ Q̌Ǎ− Q̌B̌B̌∗Q̌+ I = 0

47th IEEE CDC, Cancun, Mexico, Dec. 9-11, 2008 TuC07.2

1446



does not have a nonnegative self-adjoint solution. From

Theorem 6.2.4 in [5] we conclude that Σ(Ǎ, B̌,Č,Ď) is not

exponentially stabilizable. This checks with the observation

that the condition (13) fails for θ = 0.

So for this class of systems approximate controllability does

not imply exponential stabilizability.

VI. CONCLUSIONS AND FUTURE WORK

We have considered a class of infinite-dimensional systems

which have a spatially invariant dynamics. The motivation for

studying this special class of system stems from the interest

shown in the literature for controlling infinite platoons of

vehicles over the years. Testable criteria for various system

theoretic properties have been derived and illustrated with

simple examples. Further research will focus on the rela-

tionship between the LQR problem for very large, but finite,

platoons of vehicles and the LQR problem for an infinite

platoon.
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VII. APPENDIX: FREQUENCY-DOMAIN SPACES

In this section we recall the definitions and introduce the

notations for various frequency domain spaces with respect

to the unit disc.

Definition 7.1: Denote by D the unit disc {z∈C | |z|< 1}
and by ∂D its boundary, the unit circle {z ∈C | |z|= 1}. We

define the following frequency-domain spaces:

L2(∂D;Cm) = { f : ∂D → C
m | f is measurable and

‖ f‖2 =

(

1

2π

∫ 2π

0
| f (e jθ)|2dθ

)
1
2

< ∞}

L∞(∂D;Ck×m) = {F : ∂D → C
k×m | F is measurable

and ‖F‖∞ = esssup
0<θ≤2π

‖F(e jθ)‖ < ∞}

L2(∂D;Cm) is a Hilbert space under the inner product

〈 f1, f2〉2 =
1

2π

∫ 2π

0
〈 f1(e

jθ), f2(e
jθ)〉Cm dθ.

L∞(∂D;Ck×m) is a Banach space under the ‖ · ‖∞-norm. Its

elements induce a bounded operator from L2(∂D;Cm) to

L2(∂D;Ck).
Property 7.2: If F ∈ L∞(∂D;Ck×m) and u ∈ L2(∂D;Cm),

then Fu ∈ L2(∂D;Ck). The multiplication map ΛF : u 7→
Fu defines a bounded linear operator from L2(∂D;Cm) →
L2(∂D;Ck) (often called a Laurent operator) and

‖ΛF‖ = sup
u 6=0

‖ΛFu‖L2(∂D;Ck)

‖u‖L2(∂D;Cm)
= ‖F‖∞. (1)

If k = m, we obtain the Banach algebra L∞(∂D;Ck×k). We

quote the following result from Gohberg et al [9, Theorem

2.4, p.569] on the existence of an inverse.

Lemma 7.3: L∞(∂D;Ck×k) is a Banach algebra and F ∈
L∞(∂D;Ck×k) is boundedly invertible if and only if ∃ a γ > 0

such that {θ | |det(F(e jθ)| < γ} has measure zero. If F is

continous, then F ∈ L∞(∂D;Ck×k) is boundedly invertible if

and only if det F(e jθ) 6= 0 for all θ ∈ ∂D.

Elements of L2(∂D) arise naturally as Fourier trans-

forms of elements in ℓ2(C
m) = {z = (zr)

∞
n=−∞,zr ∈

C
m | ∑∞

r=−∞ ‖zr‖2
Cm < ∞}.

Definition 7.4: The Fourier transform of an element of

z ∈ ℓ2(C
m) is defined by

ž(e jθ) =
∞

∑
r=−∞

zre
− jrθ, θ ∈ D, (2)

which is precisely the Fourier series representation of an

element ž ∈ L2(∂D;Cm) with the Fourier coefficients zr =
1

2π

∫ 2π
0 ž(e jθ)e jrθdθ.

Note that an element ž ∈ L2(∂D;Cm) has the inverse

Fourier transform z = (zr)
∞
r=−∞,zr ∈ Cm, where zr are the

Fourier coefficients of ž.

Moreover, ˇ: ℓ2(C
m) → L2(∂D;Cm) is an isometric isom-

etry with ‖ž‖L2(∂D;Cm) = ‖z‖ℓ2(Cm).
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